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Obesity has signi�cant implications for healthcare, since it is amajor risk factor for both type 2 diabetes and themetabolic syndrome.
is syndrome is a common and complex disorder combining obesity, dyslipidemia, hypertension, and insulin resistance. It is
associated with high atherosclerotic cardiovascular risk, which can only partially be explained by its components. erefore,
to explain how obesity contributes to the development of metabolic and cardiovascular disorders, more and better insight is
required into the effects of personal and environmental stress on disease processes. In this paper, we show that obesity is a chronic
in�ammatory disease, which has many molecular mechanisms in common with atherosclerosis. Furthermore, we focus on the role
of oxidative stress associated with obesity in the development of the metabolic syndrome. We discuss how several stress conditions
are related to in�ammation and oxidative stress in association with obesity and its complications. We also emphasize the relation
between stress conditions and the deregulation of epigenetic control mechanisms by means of microRNAs and show how this
impairment further contributes to the development of obesity, closing the vicious circle. Finally, we discuss the limitations of
current anti-in�ammation and antioxidant therapy to treat obesity.

1. Introduction

By 2015, approximately 2.3 billion adults will be overweight
and more than 700 million will be obese according to the
World Health Organization projections. e United States
(US) is currently the biggest single market for weight loss
drugs, with around 68 percent of the population either
overweight or obese, followed by the United Kingdom and
other European countries. In the US alone, over 9 million
children and teenagers are obese. Moreover, China, Russia,
India, and Brazil could soon begin to surpass Western
countries in its obese populations.

Our �rst aim is to demonstrate that obesity is a chronic
in�ammatory disease state that is associated with other
disease processes such as adipose tissue (AT) remodelling,
oxidative stress, and insulin resistance (IR). ese disease
processes contribute to the development of type 2 diabetes
(T2DM) and the metabolic syndrome (MetS) [1]. MetS
is a common and complex disorder combining obesity,
dyslipidemia, hypertension, and IR [2–5]. It is a primary risk

factor for T2DMand cardiovascular diseases (CVD) [3, 6–13]
(Figure 1).

Our second aim is to analyze the effects of behaviour and
personal and environmental stress factors on the develop-
ment of obesity and associated disorders. We emphasize the
effects of stress factors on the loss of epigenetic regulatory
mechanisms of disease processes, with a primary focus on
in�ammation.

Finally, we discuss the limitations of current anti-
in�ammatory and antioxidant treatment of obesity and its
associated metabolic and cardiovascular disorders by show-
ing their inappropriate control of disease processes.

�. Obesity Is a C�ronic In�a��atory Disease

Low-grade in�ammation is a characteristic of the obese
state (Figure 2). Circulating concentrations of many in�am-
matory markers in obese subjects are higher than in lean
people, and they are believed to play a role in causing IR
and other metabolic disturbances. In�ammatory markers
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F 1: Schematic representation of the central role of in�am-
mation in obesity-induced disorders. e in�ammatory state,
associated with excessive caloric intake during obesity induces
adipose tissue remodelling, oxidative stress, and insulin resistance,
associatedwith an increased risk of developingmetabolic syndrome,
type 2 diabetes, and cardiovascular diseases.

are also higher in ATs of obese people; they are secreted
by in�ltrating macrophages and by adipocytes themselves.
Blood concentrations of in�ammatory markers are lowered
following weight loss [14]. Both high-glucose and high-fat
meals may induce postprandial in�ammation. e latter is
worsened by advanced glycation end products (AGE) and
partly compensated by the inclusion of certain antioxidants
or antioxidant-containing foods within the meal [15].

Mechanistically, the cytokine-interleukin- (IL-) 1𝛽𝛽 has
emerged as a prominent instigator of the proin�ammatory
response in obesity [16]. Indeed, lack of Il-1 receptor-I (Il-
1RI) protects mice from high-fat diet-induced AT in�am-
mation coincident with improved glucose homeostasis [17].
Another instigator of in�ammation is theNLRpyrin domain-
containing-3 (Nlrp3, also known as Nalp3 or cryopyrin)
in�ammasome; its induction is associated with IR. Ablation
of Nlrp3 in mice reduced Il-18 and interferon-𝛾𝛾 (Ifn-𝛾𝛾) and
improved insulin signalling [18]. e increased secretion
of angiopoietin-like protein-2 (Angptl2) by AT also acti-
vates an in�ammatory cascade and induces chemotaxis of
monocytes/macrophages. Angptl2 deletion ameliorated AT
in�ammation and systemic IR in diet-induced obese mice
[19].

In addition, in�ammation is caused by changes in levels
of adipokines. Overexpression of adipocyte-derived mouse
resistin leads to accelerated white AT (WAT) in�ammation
associated with increased lipolysis and serum-free fatty acids

(FA), and IR [20]. In contrast, adipocyte-derived adiponectin
protects against in�ammation by promoting macrophage
polarization toward an anti-in�ammatory phenotype [21].
Increases in adiponectin decreased fat content and in�am-
matory cytokines tumour-necrosis-factor- (Tnf-) 𝛼𝛼 and Il-6
in obese rats [22].

Increased in�ltration of monocytes and activation into
macrophages is another hallmark of obesity. Exosome-like
vesicles (ELVs) released from AT activate macrophages lead-
ing to IR in mice. ELVs from obese mice were absorbed
by peripheral blood monocytes, which then differentiated
into activated macrophages with increased secretion of Tnf-
𝛼𝛼 and Il-6. Injection of ELVs of obese mice into lean mice
resulted in the development of IR. However, when ELVs
were intravenously injected into toll-like-receptor- (Tlr-) 4
knockout mice, glucose intolerance and IR were much lower
[23]. Mechanistically, the C-C motif-chemokine-receptor-
(CCR-) 2/monocyte-chemotactic-protein- (MCP-) 1 (also
CCL2) system regulates monocyte and macrophage recruit-
ment. Indeed, short-term treatment with a pharmacological
antagonist of Ccr2 lowered macrophage content of AT and
improved insulin sensitivity without signi�cantly altering
body mass in mice [24]. Furthermore, the chemokine CXC-
ligand- (CXCL-) 5 was also increased in the macrophage
fraction of WAT and in serum of human obese subjects
and decreased aer weight reduction. CXCL5 blocks insulin
signalling by activating the janus kinase-2/signal trans-
ducer and activator of transcription-5/suppressor of cytokine
signalling-2 (Jak2/STAT5/SOCS2) pathways. Obese, insulin-
resistant mice treated with either anti-CXCL5 neutralizing
antibodies or with antagonists of the chemokine (C-X-C
motif) receptor (CXCR)-2, which is the CXCL5 receptor,
were protected against IR, as were Cxcr2−/−mice [25].

In addition to an increased number of macrophages
in obese AT, their phenotype is different. Indeed, whereas
early stages of AT expansion are characterized by anti-
in�ammatory M2-polarized AT macrophages [26], further
AT expansion is associated with increases in proin�am-
matory Cd11c(+)Cd206(+) macrophages that correlate with
markers of IR [27]. e pro�le of macrophages in old fat,
independent of further expansion, also shis toward a proin-
�ammatory environment. e mechanism of this aging-
induced shi in the phenotypic pro�le of macrophages was
found to be related to a decrease in peroxisome-proliferator-
activated-receptor- (Ppar-) 𝛾𝛾 expression in macrophages and
to alterations in Ccr expression pro�les [28]. e accumula-
tion of proin�ammatoryM1macrophages and the expression
of proin�ammatory cytokines and chemokines (i.e., Il-6 and
Ccl2) was largely blunted in AT of obese mice lacking the
leukotriene B4 receptor (Blt)-1 [29]. Drug which decreases
the number of M1 macrophages not only reduces in�am-
mation but also increases insulin sensitivity. For example,
telmisartan, an angiotensin II type-1 receptor blocker and a
PPAR-𝛾𝛾 agonist, improved IR, decreasing body weight gain,
visceral fat weight, and adipocyte size without affecting the
amount of energy intake [30]. Treatment with the PPAR ago-
nist pioglitazone also decreased the M1-to-M2 ratio in high-
fat diet mice, most likely by increasing the expression of Il-10,
an anti-in�ammatory 2 cytokine [31]. Administration of
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F 2: Low-grade chronic in�ammation and oxidative stress in adipose tissue during obesity. e excessive accumulation of adipose
tissue during obesity is characterized by the recruitment of immune cells. Activated T cells and chemokines induce monocyte migration into
adipose tissues where they differentiate into proin�ammatory M1macrophages.e interaction between activated T cells, macrophages, and
dysfunctional adipocytes results in a dysregulated adipokine and exosome-like vesicle production causing insulin resistance (IR). Adipose
tissue hypoxia during obesity is associated with ROS and ox-LDL production, and foam cell formation. In addition, hypoxia and increased
oxidative stress induce apoptosis of adipocytes contributing to insulin resistance.

recombinant Il-33 to genetically obese diabetic (ob/ob) mice
led to reduced adiposity and fasting glucose and increased
glucose tolerance and insulin sensitivity. Il-33 also induced
accumulation of 2 cells in AT and polarization of AT
macrophages toward anM2 alternatively activated phenotype
(Cd206(+)), a lineage associated with protection against
obesity-related metabolic events. Systemic overexpression of
Il-10 by an adenovirus vector increased the expression of M2
markers in AT.Moreover, IR is associated with both the num-
ber of M1 macrophages and the M1-to-M2 ratio. Increased
expression of Il-10 aer a high-fat diet might be involved in
the increased recruitment of M2 macrophages [31].

Adipocyte death and macrophage-mediated AT remod-
elling further contributes to in�ammatory and metabolic
complications of obesity (Figure 2). Increased frequency
of adipocyte death in AT of high-fat diet coincided with
increases in macrophages expressing F4/80 and Cd11c, Tnf-
𝛼𝛼, and Mcp-1 and IR. More speci�cally, macrophages in
crown-like structures (CLS) surrounding dead adipocytes
expressed in�ammation markers [32]. In�amed CLS+ obese
subjects displayed higher plasma insulin, homeostasis model
assessment (HOMA), triglycerides, glucose, blood pressure,
high sensitive C-reactive protein (hs-CRP) and lower HDL-
cholesterol, and brachial artery �ow-mediated dilation com-
paredwith lean subjects. Adipose expression of in�ammatory
genes including cluster-of-differentiation- (CD-) 68, leptin,
matrix-metalloproteinase- (MMP-) 9, CD163, and CD8A
were signi�cantly greater and vascular endothelial growth
factor (VEGF) was lower in the CLS+ group. In contrast,
obese subjects with nonin�amed fat exhibited a mixed clin-
ical phenotype with lower IR, reduced proatherogenic gene

expression, and preserved vascular function as in lean sub-
jects. In multiple linear regression adjusting for age and sex,
CLS status and waist circumference were independent pre-
dictors of �ow-mediated dilation. ese �ndings supported
the concept that factors in addition to absolute weight bur-
den, such as qualitative features of AT, might be important
determinants of CVD [33]. Mechanistically, macrophage-
induced expression and release of MMP-1 and MMP-3 by
human preadipocytes is mediated by IL-1𝛽𝛽 activation [34].
e macrophage-derived apoptosis inhibitor of macrophage
(AIM) protein is increased in blood and is incorporated into
adipocytes, thereby inducing lipolysis in AT. Such a response
is required for the recruitment of macrophages and increased
chemokine production in adipocytes via activation of TLR4
[35]. Apoptosis of adipocytes is sufficient to initiate a large
in�ux of macrophages into the remnant fat pads. However,
these macrophages are anti-in�ammatory M2 macrophages
and notM1 cells.us, adipocyte death is sufficient to initiate
macrophage in�ltration, and live adipocytes are required to
initiate and/or sustain a proin�ammatory responsewithin the
in�ltrating macrophages in AT [36].

Overall, the contribution of in�ammation in AT to the
development of obesity is very similar to its contribution to
the development of atherosclerosis in arterial tissues [37–
39]. e contribution of the phenotypic switch from M2 to
M1 macrophages to in�ammation and IR is crucial in this.
Indeed, the I LIKE HOMe study showed similar monocyte
heterogeneity in obesity and subclinical atherosclerosis. Body
mass index (BMI) was signi�cantly correlated with carotid
intima-media thickness (IMT). High CD16(+) monocyte
counts were signi�cantly associated with both higher BMI
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and increased carotid IMT. Adjustment for CD16(+) mono-
cyte counts weakened the correlation between BMI and
carotid IMT, suggesting that the increase in CD16(+) mono-
cyte numbers in obesity may partly explain the association
between obesity and IMT [40].

3. Obesity Is Related toMetabolic Syndrome

Obesity is oen clustered with other cardiovascular risk
factors, such as dyslipidemia, hypertension, and hyper-
glycaemia, in MetS. e ird Report of the National
Cholesterol Education Program Expert Panel on Detec-
tion, Evaluation, and Treatment of High Blood Choles-
terol in Adults (ATPIII) highlights the importance of treat-
ing patients with MetS to prevent CVD [2]. It de�ned
MetS components as (1) waist circumference ≥102 cm
in men and ≥88 cm in women; (2) fasting triglycerides
≥150mg/dL (1.70mmol/L); (3) HDL-cholesterol <40mg/dL
(1.03mmol/L) in men and <50mg/dL (1.29mmol/L) in
women; (4) blood pressure ≥130/85mmHg; (5) fasting-
glucose ≥100mg/dL (5.55mmol/L). Persons with at least
three of these components were de�ned as having MetS [2–
5].e American Heart Association (AHA) and the National
Heart Lung and Blood Institute (NHLBI) slightly modi�ed
the ATPIII criteria but did not include abdominal obesity
as a required risk factor. Moreover, there was no agreement
on the de�nition of abdominal obesity between the Inter-
national Diabetes Federation (IDF) and AHA/NHLBI. e
IDF recommended that the threshold forwaist circumference
to de�ne abdominal obesity in people of European origin
should be ≥94 cm for men and ≥80 cm for women; the
AHA/NHLBI, in contrast, recommended cut points of ≥102
and ≥88 cm, respectively, for the two sexes. Recently, IDF
and AHA/NHLBI representatives have attempted to resolve
the remaining differences between de�nitions of MetS. Both
sides agreed that abdominal obesity should not be a prereq-
uisite for diagnosis but that it is one of �ve criteria, so that
the presence of any three of �ve risk factors constitutes a
diagnosis of MetS [41]. Because this harmonized de�nition
was published only in 2009, most referenced studies used the
IDF or ATPIII de�nition.

e unadjusted and age-adjusted prevalence of MetS
according to ATPIII in 2000 in US were 21.8% and 23.7%,
respectively. Prevalence increased from 6.7% among partici-
pants aged 20 through 29 years to 43.5% and for participants
aged 60 through 69 years. Mexican Americans had the high-
est age-adjusted prevalence of MetS (31.9%). Age-adjusted
prevalence was similar for men (24.0%) and women (23.4%)
[2]. e age-adjusted prevalence of MetS among US Asian
Indians was 26.9% by the original NCEP/ATPIII criteria,
32.7% by the modi�ed NCEP/ATPIII criteria, and 38.2% by
the IDF criteria [42]. In a Family Medicine Centre study in
Kingston,Ontario, one in every three patients between 40 and
60 years old met the criteria for MetS [43]. e Prediction of
MetS in Adolescence Study showed that birth weight, small
head circumference, and parental overweight or obesity in
at least one parent predicted future MetS (according to IDF)
with a sensitivity of 91% and a speci�city of 98% [44].

In the Leicester Ethnic Atherosclerosis and Diabetes
Risk (LEADER, UK) Study cohort (71.4% white European,
28.6% South Asian; aged 40–75 years), the prevalence of
MetS was 29.9% (29.2% South Asian, 30.2% white Euro-
pean) according to ATPIII and 34.4% (34.2% south Asian,
34.5% white European) according to IDF, respectively. With
the ATPIII de�nition, waist circumference was signi�cantly
more predictive ofMetS than BMI orwaist-hip ratio [45].e
Guangdong Nutrition and Health Survey 2002 showed that
7.3% of residents aged 20 and above had MetS, amounting to
4 million residents in southern China. MetS prevalence was
higher in the urban population than in the rural population
(10.6 versus 4.3%), and womenmore oen had the syndrome
than men (8.9 versus 5.2%) [46].

4. Oxidative Stress In Obesity Is Associated with
the Development of theMetabolic Syndrome

We determined the longitudinal association of oxidized
LDL (ox-LDL) and incident of MetS in 1,889 participants
of the Cardiovascular Risk Development in Young Adults
(CARDIA) Study [47, 48]. e studied CARDIA sample
was balanced by age (45% aged 33–39 years, 55% aged
40–45 years), race (52% African-American, 48% white),
gender (46%men, 54% women), and education (40% having
completed ≤ 12 years of education, 60% having completed >
12 years). Elevated ox-LDL, but not elevated LDL-cholesterol,
was associated with a higher risk of futureMetS. Elevated ox-
LDL was especially associated with the incidence of abdomi-
nal obesity, hyperglycaemia, and hypertriglyceridemia [49].

A possible explanation for the relation between ox-LDL
and obesity is that ox-LDL may be associated with the
increase of AT, in agreement with experimental �ndings that
ox-LDL induces adipocyte proliferation either directly [50]
or indirectly by increasing the in�ltration of in�ammatory
monocytes/macrophages [51]. e increase in AT mass may
also be explained by cellular hypertrophy due to the increased
lipid accumulation in the preexisting adipocytes rather than
an increase in cell number or differentiation. Indeed, ox-LDL
increased triglyceride production by inducing the expression
of lipoprotein lipase (LPL) [52] and by inducing the accu-
mulation of FA in adipocytes [53]. Ox-LDL was also found
to decrease the production of adiponectin which in contrast
with other adipokines is reduced in obese persons, and which
suppresses excess reactive oxygen species (ROS) production
under high-glucose conditions. is effect has implications
for vascular protection in diabetes [54]. Ox-LDL activated c-
JunN-terminal kinase (JNK) and disrupted insulin signalling
in both adipocytes and macrophages in a CD36-dependent
manner. Macrophages isolated from Cd36(−/−) mice aer
high-fat diet feeding elicited less JNK activation and inhi-
bition of insulin signalling in adipocytes aer coculture
compared with wildtype macrophages [55]. Not only CD36
but also LOX-1 was independently associated with IR in AT.
LOX-1 expression was increased when macrophages were
incubated with an adiponectin-neutralizing antibody [56].
e observed relation between obesity and ox-LDL and that
between ox-LDL and MetS is important to understand the
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association between obesity and MetS [57]. In addition, we
demonstrated in the Health Aging, and Body Composition
(Health ABC) cohort, comprising 3,033 participants aged
70–79 years, that those with high ox-LDL had a 2.0-fold
higher adjusted risk of myocardial infarction even aer
adjusting for MetS [58].

Increases in ox-LDL in association with MetS and
atherosclerosis may be due to loss of antioxidant capacity
caused by low serum activity of the antioxidant enzyme
superoxide dismutase (SOD) [59] or low HDL-associated
paraoxonase (PON) antioxidant activity [58]. Increases in
ox-LDL could also be due to increased oxidant capacity,
for example, by augmented expression of NADPH oxidase
(NOX). Indeed, production of reactive oxygen species (ROS)
increased selectively in AT of obese mice caused by higher
expression of Nox and decreased expression of antioxidant
SOD. In cultured adipocytes, elevated FA increased oxidative
stress via Nox activation, and oxidative stress decreased
production of adiponectin and increased Il-6 and Mcp-
1. Finally, in obese mice, treatment with a Nox inhibitor
reduced ROS in AT, decreased in�ammatory adipokines, and
reduced diabetes, hyperlipidemia, and hepatic steatosis [60].

5. Metabolic Syndrome Is Associated with
Cardiovascular Diseases

MetS is associated with a high risk of CVD. is association
is partly dependent on and partly independent of obesity
and T2DM. e Finish Kuopio Ischemic Heart Disease Risk
Factor Study showed that CVD and all-cause mortality were
increased in men aged 42 to 60 years with MetS, even in the
absence of baseline CVD and diabetes [9]. Placebo data from
the Scandinavian Simvastatin Survival Study (4S) and the
Air Force/Texas Coronary Atherosclerosis Prevention Study
(AFCAPS/TexCAPS)were used post hoc to estimate the long-
term relative risk ofmajor coronary events (MCEs) associated
with MetS, aer excluding diabetes mellitus. In 4S and
AFCAPS/TexCAPS, respectively, placebo-treated patients
with MetS were one and a half times more likely to have
MCEs than those without it. Of the MetS components, low
HDL-cholesterol was associated with elevated risk of MCEs
in both studies, whereas high triglycerides in 4S and ele-
vated blood pressure and obesity in AFCAPS/TexCAPS were
associated with signi�cantly increased relative risk. Patients
with MetS showed increased risk of MCEs irrespective of
their Framingham-calculated 10-year risk score category.
ese data suggested that MetS is associated with risk that
is not entirely accounted for by traditional risk scoring [6].
In the Second National Health and Nutrition Examination
Survey, age-, gender-, and risk factor-adjusted hazard ratios
(HRs) for coronary heart disease (CHD) mortality were
twice higher for those with MetS and four-fold higher for
those with preexisting CVD. In persons with MetS but
without diabetes, risks of CHD and CVDmortality remained
elevated. Diabetes predicted all mortality end points [11].We
studied the impact of MetS (38% prevalence) on outcomes
in 3,035 participants in the Health ABC study (51% women,
42% black, ages 70 to 79 years). Aer adjusting for baseline

characteristics, patients with MetS were at a signi�cantly
higher risk of coronary events, myocardial infarctions, and
heart failure. e coronary event rate was higher among
subjects with diabetes and with MetS. Subjects with both
diabetes and MetS had the highest risk [61]. At Mayo Clinic,
a positive gradient for CHD, CVD, and all-cause mortality
rates across exercise electrocardiographic (E-ECG) categories
with three, four, or �ve MetS components was observed in
9,191 men. ese �ndings underscored the importance of
E-ECG tests to identify men with MetS who are at risk of
dying [62]. Development of cardiac allogra vasculopathy
(CAV)was signi�cantly higher in patientswithMetSwhohad
undergone heart transplantation (59% versus 19%). Patients
with a higher score of MetS criteria had a higher risk of CAV:
no criteria (4%); one criterion (4%); two criteria (47%); three
criteria (62%); four criteria (75%); and �ve criteria (100%)
[63].

Grundy and colleagues measured a series of cardio-
vascular risk factors in 59,820 men and 22,192 women.
e risk factor pro�les were segregated into �ve �uintiles
of cardiorespiratory �tness (CRF). With decreasing CRF,
increases occurred in obesity, triglycerides, triglyceride/HDL
lipoprotein ratios, blood pressure, MetS and diabetes, and
smoking [64]. In the Taiwan Survey of Hypertension, Hyper-
glycaemia and Hyperlipidemia cohort, the MetS-attributed
risk for CVD was 39% in men and 44% in women. Of all
MetS components, central obesity had the highest population
attributable risk (PAR) in women (57%) whereas hyperten-
sion had the highest PAR in men (57%) [65]. In Jiangsu,
China,MetS was associated with amore than two-fold higher
CVD risk aer adjustment for age, sex, gender, BMI, alcohol
consumption, family history of CVD, and smoking [66].

Juonala et al. performed a meta-analysis of data from
four prospective studies to determine whether this risk is
reduced in persons who are overweight or obese as children
but not as adults. e mean length of followup was twenty-
three years. Subjects with consistently high adiposity status
from childhood to adulthood had a �ve-fold higher risk of
T2DM, and a two-fold higher risk of hypertension and of
lower HDL-cholesterol, associated with an increased IMT of
the carotid artery. Interestingly, the risks of these outcomes
among overweight or obese children who became nonobese
by adulthood were similar to those among persons who had
never been obese [67].

6. Behaviour and Obesity

ere is growing evidence that the lack of physical exercise,
smoking, and fat rich diets contribute to the development of
obesity and associated disorders (Figure 3).

6.1. Exercise. Dose-response relationships between exercise
and metabolic risk have been demonstrated in adults [68]
and in children [69, 70]. e Diabetes Prevention Program
demonstrated that diet and exercise reduced the risk of
diabetes in adults with prediabetes [71]. A 2003–2007 ran-
domized controlled efficacy trial in overweight or obese
sedentary children (mean age, 9.4 years; 42% male; 58%
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adipocytes and circulatory and tissue in�ammatory cells in obese subjects.

black) recruited from �een public schools showed that aer
thirteen weeks, 20 or 40 minutes/day of aerobic training
improved �tness and demonstrated dose-response bene�ts
for IR and general and visceral adiposity, regardless of sex
or race [72]. Interventions that (i) combined high levels of
parental involvement and interactive school-based learning,
(ii) targeted physical activity and dietary change, and (iii)
included long-term followup appeared most effective in
preschool- and school-based obesity prevention [73].

Regular physical exercise contributes to diminishing
total, visceral, and subcutaneous fat, even without weight
loss, as well as to reduced glycaemia and to increased free
FA (FFA) oxidation and, thus, to an amelioration of IR
[74]. Exercise can indeed be considered as an “insulin-like”
activity because of the muscle’s increased capacity to capture
circulating glucose, a result from decreased intramuscular fat
reserves [74]. Mechanistically, exercise training signi�cantly
increased the expression of the glucose-transporter- (GLUT-)
4 [75] and of the insulin-receptor-substrate- (IRS-) 1 and the
posttranscriptional regulation of the PI3-kinase expression
[76]. Among other bene�ts, exercise stimulates lipolytic
activity (with decreased plasma triglycerides), promotes the
use of FFA as an energy source, and increases HDL con-
centration. Furthermore, it increases the antioxidant PON
activity of HDL [77]. Adaptation to oxidative stress in trained
individuals is clearly evidenced by increased antioxidant
protection and by increased resistance against chronic ROS
production [78]. In addition, exercise seems to reduce
low-grade chronic in�ammation, albeit this reduction may

depend on the decrease of glycated haemoglobin (HbA1c),
fasting glucose, and fat mass [79, 80]. e increase in the
antioxidant and anti-in�ammatory capacity may be due to an
increase in adiponectin [81].

Data from the Aerobics Center Longitudinal Study show
that low cardiovascular �tness accounted for almost all of
the excess all-cause mortality among obese men [82]. Aer
adjustment for age, examination year, cigarette smoking,
alcohol intake, and parental history of ischemic heart disease,
un�t (low CRF as determined by maximal exercise testing),
lean men had twice the risk of all-cause mortality of �t,
lean men. Un�t, lean men also had a higher risk of all-
cause and CVD mortality than did men who were �t and
obese. Similar results for fat and fat-free mass in relation
to mortality were observed. Un�t men had a higher risk of
all-cause and CVD mortality than did �t men in all fat and
fat-free mass categories. Similarly, un�t men with low waist
girths (<87 cm) had a greater risk of all-cause mortality than
did �tmenwith highwaist girths (≥99 cm).ree timesmore
obese women who met current physical activity guidelines
had a healthy metabolic pro�le than those who did not meet
current physical activity guidelines. ese data suggest that
increasing physical activitymay reduce risk even in thosewho
do not succeed in reducing their BMI.

In two prospective cohorts with 7,740 women and 4,564
men, a genetic risk score based on 32 established BMI-
associated variants to capture the overall genetic susceptibil-
ity was calculated, and its interactions with leisure time TV
watching and physical activity in relation to adiposity were
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determined. Prolonged TVwatching was found to accentuate
the genetic predisposition to elevated adiposity, whereas
greater leisure time physical activity attenuated the genetic
association. ese �ndings suggested that deleterious effects
of genetic factors could be modi�ed by lifestyle factors and
challenge the common lay perception of deterministic genetic
predisposition to obesity [83].

6.2. Smoking. In the short term, nicotine increases energy
expenditure and could reduce appetite, which may explain
why smokers tend to have lower body weight than do non-
smokers andwhy smoking cessation is frequently followed by
weight gain. In contrast, heavy smokers tend to have greater
body weight than do light smokers or nonsmokers, likely
re�ecting a clustering of risky behaviours (e.g., low degree of
physical activity, poor diet, and smoking) that is conducive to
weight gain.e Ottawa Hospital Weight Management study
showed that obese former smokers have a greater prevalence
of impaired glucose, T2DM, and coronary heart disease than
obese subjects who had never smoked [84]. In the context
of the worldwide obesity epidemic and a high prevalence of
smoking, the greater risk of (central) obesity and IR among
smokers is thus a matter of major concern. Furthermore,
smoking was found to increase the number and level of
oxidation products of phospholipids (oxPAPC) in peripheral
blood mononuclear cells causing ROS generation via NOX
activation due to reduced glutathione. Smoking also activated
NF-𝜅𝜅B and increased hs-CRP values [85].

6.3. High-Fat Diet and Gut Microbiota. Studies in obese and
lean twins suggest that a core gut microbiome exists and
that obese persons exhibit reduced diversity and have altered
metabolic pathways in their microbiota. Diet may have a
fundamental effect on the composition of our microbiota.
Early studies highlight the effect of speci�c diets such as a
high-fat diet, which efficiently and very rapidly (within a
single day) modulates the gut microbiome [86]. Overall, the
qualitative and quantitative changes in the intake of speci�c
food components (FA, carbohydrates, micronutrients, pre-
biotics, probiotics) do not only have consequence for gut
microbiota composition but may modulate the expression of
genes in host tissues such as liver, AT, intestine, and muscle.
is in turn may stimulate or reduce the development of
fat mass and metabolic disturbances associated with the gut
barrier function and with systemic immunity. Recent work
has shown that gut bacteria can initiate the in�ammatory
state of obesity and IR through the activity of lipopolysac-
charide (LPS), a component of the gram-negative bacteria
cell walls, which can trigger the in�ammatory process by
binding to the CD14-TLR4 complex. e relevance of TLR4
pathways for metabolic disease was con�rmed by the �nding
that the deletion of Tlr4 prevented high-fat diet-induced
IR [87]. Moreover, Cd14 knockout rats showing reduced
in�ammatory reaction to LPS were immune to weight gain
[88].

Especially a reduction in Lactobacilli and Bi�dobacteria
may affect host metabolism and the in�ammatory state

by modulating the tissue FA composition. Indeed, mam-
malian intestinal Lactobacilli and Bi�dobacteria can synthe-
size bioactive isomers of conjugated linoleic acid from free
linoleic acid, which have antidiabetic, antiatherosclerotic,
immunemodulatory, and anti-obesity properties (for review:
[89]). e supplementation of Bi�dobacterium breve and
linoleic acid to different mammalian species compared to a
linoleic acid-alone supplemented diet resulted in a two- to
three-fold higher intestinal, hepatic, and AT content of cis-
9, trans-11 conjugated linoleic acid, eicosapentaenoic acid,
and docosahexaenoic acid, concomitantly with a reduced
proin�ammatory cytokines Tnf-𝛼𝛼, Il-6, and Inf-𝛾𝛾 expression,
[90]. Inmice, supplementationwith Lactobacillus reuteri 100-
23 and Lactobacillus gasseri 311476 decreased in�amma-
tory cytokines (Il-6, Mcp-1, Il-4, and granulocyte colony-
stimulating factor). ese positive effects are strain and/or
species speci�c since L. acidophilus NCFM supplementation
has no effect on muscle atrophy markers and systemic
in�ammation [91].

7. Psychological Stress and Obesity

Psychological stress can have a signi�cant long-term impact
on the propensity to gain and maintain weight (Figure
3). e interrelatedness between obesity and psychological
problems seem to be two-fold, in that clinically meaningful
psychological distress might foster weight gain and obesity
may lead to psychosocial problems, closing a vicious circle.
A recent study investigated the relationship between severity
of 15 stressful life events pertaining to �nance, work, social
relationships, health, and housing, and the risk of metabolic
disorders. In comparison with subjects who did not report
any extremely stressful life events, those reporting work- or
�nance-related events had a higher risk of having MetS. e
risk was further increased by the accumulation of stressful
�nance-related events. Accumulation of stressful life events
was associated with IR, obesity, and raised triglycerides. e
associations were not confounded by sex, age, lifestyle, or a
family history of diabetes. It was concluded that life events
perceived as stressful, particularly those related to �nance and
work, may signal poor metabolic health [92].

7.1. Disruption of Neural Networks and Appetite Control.
Obesity, particularly the abdominal phenotype, has been
ascribed to individual maladaptation to chronic stress
exposure mediated by a dysregulation of related neuroen-
docrine axes. Alterations in the control and action of the
hypothalamic-pituitary-adrenal axis play a major role in this
context, with the participation of the sympathetic nervous
system [93]. Especially the inability to cope with psycholog-
ical stress, particularly early life stress, ultimately leads to an
increase in glucocorticoids, which in turn leads to loss of
appetite control and increased adiposity [94].

In addition, neuroimaging studies showed that obesity
is associated with impaired reward and tolerance processes.
Indeed, many obese individuals meet criteria for psycholog-
ical dependence. Stress and dieting may sensitize an individ-
ual to reward. Finally, fast food advertisements, restaurants,
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and menus all provide environmental cues that may trigger
addictive overeating.While the concept of fast food addiction
remains to be proven, some �ndings support the role of
fast food as a potentially addictive substance, which is most
likely to create dependence in vulnerable populations [95].
erefore, it has been proposed that in order to increase
prevention and intervention efforts with regard to childhood
obesity, early detection of psychological factors contributing
to its development and maintenance is required. Rather than
a stable condition, childhood obesity is a dynamic process, in
which behaviour, cognition, and emotional regulation inter-
act mutually with each other. Family structure and context,
that is, parental and familial attitudes, activity and nutritional
patterns as well as familial stress, have an important role with
respect to both onset and maintenance of overweight and
obesity.

7.2. Disruption of Circadian Rhythms. e circadian system
is tightly linked with processes controlling not only sleep but
also metabolism. ese dynamic interactions ensure that the
energy metabolism is coordinated in a proper temporal pat-
tern and that circadian control is also subject to modulation
by the energy status of the organism. Disruption of either the
circadian clock or metabolism can lead to derangement of
the other, thus predisposing to metabolic disorders such as
obesity and T2DM (for review: [96]). High-fat diets disrupt
circadian mechanisms in mouse AT and these effects appear
to be due to obesity rather than to hyperglycaemia. Deletion
of circadian regulatory genes such as 5′-AMP-activated-
protein-kinase- (AMPK-) 1 andNocturnin alter the circadian
biology of AT. Neuroendocrine and behavioural studies have
demonstrated a potential circadian arrhythmicity among
those with night-eating syndrome (NES), which is charac-
terized by increased late-night eating, insomnia, depressed
mood, and distress. Several physiological systems have been
hypothesized to be involved in the mechanistic drive in
NES, such as the glucocorticoid and serotonergic systems.
is circadian arrhythmicity could be one of the links
between NES and obesity, as emerging �ndings have linked
chronodisruption with increased body weight (for review:
[97]). In addition, studies published in the past 10 years tend
to document an impact of shi work-related disturbances of
circadian clock on blood pressure, lipid pro�le (triglyceride
levels), MetS, and BMI (for review: [98]), but underlying
mechanisms remain to be determined.

7.�. �ttention De�cit and �n�iety. Behavioural and emo-
tional problems are found in many, though not all, obese
children, resulting in a higher need of treatment. e most
frequently implicated psychosocial factors are impulsivity
and attention-de�cit hyperactivity disorder, depression and
anxiety, and uncontrolled eating behaviour. ese �ndings
strengthen the need to further explore the interrelatedness
between psychological problems and childhood obesity [99].
In addition, recent studies demonstrated that these stres-
sors are particularly prevalent in children from low-income
families, a demographic group with high rates of obesity
in the US and other developed countries. erefore, policy

recommendations emerging from this research included rec-
ognizing reductions in childhood obesity as a potential added
bene�t of social safety net programs that reduce �nancial
stress among families. In addition, policies and programs
geared towards childhood obesity prevention should focus
on helping children build resources and capacities to teach
them how to cope effectively with stressor exposure (for
review: [100]). Unfortunately, the effectiveness of paediatric
obesity treatment is still modest in younger children and
even declines in older children and adolescents. Moreover,
few interventions involving adolescents have produced a
signi�cant long-term weight loss. It has been concluded that
a key parenting practice applicable to children of all ages is
to create a protective environment in the home, substituting
unhealthy foods by nutritious to unhealthy ones and facili-
tating physical activities instead of sedentary pursuits. Other
behaviour that may promote successful long-term weight
management include good sleep hygiene and stress reduction
[101]. Although broader changes to the food environment are
necessary, it is important to address personal factors such as
nutrition knowledge, self-sufficiency, and emotional coping
responses to stress, in the context of income constraints, food
insecurity, and health beliefs [102, 103].

7.4. Job Stress. Because data about the association between
job stress and obesity were inconsistent, mostly limited to
small-scale studies, and did not distinguish between cate-
gories of underweight or obesity, Nyberg et al. performed
a pooled cross-sectional analysis based on 746 individual-
level data from 13 European studies resulting in a total of 161
years. In cross-sectional analyses, they found increased odds
of job strain amongst underweight and obese participants.
In longitudinal analysis, both weight gain and weight loss
were related to the onset of job stress, consistent with a “U”-
shaped cross-sectional association between job strain and
BMI. However, these associations were relatively modest;
therefore, it was concluded that it is unlikely that intervention
to reduce job stress would be effective in combating obesity
at a population level [104].

8. Prenatal Stress

ere is growing evidence that stress factors imposed on
the foetus increase risk of obesity and associated metabolic
disorders (Figure 3). For example, the Quebec Longitudinal
Study of Child Development 1998–2002 (QLSCD) examined
a broad range of factors that may simultaneously contribute
to childhood overweight in a population-based cohort of
children followed from birth to 4.5 years, to determine
which factors exert the most in�uence in early life. Maternal
smoking during pregnancy almost doubled the odds of being
overweight at 4.5 years. Parental overweight or obesity also
increased the odds of being overweight at this age, as well
as being raised in middle-income or in poor families [105].
Proteomic analysis of placenta shows a differential expression
of several proteins in patients with preexisting obesity. ese
proteins are implicated in a variety of cellular functions
such as regulation of growth, cytoskeletal structure, oxidative
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stress, in�ammation, coagulation, and apoptosis [106]. On
the other hand, children that were nutrient-restricted in
utero were shown to have increased adipocyte sensitivity
to cortisol. is adaptation only appears to be associated
with greater fat mass in children when maternal nutrient
restriction is con�ned to late gestation, coincident with the
period of maximal foetal growth. In these children, increased
fat mass is accompanied by glucose intolerance and IR,
in conjunction with an adipose tissue speci�c reduction
in GLUT-4 [107]. Animal studies revealed that maternal
low-protein diet upregulates the neuropeptide Y system in
visceral fat and leads to abdominal obesity and glucose
intolerance in a similar way as does the stress hormone
epinephrine [108, 109]. A maternal “junk food” diet in
pregnancy and lactation was associated with increased de
novo lipogenesis, lipid oxidation, in�ammation, and IR in
offspring [110].

9. Environmental Stress and Obesity

Elucidating the environmental factors that in�uence suscep-
tibility to disruptions in energy homeostasis and metabolic
regulation remains a challenge. We con�ned this paper to
two pollutants which were found to be associated with
in�ammation and metabolic disorders (Figure 3).

9.1. Particulate Matter and Diesel Exhaust. ere is a strong
link between urbanization and T2DM. erefore, it has
been proposed that ambient air pollutants may play a role
in the development of T2DM. is hypothesis was tested
in mice. Male C57BL/6 mice were fed high-fat chow for
10 weeks and randomly assigned to an environment with
concentrated �ne particulate matter (<2.5 𝜇𝜇m; particulate
matter (PM)(2.5)) or �ltered air. PM(2.5)-exposed C57BL/6
mice exhibited marked whole-body IR, systemic in�am-
mation, and an increase in visceral adiposity. PM(2.5)
exposure induced signalling abnormalities characteristic of
IR, including decreased Akt and endothelial nitric oxide
synthase (eNOS) phosphorylation in the endothelium and
increased protein kinase C expression. In addition, PM(2.5)
increased AT macrophages (F4/80(+) cells) in visceral fat
expressing higher levels of Tnf-𝛼𝛼/Il-6 and lower Il-10/N-
acetyl-galactosamine speci�c lectin-1 [111]. Moreover, the
effect of early life exposure to PM(2.5) pollution onmetabolic
parameters, adiposity, and in�ammation and oxidative stress
was tested. PM(2.5)-exposed C57BL/6 mice fed a normal
diet exhibited metabolic abnormalities aer exposure to
PM(2.5) or FA for 10 weeks. Consistent with IR, these
abnormalities included enlarged subcutaneous and visceral
fat contents, increased macrophage in�ltration in visceral
AT, and vascular dysfunction. Ex vivo labelled and infused
monocytes demonstrated increased adherence in the micro-
circulation of normal diet- or high-fat diet-fed PM(2.5)-
exposed mice. p47(phox−/−) mice exhibited an improve-
ment in parameters of IR, vascular function, and visceral
in�ammation in response to PM(2.5). ROS generation by
NOX appeared to mediate this risk [112]. Interestingly, the
relationship between diesel exhaust particles and oxidative

stress was con�rmed in a cross-sectional study, suggesting
their proatherogenic nature [113].

9.2. Organic Pollutants. Evidence also points to endocrine
disrupting chemicals, that is, persistent organic pollutants
(POPs) such as tributyltin (TBT) and triphenyltin (TPT),
which interfere with AT biology, endocrine hormone sys-
tems, or central hypothalamic-pituitary-adrenal axis. ey
are thus suspected to derail the homeostatic mechanisms
important to weight control [114]. For example, TBT was
found to drive the differentiation of adipocytes and it mod-
ulates the retinoid-X-receptor- (RXR-) PPAR-𝛾𝛾-dependent
proadipogenic gene networks in liver, AT, and bone marrow
[115–117]. It appears that RXR heterodimeric nuclear recep-
tors provide cells with a coordinated and interrelated network
of transcriptional regulators for interpreting the lipid milieu
and regulating metabolic changes to respond to it [118].

What is yet to be explored in detail is a disease model
based on long-term effects of low doses of environmental
exposures, and on the cumulative effects of different expo-
sures. erefore, recent developments of “-omic” high-
throughput technologies, such as transcriptomics, pro-
teomics, and metabolomics, may provide powerful tools to
investigate early effects of environmental exposures and to
understand the aetiology of common diseases better, accord-
ing to the “clinical vulnerability model” [119]. For example,
prenatal exposure to tobacco smoke increases the risk ofCVD
later in the child’s life; these effects could in part be mediated
by epigenetic changes in children exposed prenatally to
tobacco smoke [120]. Similarly, Baccarelli et al. showed that
pollution from traffic, an environmental challenge associated
with increased CVD risk, affected DNA methylation [121].

10. Epigenetic Regulation

Researchers are increasingly exploring the epigenome, which
is the malleable interface of gene-environment interactions.
Epigenetic variation, whether innate or induced, contributes
to variation in gene expression, the range of potential
individual responses to internal and external cues, and
risk for metabolic disease [122]. It is now accepted that
obesity and associated metabolic disorders arise from a set
of complex gene-environment interactions. Explanations for
the heritability of these syndromes and the environmental
contribution to disease susceptibility are addressed by the
“thriy genotype” and the “thriy phenotype” hypotheses.
Recently, Stöger synthesized a “thriy epigenotype” hypoth-
esis as follows: (i) metabolic thri, the capacity for efficient
acquisition, storage, and use of energy, is an ancient, com-
plex trait, (ii) the environmentally responsive gene network
encoding this trait is subject to genetic canalization and
has become robust against mutational perturbations, (iii)
DNA sequence polymorphisms play a minor role in the
aetiology of obesity andT2DM. Instead, disease susceptibility
is predominantly determined by epigenetic variations, (iv)
corresponding epigenotypes have the potential to be inher-
ited across generations, and (v) leptin is a candidate gene for
the acquisition of a thriy epigenotype [123].
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It has been suggested that hormonal and metabolic
signals acting during the perinatal period alter the structure
and function of the fat-brain axis or adipogenic genes, such
as leptin and PPARs, in AT that regulates energy during
later life [124, 125]. Alternatively, it has been proposed that
intrauterine exposures may produce long-term changes in
mRNA levels leading to a thriy phenotype with changes
affecting liver and muscle physiology [126] as well as long-
lasting changes that can be associated with obesity and IR
[127], and atherosclerosis and heart failure in later life.
Compelling data suggested a strong causal link between
prenatal vulnerability of future parental epigenomes to dam-
aging environmental factors aggravated by abnormal socio-
cultural conditions (including, for instance, malnutrition
and chronic stress) and the alarming risk of developing
heritable complex medical conditions later in life, such as
asthma, autism, cancer, CVD, diabetes, obesity, schizophre-
nia, and a whole range of rare neuromuscular pathologies
[128]. Increasing evidence shows that environmental and
lifestyle factors may in�uence epigenetic mechanisms, such
as DNA methylation, histone acetylation and microRNA
(miR) expression (Figure 3). It has been shown that several
lifestyle factors such as diet, obesity, physical activity, tobacco
smoking, alcohol consumption, environmental pollutants,
psychological stress, and working night shis might modify
epigenetic patterns. Among them, epigenetically mediated
signal-speci�c in�ammatory mechanisms may be involved.
ey may operate through transcription factors (NF-𝜅𝜅B
family), kinases (I𝜅𝜅B kinase-related kinases, serine/threonine
protein kinase), the endoplasmatic reticulum (Ca), activation
of DNA methyltransferases and histone modi�er enzymes
(histamine methyl transferase), and changes in cellular
acetyl-CoA, nicotinamide adenine dinucleotide (NAD), and
methyl donors. ey are all sensitive to oxidative stress,
hyperglycaemia, and FA loads [129, 130]. e �nding that
loss of function of the histone demethylase, Jhdm2a, was
associated with obesity, decreased expression of metabol-
ically active genes (e.g., Ppar-𝛼𝛼 and medium-chain acyl-
CoA dehydrogenase) in skeletal muscle, and an impaired
cold-induced uncoupling-protein- (Ucp-) 1 expression in
brown AT (BAT) in rodents also suggested a relationship
between epigenetic mechanisms and obesity [131, 132]. In
addition, a deregulation in the NAD(+)-dependent sirtuins
(SIRT), especially Sirt1, is associated with disruptions in
adipogenesis, mitochondrial biogenesis, glucose utilization,
fat oxidation, and insulin secretion in mice [133]. e circa-
dian activity of the deacetylase SIRT1 is regulated by NAD,
which constitutes a link between cyclic cellular metabolism
and epigenetic regulation by chromatin remodelling [134,
135].

Most of the epigenetic studies conducted so far have
focussed on DNA methylation, whereas only a few have
studied lifestyle factors in relation to histone modi�cations
and miRs [136]. MiRs are highly conserved noncoding
RNA molecules of approximately 22 nucleotides that exert
posttranscriptional effects on gene expression.ey generally
bind to target sequences localized in the 3′-untranslated
region (3′-UTR) of their target mRNAs and regulate pro-
tein translation or mRNA stability (for review: [137, 138]).

Early studies in Caenorhabditis elegans determined that miR-
mediated regulation was posttranscriptional, because there
were large effects on protein expression and no discernible
effects on mRNA abundance [139]. In other systems, mod-
est effects on the amounts of mRNA target were seen in
addition to substantial degrees of regulation at the protein
level [140]. Other studies provided experimental support
for the proposed postinitiation mechanism of translational
repression by miRs [141]. MiRs are expressed in a tissue-
and cell-type speci�c manner and play essential roles in
many biological processes including proliferation, apoptosis,
development, and differentiation [142, 143]. Recently, we
reviewed miRs that play an active role in the development
of obesity and atherosclerosis [38]. erefore, this paper will
include only a limited number of examples of miRs related to
stress conditions in obesity.

������i�s �in�ing �tress �ith �n�a��ation� Dicer, an RNase
III type endonuclease, is required for biogenesis of miRs and
small interfering RNAs (siRNAs) and also has an important
role in an effector step of RNA silencing, the RNA-induced
silencing complex (RISC) assembly [144]. Dicer ablation,
resulting in impaired miR production in the central amyg-
dale of adult mice induced a strong increase in anxiety-
like behaviour. In addition, acute stress in wildtype mice
induced a differential expression pro�le of miRs in the amyg-
dale. For example, miR-34c that targets the stress-related
corticotropin-releasing-factor-receptor- (CRFR-) 1 mRNA
reduced the responsiveness of cells to CRF in neuronal
cells endogenously expressing CRFR1 in vitro. us, these
results suggested a physiological role for miRs in regulating
the central stress response and position them as potential
targets for the treatment of stress-related disorders [145]. In
addition, miRs have recently been shown to be differentially
expressed in brain tissue and have been linked to the regu-
lation of neural factors speci�c to obesity, in particular the
control of appetite, and in neural signalling to liver, muscle,
pancreas, and gastrointestinal tract, to in�uence metabolism
(for review: [146]). SIRT1-related miR-132 has been shown
to be highly expressed in brain tissue and neuronal cell
types and was found to be involved in the regulation of
cAMP response element-binding protein (CREB), which is
also known to function in glucose homeostasis [147]. Inter-
estingly, miR-132 potentiated cholinergic anti-in�ammatory
signalling by targeting acetylcholinesterase, suggesting that
miR-132 is a functional regulator of the brain-to-body res-
olution of in�ammation [148]. Moreover, several miRs are
commonly overexpressed in both brain and pancreatic 𝛽𝛽-
cells, suggesting an overlap in function (e.g., miR-9, miR-
124a). Overexpression of the SIRT1 relatedmiR-9, previously
thought to be a brain-speci�c miR, in insulin-secreting cells
caused a reduction in insulin exocytosis by diminishing the
expression of the transcription factor Onecut-2 and, in turn,
by increasing the level of Granuphilin/Slp4, a Rab GTPase
effector associated with 𝛽𝛽-cell secretory granules, which
exerts a negative control on insulin release [149].

Importantly, miR-9 is involved in the regulation of inf-
lammation because TLR4-activated NF-𝜅𝜅B rapidly increased
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the expression of miR-9, which operated as a feedback of the
NF-𝜅𝜅B-dependent responses [150]. Similarly, miR-124a was
initially found to be overexpressed in brain and neural tissue
and was subsequently found to be abundant in pancreatic 𝛽𝛽
cells [151]. ere, it targets FoxA2, also known as HNF3𝛽𝛽,
a transcription factor important for 𝛽𝛽-cell differentiation,
pancreatic development, glucose metabolism, and insulin
secretion [152].

10.�. MiRs Linking Physical Activity with �n�ammation. In
peripheral human monocytes, exercise decreased the expres-
sion level of miRs important in in�ammatory processes (e.g.,
miR-125b) in general and TLR4 signalling (e.g., let-7e) in
particular.

10.3. MiRs Linking Circadian Rhythm with Adipogenesis.
Recently links between circadian regulators, chromatin
remodelling, and cellular metabolism have been identi�ed
[153]. In addition, some studies have suggested that miRs
(e.g., miR-96, miR-103, miR-106, miR-124, miR-132, miR-
182, miR-219, miR-263, and miR-422) may be important
regulators of circadian rhythm,which provides a new insights
into biological clocks at the posttranscriptional level (for
review: [154]). Interestingly, functional studies with synthetic
miR precursors and inhibitors showed that miR-96 and miR-
124 regulated the expression of fatty-acid-binding-protein-
(FABP-) 4, a prominent regulator of adipogenesis [155], in
bone-marrow derived mesenchymal cells [156], which are
precursors of adipocytes [157]. e miR-182/96/183 cluster
was shown to be important for PPAR-mediated adipogenesis
[158].e expression ofmiR-132 correlatedwithBMI, fasting
glucose, and glycosylated haemoglobin in obese persons
[159].

10.4. MiRs Linking Gut Microbiota with Circadian Clock,
�n�ammation, and �nsulin �ignalling. It has been suggested
that caecalmiR expression signature depends on the presence
of gutmicrobiota [160]. Germ-free and conventionally raised
mice were used to investigate the impact of endogenous
microbiota on the global expression of caecal miRs in vivo.
Among the most differentially expressed miRs were miR-
143, miR-192, miR-200b, miR-200c, and miR-24 [161]. MiR-
143 overexpression accelerated adipogenesis in vitro [162]
and induced obesity-associated diabetes in mice [163]. e
miR-192/194 cluster regulated the Period gene family and
the circadian clock [164]. e miR-200 family was found to
be proin�ammatory [165]. MiR-24 negatively regulated the
expression of forkhead-box- (FOX-) P3, which is essential for
the development and function of Treg cells [166].

10.5. MiRs and Air Pollution. Exposure to ambient PM(2.5)
altered the expression of two in�ammation-relatedmiRs, that
is, miR-21 and miR-222 [167]. e expression of miR-221
and miR-222 depends on dietary conjugated linoleic acid
in mice and correlated with the expression of adipokines
[168]. Exposure of bronchial epithelial cells, obtained from
nonsmoking adult donors, to diesel exhaust particles in vitro

altered the expression of 313 miRs, among them miR-513a-
5p, miR-494, and miR-96, which target genes involved in
in�ammation pathways (e.g., IL-8 and CXCR4 signalling)
[169, 170].

In aggregate, these data support a model in which lack of
physical activity, disruption of circadian rhythm, and psycho-
logical and environmental stress deregulates the expression of
miRs.is deregulation disrupts adipogenesis, either directly
or indirectly through in�ammation, and contributes to the
development of obesity and associated disorders.

��� �nti��n�a��at�ry an� �nti��i�ant
Therapy in Obesity

Although obesity is considered to be a chronic in�amma-
tory disease, there are no long-term large-scale interven-
tion studies showing that anti-in�ammatory drugs can be
safely used to treat obesity and associated disorders. For
example, salsalate (nonacetylated salicylate, 4500mg/day), a
compound inhibiting NF-𝜅𝜅B activity, increased expression
of the inhibitor of NF-𝜅𝜅B and reduced total and nuclear
expression of NF-𝜅𝜅B in endothelial cells. is was associated
with reduced oxidative stress, an increase in adiponectin and
a reduction in hs-CRP [171, 172]. However, long-term treat-
ment with salsalate and other nonsteroid anti-in�ammatory
drugs (NSAIDs) has been prohibited due to their increased
risk of serious gastrointestinal adverse events, including
bleeding, ulceration, and potentially fatal perforation of the
stomach or intestines. In addition, an intervention with
diclofenac was found to decrease prostaglandin-E2 and TNF-
𝛼𝛼 together with a reduction in annexin-A1, caspase-8, and
the arachidonic acid metabolite 5,6-dihydroxyeicosatrienoic
acid in peripheral bloodmonocytes [173]. Prolonged therapy
with etanercept, which blocks the action of TNF-𝛼𝛼, improved
fasting glucose, increased the ratio of high molecular weight
to total adiponectin, and decreased soluble-intercellular-
adhesion-molecule- (sICAM-) 1 in obese subjects with
abnormal glucose homeostasis and signi�cant subclinical
in�ammation [174]. However, common side effects were
skin reactions at the injection site, a blocked or runny
nose, nausea, mild fever, headaches, dizziness, a rash, and
stomach problems. Moreover, patients may be more prone to
developing infections. Because anti-in�ammatory and cell-
protective mechanisms mediated by SIRT1 are suppressed
in diabetes, small SIRT1 activators are considered to be
potential drugs for the treatment of T2DM, obesity, and
MetS, among other disorders [175]. However, long-term
large-scale clinical studies are lacking.

In spite of these setbacks, however, there are classes of
drugs that showed anti-in�ammation as a pleiotropic effect.
For example, drugs which increased circulating levels of
adiponectin such as statins, angiotensin converting enzyme
(ACE) inhibitors, and the PPAR activating thiazolidinediones
were found to have anti-in�ammatory properties [176, 177].
In addition, the glucagon-like peptide-1 agonist exenatide
has been used in patients with T2DM to control glycaemia
inadequately controlled by metformin alone [178]. In a small
study in 24 patients, exenatide-induced glucose lowering
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F 4: Stress andmicroRNA expression. Amodel in which the lack of physical activity, disruption of circadian rhythm, and psychological
and environmental stress deregulates the expression of miRs which directly or indirectly through in�ammation disrupts adipogenesis and
contributes to the development of obesity and associated disorders.

was shown to have anti-in�ammatory effects independent of
weight loss, as evidenced by a reduction in TNF-𝛼𝛼, IL-1𝛽𝛽,
JNK1, TLR2, TLR4, and SOCS3 in mononuclear cells. is
reduction was associated with decreased ROS production
[179].

Although mechanistically oxidative stress is involved
in the development of obesity and associated metabolic
and cardiovascular disorders, long-term large-scale studies
showing bene�t of antioxidant therapy are lacking evenmore.
One of the most studied antioxidants is resveratrol (3,4′,5-
trihydroxystilbene), which belongs to a class of polyphe-
nolic compounds called stilbenes [180]. In the test tube,
resveratrol effectively scavenges (neutralizes) free radicals
and other oxidants [181] and inhibits LDL oxidation [182,
183], associated with inhibition of in�ammatory enzymes
including cyclooxygenase and LOX [184, 185] by inhibition
of proin�ammatory transcription factors, such as NF-𝜅𝜅B or
AP-1 [186, 187]. Resveratrol has also been found to inhibit
platelet aggregation [188], to enhance the production of NO
[189], and to inhibit in�ammatory enzymes [190, 191] in
vivo. us, all these data suggested that resveratrol was a
kind of an ideal antioxidant. However, there is little evidence
that resveratrol is an important antioxidant in humans [192].
Indeed, a systematic analysis of data obtained until 2011
concluded that “the published evidence is not sufficiently
strong to justify a recommendation for the administration
of resveratrol to humans, beyond the dose which can be
obtained from dietary sources” [193]. A possible explanation
may be that upon oral consumption, circulating and intra-
cellular levels of resveratrol in humans are much lower than
that of other important antioxidants, such as vitamin C, uric
acid, vitamin E, and glutathione. Moreover, the antioxidant

activity of resveratrol metabolites, which comprise most
of the circulating resveratrol, may be lower than that of
resveratrol. erefore, it was hypothesized that a mixture of
dietary products (resveratrol, green tea extract, 𝛼𝛼-tocopherol,
vitamin C, n-3 (𝜔𝜔-3) polyunsaturated fatty acids, and tomato
extract) selected for their evidence-based antioxidant and
anti-in�ammatory effects may yield more healthy effects
than any single molecule. However, a study in overweight
men given all these supplements showed only very subtle
changes in antioxidant and anti-in�ammatory pro�les [194].
A possible explanation is that supplementation with dietary
antioxidants cannot efficiently overcome the depletion of the
antioxidants, which seems to occur faster in obese subjects
in agreement with increased oxidative stress [195].erefore,
antioxidant supplements hardly improve clinical outcomes in
these patients [196].

One effect of these rather negative results of the former
trials may be that our appreciation of the molecular nature
of oxidative stress has changed. Indeed, oxidative stress is
no longer perceived as a simple imbalance between the
production and scavenging of ROS, but as a dysfunction
of enzymes involved in ROS production. e focus is on
NOXs because they induce the dysfunction of other oxi-
dases including eNOS uncoupling, xanthine oxidase, and
mitochondrial dysfunction. us NOXs are considered to be
important therapeutic targets for drugs such as statins as well
as ACE inhibitors, AT1 receptor antagonists (sartans), and
aliskiren, as well as spironolactone or eplerenone. Speci�c
NOX inhibitors are under development. However, it remains
to be demonstrated thatNOX inhibition ismore efficient than
nonselective scavenging of all ROS by the administration of
antioxidants [197, 198].
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12. Conclusion

In this paper we showed that obesity is associated with a high
risk of metabolic and cardiovascular disorders most probably
due to increased in�ammation in AT. We discussed the
impact of impairment of epigenetic regulatory mechanisms
in the development of stress and in�ammation. In addition,
we reviewed the impact of behaviour and personal and envi-
ronmental stress on the deregulation of the epigenetic control
mechanisms and their possible contribution to the devel-
opment of obesity and related morbidities. Overall, obese
subjects would bene�t from a more holistic treatment plan
focusing on physiological processes, lifestyle, and environ-
ment. In addition, apart from supplementation with antioxi-
dants, novel treatment strategies are required attempting to
inhibit tissue oxidative stress. Even when molecules show
antioxidant activity in vitro and in animal models in vivo,
long-term clinical trials are needed before it can be concluded
that these drugs, such as NOX inhibitors, have an additional
therapeutic value. In the near future, in�ammation-related
miRs, which are commonly deregulated in circulatory and
adipose tissue in�ammatory cells, may not only be useful as
biomarkers for improved risk strati�cation in obese persons,
but may also be considered as therapeutic agents to combat
obesity-associated metabolic and cardiovascular diseases.
In animal models, disease-inducing cardiac miRs can be
persistently silenced in vivo through systemic delivery of
antimiRs [199]. For example, administration of miR-124
(Figure 4) reduced in�ammation by reducing IL6 receptor
expression and IL6 secretion [200] and caused deactivation
of macrophages [201].
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