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e goal of many microarray studies is to identify genes that are differentially expressed between two classes or populations. Many
data analysts choose to estimate the false discovery rate (FDR) associated with the list of genes declared differentially expressed.
Estimating an FDR largely reduces to estimating 𝜋𝜋1, the proportion of differentially expressed genes among all analyzed genes.
Estimating 𝜋𝜋1 is usually done through P-values, but computing P-values can be viewed as a nuisance and potentially problematic
step.We evaluatedmethods for estimating 𝜋𝜋1 directly from test statistics, circumventing the need to compute P-values.We adapted
existing methodology for estimating 𝜋𝜋1 from t- and z-statistics so that 𝜋𝜋1 could be estimated from other statistics. We compared
the quality of these estimates to estimates generated by two established methods for estimating 𝜋𝜋1 from P-values. Overall, methods
varied widely in bias and variability. e least biased and least variable estimates of 𝜋𝜋1, the proportion of differentially expressed
genes, were produced by applying the “convest” mixture model method to P-values computed from a pooled permutation null
distribution. Estimates computed directly from test statistics rather than P-values did not reliably perform well.

1. Introduction

Gene expression microarrays are a standard tool for large-
scale measurement of gene expression. Microarrays are
widely used to detect genes that are differentially expressed
(DE) across different groups. Methodology for detecting
DE genes has matured over the past decade. Methods have
evolved from simple fold-change rules, to the use of classical
statistical methods, to the use of test statistics developed
speci�cally for the microarray context (here termed Special-
ized Test Statistics).

e search for DE genes is usually done in the frame-
work of statistical hypothesis testing. A hypothesis test is
performed for each gene. Since microarray studies usually
involve tens of thousands of genes, detecting DE genes
automatically involves multiple testing issues. Rather than
controlling false positives through the traditional family-
wise error rate (FWER), most researchers prefer to consider
the false discovery rate (FDR). e false discovery rate is
an alternative to FWER that was originally proposed by
Benjamini and Hochberg [1]. e FDR is the expected

proportion of false positives among all the genes declared
DE. For example, a FDR of 5% means that among all genes
declared DE, 5% of these are truly non-DE on average.

Controlling the FWER is too conservative in themicroar-
ray setting, because usually investigators are willing to get a
small proportion of false positives in exchange for a sizeable
list of potentially DE genes for further study. ere is a near-
consensus that FDR-estimation procedures are the preferred
method for addressing multiple testing in the microarray
context [2, 3]. A typical procedure is as follows. (1) Compute
a test statistic for every gene. (2) Obtain a 𝑃𝑃-value for every
gene. (3) For some threshold 𝛼𝛼 close to 0 (e.g., 𝛼𝛼 𝛼 𝛼𝛼𝛼𝛼𝛼), call
all genes with 𝑃𝑃-values less than 𝛼𝛼 signi�cant. (4) Estimate
the FDR associated with the list of signi�cant genes. In reality
steps (3) and (4) might be done iteratively, with the 𝑃𝑃-value
threshold adjusted depending on the estimated FDR resulting
from step (4). Next, we reviewmethodology for these 4 steps,
which will introduce the question this paper will address.

Step (1) involves the choice of test statistic. e earliest
approaches to identifying DE genes were simple fold-change
rules. An example of a fold-change rule is to declare a gene
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F 1: ROC curves for the t-statistic (black line), s30-statistic (red line), s50-statistic (blue line), s70-statistic (green line), and s90-statistic
(purple line) in a type EV simulation. In each plot the horizontal axis is the false positive fraction and the vertical axis is the true positive
fraction. e sample sizes in the two groups vary from 8 and 6 (le column) to 60 and 45 (right column). 𝜋𝜋1 denotes the proportion of
differentially expressed genes.

DE if its average expression level varies by more than a
factor of two between the comparison groups. However, such
rules are generally considered unsatisfactory because they do
not incorporate the variability of the data, and there is no
associated level of con�dence in the conclusion of declaring a
geneDE [2]. It was natural for statisticians to propose classical
test procedures instead of fold-change rules. Let 𝑋𝑋𝑗𝑗𝑗𝑗 be the
(possibly log-transformed) level of expression of a given gene
in sample 𝑗𝑗 of population 𝑘𝑘. Let 𝑛𝑛𝑘𝑘 be the number of samples
drawn from population 𝑘𝑘. De�ne 𝑋𝑋𝑘𝑘 = (1/𝑛𝑛𝑘𝑘)∑

𝑛𝑛𝑘𝑘
𝑗𝑗𝑗𝑗 𝑋𝑋𝑗𝑗𝑗𝑗

to be the sample average level of expression of the gene in
population 𝑘𝑘. Also de�ne 𝑠𝑠2𝑘𝑘 = (1/(𝑛𝑛𝑘𝑘 − 1))∑

𝑛𝑛𝑘𝑘
𝑗𝑗𝑗𝑗 (𝑋𝑋𝑗𝑗𝑗𝑗 − 𝑋𝑋𝑘𝑘)

2

to be the sample variance of the expression level of the gene in
population 𝑘𝑘. Typically expression levels are compared across
two populations or groups (𝑘𝑘𝑘𝑘  𝑘 𝑘). To identify DE genes,
one could use the classical two-sample t-statistic:

𝑡𝑡 𝑡
𝑋𝑋1 − 𝑋𝑋2

󵀆󵀆󶀡󶀡𝑠𝑠21/𝑛𝑛1󶀱󶀱 + 󶀡󶀡𝑠𝑠
2
2/𝑛𝑛2󶀱󶀱
. (1)

However, because of the large number of genes and the
nature of microarray data, this statistic is not well suited for
discriminating DE genes. e denominator of the t-statistic
relies on estimates of the expression variances. With the
sample sizes typical of most microarray studies (only a few
samples per group), these estimates are very unstable. Given
the large number of genes in microarray studies, some genes
will exhibit a low variance by chance. In real data one oen
�nds that the genes with the largest t-statistics are those with
the smallest denominators, not necessarily those that are DE
between groups.

Tusher et al. [4] proposed a specialized statistic for
microarrays, known as the “SAM” or s-statistic,

𝑠𝑠 𝑠
𝑋𝑋1 − 𝑋𝑋2

𝛿𝛿 𝛿 󵀆󵀆󶀡󶀡𝑠𝑠21/𝑛𝑛1󶀱󶀱 + 󶀡󶀡𝑠𝑠
2
2/𝑛𝑛2󶀱󶀱
. (2)

Note that the s-statistic is identical to the t-statistic with the
addition of a constant, 𝛿𝛿, to the denominator. e constant 𝛿𝛿
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F 2: “fdrtool” estimates of 𝜋𝜋1 for the t-statistic and four s-statistics in a type EV simulation with the IQR rescaling factor and t-statistic
input speci�cation. A reference line is drawn at 𝜋𝜋1, the true proportion of differentially expressed genes.

has the effect of stabilizing the denominator of the t-statistic.
We will refer to 𝛿𝛿 as the stabilizing constant.

ere is no consensus on the best way to choose 𝛿𝛿. Tusher
et al. [4] state that they choose 𝛿𝛿 to ensure that the variance
of the s-statistic “is independent of gene expression.” Broberg
[5] used the 5th percentile of all t-statistic denominators as 𝛿𝛿,
and Xie et al. [6] used themedian. Efron et al. [7] compared 5
choices of 𝛿𝛿: 0; 5th, 50th, and 90th percentiles, and the limit as
it approached in�nity and found the 90th percentile worked
best.

In addition to the SAM statistic, other Specialized Test
Statistics for microarrays have been developed. Specialized
Test Statistics have overwhelmingly been found to outper-
form the t-statistic for detecting DE genes. In each of the
papers mentioned above ([8–13]), simulations were included
comparing the performance of the proposed Specialized Test
Statistic to the classical t-statistic. Using real microarray data
from a set of “spike-in” assays, Qin et al. [14] assessed the
performance of six different statistics. Results unambigu-
ously demonstrated superior performance of Specialized Test
Statistics over the mean or t-statistic for identifying DE genes
although there was no “clear winner” among the Specialized
Test Statistics. Similarly, Zhang and Cao [15] employed both
simulation and real “spike-in” data and demonstrated that
Specialized Test Statistics performed comparably and clearly
outperformed classical statistics like the t-statistic.

Step (4) involves estimating the FDR associated with a list
of genes declared signi�cant. Many different “Mixture Model
Methods” (MMMs) [16] have been developed to estimate the
FDR for a list of genes declaredDE.MMMs assume that there
is a valid 𝑃𝑃-value computed for each gene to test the null
hypothesis that the gene is not DE. MMMs consider these 𝑃𝑃-
values as a mixture of 𝑃𝑃-values for genes for which the null
hypothesis is true and 𝑃𝑃-values for which the null hypothesis
is false. Estimators of the FDR have the form

󵰋󵰋𝐹𝐹𝐹𝐹𝐹𝐹(𝛼𝛼) =
𝛼𝛼󵰃󵰃𝜋𝜋0
󵰄󵰄𝐹𝐹𝑝𝑝 (𝛼𝛼)
=
𝛼𝛼 󶀡󶀡1 − 󵰃󵰃𝜋𝜋1󶀱󶀱
󵰄󵰄𝐹𝐹𝑝𝑝 (𝛼𝛼)

, (3)

where 𝛼𝛼 is the 𝑃𝑃-value threshold, 𝜋𝜋0 is the proportion of non-
DE genes, 𝜋𝜋1 = (1 − 𝜋𝜋0) is the proportion of DE genes, and
𝐹𝐹𝑝𝑝(⋅) is the cumulative distribution function of all 𝑃𝑃-values.
MostMMMsuse the observed number of𝑃𝑃-values less than𝛼𝛼
to estimate 𝐹𝐹𝑝𝑝(𝛼𝛼𝛼.erefore, mostMMMs differ only in their
estimates of 𝜋𝜋1.

In order to compute a 𝑃𝑃-value—step (2)—one needs
to know the distribution of the test statistic under the
null hypothesis. Obtaining an empirical null distribution
by permutation is a very popular choice in the microarray
context. However, Kerr [17] showed that 𝑃𝑃-values resulting
from permutation tests and MMMs may be incompatible
since permutation-test 𝑃𝑃-values may not satisfy all of the
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F 3: “fdrtool” estimates of 𝜋𝜋1 for the t-statistic and four s-statistics in a type EV simulation with the IQR rescaling factor and t-statistic
input speci�cation. A reference line is drawn at 𝜋𝜋1, the true proportion of differentially expressed genes.

assumptions implicit in MMM methodology. erefore,
estimating the FDR directly from test statistics—skipping
step (2) altogether—could be advantageous.

ere are few tools available to estimate the FDR directly
from test statistics. One such tool, “locfdr” [18], operates
directly on test statistics, but has been found to be highly
sensitive to minor changes or transformations of the test
statistics [17].erefore, in this paper, we investigate whether
themethodology of “fdrtool” [19, 20] can be easily adapted to
estimate FDRs directly from Specialized Test Statistics.

ere are many different Specialized Test Statistics to
choose from; we use the SAM-statistic in our investigation
due to its simplicity and popularity. We compare results to
a procedure in current common practice, which is to use a
variant of a permutation-test 𝑃𝑃-value together with a MMM
for 𝑃𝑃-values. In this approach, a single null distribution of
the test statistic is estimated by pooling all the permutation
null test statistics across genes. Kerr [17] showed that such
“pooled null 𝑃𝑃-values” are different from permutation test 𝑃𝑃-
values. However, “pooled null 𝑃𝑃-values” have the attractive
feature that they have a monotone relationship with the test
statistic. For our second class of methods for estimating 𝜋𝜋1,
we computed pooled null permutation 𝑃𝑃-values and then
estimated the FDR with an MMM.We used two MMMs that
we have seen to work well: “qvalue” [21] and “convest” [22].

2. Results and Discussion

2.1. Methodology. e methodology of “fdrtool” is not
designed to take s-statistics or any other Specialized Test
Statistics as input. Since “fdrtool” accepts t-statistics, and s-
statistics are similar to t-statistics, we investigated whether we
could apply “fdrtool” to s-statistics and get accurate results.
Our idea was to compute both s-statistics and t-statistics
on the same data, and then rescale the s-statistics to have
the same spread as the corresponding t-statistics. We con-
sidered two measures of variability: standard deviation and
interquartile range. In addition, we considered four different
s-statistics, each using a different stabilizing constant term in
the denominator. We designed simulations to investigate the
accuracy of using “fdrtool” to estimate FDR’s from s-statistics
in this way. Our simulated data were based on realmicroarray
data.

As a simple example, suppose that we have 100 genes with
measured expression levels on two samples from two groups
wewish to compare.We compute a t-statistic and an s-statistic
for each gene. Due to the addition of the stabilizing constant
in the denominator of the s-statistic, the 100 s-statistic values
will be closer to zero than the 100 t-statistic values. In
other words, the addition of 𝛿𝛿 to the denominator pulls
the s-statistic values toward zero, so that the variance of the
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F 4: “fdrtool” estimates of 𝜋𝜋1 for the t-statistic and four s-statistics in a type EV simulation with the IQR-rescaling factor and z-statistic
input speci�cation. A reference line is drawn at 𝜋𝜋1, the true proportion of differentially expressed genes.

s-statistics across genes is smaller than the variance of the t-
statistics.

Accordingly, we used a measure of the difference in
variability of the statistics across genes as the rescaling factor
to rescale the s-statistics. We examined two measures of
variability: the standard deviation (SD) and the interquartile
range (IQR). We took the ratio of the variability of the t-
statistic to the variability of the s-statistic as our rescaling fac-
tor. For the SD, we transformed the s-statistics by multiplying
them by the factor (SD𝑇𝑇/SD𝑆𝑆), where SD𝑇𝑇 and SD𝑆𝑆 are the
standard deviations across genes of t-statistics and s-statistics,
respectively. e rescaling factor for the IQR was similarly
de�ned, with IQR in the place of SD. �ote that rescaling the
s-statistics maintains their rank order, which retains the s-
statistic’s advantages for accurately detecting DE genes.

In computing s-statistics one must choose the value of
the stabilizing constant 𝛿𝛿 in the s-statistic denominator. We
considered four choices for 𝛿𝛿, and so de�ned four different s-
statistics: the s30, s50, s70, and s90. e s30-statistic uses the
30th percentile of all t-statistic denominators as 𝛿𝛿, the s50-
statistic uses the 50th percentile of all t-statistic denominators
as 𝛿𝛿, and so forth. In summary, for each simulated data
set, we computed the t-statistic and the four s-statistics. We
transformed the s-statistics by two different rescaling factors
(SD and IQR). When loading the rescaled s-statistics into
“fdrtool,” we evaluated two different speci�cations to the

soware. We could specify that the input was t-statistics or z-
statistics.We evaluated the performance of these �ve statistics
using the four different combinations of rescaling factors and
two different input options.

2.2. Design of Simulation Study. e design of the simulation
study is that same as Kerr (2009) [17], and we describe it
here brie�y. We based simulations on real microarray data
of EBV-transformed lymphoblastoid cell line tissue from 60
individuals with European ancestry (CEU) and 45 ethnic
Chinese (CHB). ere are data on 47,293 transcripts.

For each gene, we calculated the samplemean and sample
standard deviation of that gene in each population group
(CEU and CHB). We rounded the sample mean values to the
nearest tenth digit, so that means could be unambiguously
declared equal or unequal between groups. We simulated
CEU and CHB sample data (where we knew the “truth”
regarding the degree of differential expression) from inde-
pendent normal distributions with parameters based on the
values from the actual data. We simulated datasets of 10,000
transcripts.

We ran three types of simulations: EV, UV1, and UV2.
In each simulation, a proportion of genes (𝜋𝜋1) were differ-
entially expressed in the mean. For the simulated DE genes,
the difference in means for the simulated CEU and CHB
samples was taken from the observed sample means in the
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F 5: “qvalue” estimates of 𝜋𝜋1 for the t-statistic and four s-statistics in a type EV simulation. A reference line is drawn at 𝜋𝜋1, the true
proportion of differentially expressed genes.

real data. e variances of the simulated CEU and CHB
samples differed between the three simulation types.

In the EV (“equal variance”) simulations, the standard
deviation of both the simulated CEU sample and the
simulated CHB sample came from the observed standard
deviation from the CEU data.is was not the case in the UV
(“unequal variance”) simulations. In the UV1 simulations,
the standard deviation of the simulated CEU sample came
from the observed standard deviation from the CEU data,
and the standard deviation of the simulated CHB sample
came from the observed standard deviation from the CHB
data. In the UV2 simulations, this was reversed: the standard
deviation of the simulated CEU sample came from the
observed standard deviation from the CHB data, and the
standard deviation of the simulated CHB sample came from
the observed standard deviation from the CEU data.

We initially simulated data for four different values of
𝜋𝜋1: 0.01, 0.05, 0.10, and 0.25, and three different sample
sizes: large, intermediate, and small. Letting nCEUandnCHB
denote the sample sizes for CEU and CHB, respectively, our
sample sizes were as follows: large (nCEU, nCHB) = (60, 45),
intermediate (nCEU, nCHB) = (16, 12), and small (nCEU,
nCHB) = (8, 6). Note that all of the sample sizes maintain the
4 : 3 ratio of the original data. With three sample sizes, four
values of 𝜋𝜋1, three simulation types, two rescaling factors
(�D and I�R), and two input speci�cation options (t-score,

z-score), there were a total of 144 different simulation sce-
narios. Aer examining the results, we performed additional
EV simulations for 𝜋𝜋1 = 0.005, 0.02, 0.03, and 0.04 for
the three sample sizes, two rescaling factors, and two input
speci�cation options, adding an additional 48 simulation
scenarios, for a total of 192 simulation scenarios.We repeated
each scenario 20 times.

2.3. Evaluation of Adapted fdrtool Method. First, we veri�ed
that the s-statistics outperformed the t-statistic in identifying
DE genes. Figure 1 shows that the s-statistics outperform
the t-statistic across all sample sizes and values of 𝜋𝜋1. is
difference in performance is more marked for the smaller
sample sizes than the larger sample sizes, across all values of
𝜋𝜋1. e four s-statistics are generally close in performance.
e s30-, s50-, and s70-statistics perform comparably. e
s90-statistic (purple curve) stands slightly apart from the
other three, giving less sensitivity at low false positive rates
and better sensitivity at higher false positive rates. e
difference in the ROC curves for the s90-statistic and the
other s-statistics is more pronounced in the smaller sample
sizes. However, the difference between the s90-statistic and
the other s-statistics is not as large as the difference between
the t-statistic and the four s-statistics.

We investigated the performance of “fdrtool” for s-
statistics when “fdrtool” treated them as either t-statistics
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F 6: “convest” estimates of 𝜋𝜋1 for the t-statistic and four s-statistics in a type EV simulation. A reference line is drawn at 𝜋𝜋1, the true
proportion of differentially expressed genes.

or z-statistics. Specifying in “fdrtool” that the inputted s-
statistics were t-statistics (Figure 2) worked reasonably well
for a low percentage of DE genes (𝜋𝜋1 = 0.01, 0.05). In the �rst
row of Figure 2, we see that the estimates of 𝜋𝜋1 have a modest
conservative bias for the 𝑠𝑠30- and 𝑠𝑠50-statistics in the two
smaller sample sizes. However, for higher proportions of DE
genes (𝜋𝜋1 = 0.1, 0.25), the “fdrtool” estimates of 𝜋𝜋1 are poor,
with excessive conservative bias. is result held regardless
of whether statistics were rescaled with IQR (Figure 1) or
SD (see supplementary File 1 in supplementary material
available online with doi:10.6064/2012/519394). However,
SD-scaling tended to give less predictable results.

Other aspects of the results presented in Figure 2 are
notable. First, when 𝜋𝜋 =0.25, there is a curvilinear trend
in estimates of 𝜋𝜋1 as we move from the t-statistic at one
extreme to the s90-statistic at the other. Second, the bias
in the estimates of 𝜋𝜋1 when t-statistics are computed on
the data tends to be at least as large as the bias for the s-
statistics. is is surprising since “fdrtool” was developed for
t-statistics. ird, there is a substantial difference between
simulations with 𝜋𝜋1 = 0.01 and simulations with 𝜋𝜋1 = 0.05.
When 𝜋𝜋1 = 0.01, estimates for the s70- and s90-statistics
show anticonservative bias, whereas, when 𝜋𝜋1 = 0.05, these
statistics show conservative bias. Figure 3 expands upon
Figure 2, with simulation results for 𝜋𝜋1 = 0.005, 0.01, 0.02,
0.03, 0.04, and 0.05.ere is a decrease from anticonservative
bias to conservative bias as 𝜋𝜋1 increases from 0.005 to 0.05.

In contrast to the results for the t-statistic input spec-
i�cation, telling “fdrtool” the inputted statistics were z-
statistics (Figure 4) worked better for high percentages of
DE genes (𝜋𝜋1 = 0.10, 0.25), but showed anticonservative
bias for low percentages of DE genes (𝜋𝜋1 = 0.01). Bias and
variability is mostly improved over Figure 2 except for 𝜋𝜋1 =
0.01. All results presented here are for the EV simulations;
results for the UV1 and UV2 simulations were similar (see
supplementary File 1).

3. Evaluation of MixtureModel Methods on
Pooled Permutation Null 𝑃𝑃-Values

A popular approach in practice is to compute a variant of
a permutation-test 𝑃𝑃-value. In this approach, a single null
distribution of the test statistic is estimated by pooling all
the permutation null test statistics across genes. “Pooled null
𝑃𝑃-values” can be computed from a single empirical null
distribution. We also obtained estimates of 𝜋𝜋1 using pooled
null 𝑃𝑃-values and then estimating the FDR with an MMM.
We obtained estimates of 𝜋𝜋1 using two MMMs that we have
seen to work well: “qvalue” [21] and “convest” [22].

Figure 5 shows the “qvalue” results for the EV simula-
tions. For a low percentage of DE genes (𝜋𝜋1 = 0.01, 0.05), the
“qvalue” results (top two rows of Figure 5) largely show less
bias than the “fdrtool” results (top two rows of Figures 2 and
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4). However, there are exceptions as, for example, the s50-
and s70-statistics show less bias in the smaller sample sizes
when 𝜋𝜋1 = 0.01 in the “fdrtool” results than in the “qvalue”
results. e “qvalue” estimates show considerably greater
variability than the “fdrtool” estimates, so it is not entirely
clear that one method is better. For higher percentages of DE
genes (𝜋𝜋1 = 0.10, 0.25), the story is similar, with “qvalue”
estimates generally showing less bias than “fdrtool” estimates,
but greater variability. However, the higher variability in the
“qvalue” results seems more clearly acceptable when 𝜋𝜋1 =
0.10, 0.25, given the dramatic reduction in bias. Interestingly,
“qvalue” does not appear to perform worse for the t-statistic
than it does for the s-statistics, whereas “fdrtool” almost
always performs better for s-statistics. e comparison of the
“fdrtool” results to the “qvalue” results was similar for the
UV1 and UV2 simulations (see Additional File 1).

Figure 6 shows the “convest” estimates of 𝜋𝜋1 for the
EV simulations. Overall, the “convest” estimates show less
bias and comparable or less variability than the “fdrtool”
or “qvalue” results. us, although it relies on 𝑃𝑃-values that
could be considered invalid as permutation test𝑃𝑃-values [17],
“convest” might yield superior estimates of 𝜋𝜋1 (and hence
FDR) in terms of bias and variability. Similar to the “qvalue”
results, “convest” performs comparably for t-statistics as for
s-statistics.

4. Discussion

e “convest” method took longer to compute than the “fdr-
tool” approach (approximately 20 times as long). However,
computation time was on the order of 6.5 seconds for 1
set of 10,000 𝑃𝑃-values and was not prohibitive. e more
important difference is that “convest” requires 𝑃𝑃-values,
which we computed via permutation, whereas the “fdrtool”
is applied directly to test statistics and does not require any
data permutations.

An important limitation of this study is that all simu-
lations were based on one dataset. We also did not explore
different correlation structures for the simulated gene expres-
sion.

5. Conclusions

We compared approaches for estimating 𝜋𝜋1, the proportion
of differentially expressed genes, from microarray data. e
approacheswere in two classes: (1) adapting themethodology
of “fdrtool” to Specialized Test Statistics and (2) applying
mixture model methods (MMMs) to 𝑃𝑃-values computed
from a pooled permutation null distribution. e best-
performing method was in the second class, using the MMM
“convest” to 𝑃𝑃-values computed from a pooled permutation
null distribution. Overall, estimates of 𝜋𝜋1 exhibited the least
bias and variability, and bias tended to be conservative rather
than anti-conservative.

e �rst class of approaches for estimating 𝜋𝜋1 adapted
existingmethodology of “fdrtool” to s-statistics. Interestingly,
“fdrtool” generally performed better for s-statistics than it
did for t-statistics, even though the empirical modeling is

designed for t-statistics. e performance of the “fdrtool”-
based approach varied substantially on the proportion of
differentially expressed gene. However, the “convest”-based
approach outperformed the fdrtool approach in almost all
scenarios.
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