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e production of host-selective toxins by the necrotrophic fungus Alternaria alternata is essential for the pathogenesis. A.
alternata infection in citrus leaves induces rapid lipid peroxidation, accumulation of hydrogen peroxide (H2O2), and cell death.e
mechanisms by which A. alternata avoids killing by reactive oxygen species (ROS) aer invasion have begun to be elucidated. e
ability to coordinate of signaling pathways is essential for the detoxi�cation of cellular stresses induced byROS and for pathogenicity
in A. alternata. A low level of H2O2, produced by the NADPH oxidase (NOX) complex, modulates ROS resistance and triggers
conidiation partially via regulating the redox-responsive regulators (YAP1 and SKN7) and the mitogen-activated protein (MAP)
kinase (HOG1) mediated pathways, which subsequently regulate the genes required for the biosynthesis of siderophore, an iron-
chelating compound. Siderophore-mediated iron acquisition plays a key role in ROS detoxi�cation because of the requirement of
iron for the activities of antioxidants (e.g., catalase and SOD). Fungal strains impaired for the ROS-detoxifying system severely
reduce the virulence on susceptible citrus cultivars. is paper summarizes the current state of knowledge of signaling pathways
associated with cellular responses tomultidrugs, oxidative and osmotic stress, and fungicides, as well as the pathogenicity/virulence
in the tangerine pathotype of A. alternata.

1. Introduction

Alternaria species have different lifestyles, ranging from
saprophytes to endophytes to pathogens [1]. Alternaria
species are a highly successful group of fungal pathogens that
cause diseases in a wide variety of economically important
crops, including apple, broccoli, cauli�ower, carrot, citrus,
pear, rice, strawberry, tomato, potato, and tobacco, as well
as many ornamental and weed species. Due to their wide
host range and worldwide distribution, Alternaria species
cause severe economic problems. Alternaria species have
been reported to cause diseases in nearly 400 plant species;
A. alternata alone can infect more than 100 plant species [2–
4]. One reason for the success of these pathogens may be
attributed to their production of diverse phytotoxins [5, 6].
e host-selective toxins (HSTs) produced bymanymembers
of the genus Alternata have unique modes of action and

toxicity to their respective host plants. Production of HST
is critical for successful pathogenesis because HST-de�cient
mutants are incapable of attacking their host plants [7–11]. In
addition to HSTs, many Alternaria species produce nonhost
selective phytotoxins, such as brefeldin A, altertoxin, and
tentoxin [1]. Others can producemycotoxins that are harmful
to humans and other animals [12]. Several Alternaria species
can also cause upper respiratory tract infections and asthma
in humans [13].

Alternaria alternata (Fr.) Keissler has several pathogenic
variants, each producing a unique HST and causing dis-
ease in different host plants [5, 9, 10, 14, 15]. HSTs
produced by Alternaria pathotypes are chemically diverse,
ranging from low-molecular-weight compounds to cyclic
peptides.e genes encoding polypeptides for biosynthesis of
Alternaria HSTs have been shown to reside on a dispensable
chromosome [9]. In citrus, A. alternata has two major
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F 1: Life cycle of Alternaria alternata, the causal agent of citrus brown spot. ACT toxin produced by the tangerine pathotype of A.
alternata is transported via the vascular system and formation of necrotic lesions on a detached calamondin leaf (bottom right).

pathotypes—the tangerine pathotype and the rough lemon
type [16]. e citrus pathotypes are morphologically similar
and can be differentiated only by pathological and genetic
analyses [17]. e rough lemon pathotype, producing the
host-selective ACRL toxin, is pathogenic exclusively to lemon
(Citrus jambhiri Lush) and Rangpur lime (Citrus x limo-
nia Osbeck). ACRL toxin affects mitochondrial function,
disrupting posttranscriptional RNA splicing and causing
metabolite leakage and malfunction of oxidative phosphory-
lation in susceptible host cells [18, 19]. In contrast, the tan-
gerine pathotype of A. alternata produces the host-selective
ACT toxin with a core 9,10-epoxy-8-hydroxy-9-methyl-
decatrienoic acid structure [20] and causes brown spots on
citrus leaves and fruit. ACT toxin is highly toxic to tangerines
(C. reticulata Blanco) and grapefruit (C. paradisiMacfad.), as
well as hybrids from grapefruit and tangerine, or tangerine
and sweet orange (C. sinensis Osbeck). ACT toxin does not
affect rough lemon or Rangpur lime [20].e toxin is quickly
translocated outward through the vascular system, causing
rapid electrolyte leakage and necrotic lesions along the veins
(Figure 1).A. alternata infection in citrus leaves induces rapid
lipid peroxidation and accumulation of hydrogen peroxide
(H2O2) [21]. Studies show that A. alternata has evolved a
dramatic �exibility and uniqueness in the signaling pathways
in order to respond to diverse environmental stimuli and
to thrive within host plants. is paper discusses signaling
pathways related to oxidative and osmotic stress resistance,
fungicide sensitivity, conidia formation, and pathogenesis of
A. alternata.

2. Roles of Reactive Oxygen Species in
Plant-Fungal Interactions

All organisms with an aerobic lifestyle inevitably generate
toxic reactive oxygen species (ROS), primarily superoxide
(O2
−), and hydrogen peroxide (H2O2) during physiological

metabolisms [22–26]. During the course of host colonization,
fungal pathogens of plants need to overcome a wide range
of potentially harmful environmental challenges, particularly
an oxidative burst, which could result in the production and
accumulation of highly toxic ROS. In addition to the direct
toxicity of ROS to cells, when produced in abundance, ROS
can also serve as secondary messengers in the pathogen-
response signal transduction pathways [23, 27]. Among ROS,
H2O2 is relatively stable and able to pass freely throughmem-
branes, serving as a signaling cue for defense responses in sur-
rounding cells and as a substrate for oxidative cross-linking
in the plant cell wall [27–32]. Hydrogen peroxide can react
with O2

− via the Haber-Weiss reaction or with metal ions
via the Fenton pathway [33–35] to generate the extremely
toxic hydroxyl radical. It has been well known that plants
produce toxic ROS as a defense against pathogens [36–41]. In
response to the microbe invasion, plant cells oen produce
excessive amounts of H2O2 by a speci�c plasma membrane
NADPHoxidase, termed as the hypersensitive reaction (HR),
which leads to programmed cell death and cellular defense
against pathogen attack [42–46]. e HR plays a vital role
in plant defenses against saprophytes and noncompatible
or biotrophic pathogens; however, HR has been shown less
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effective against necrotrophic phytopathogens [47–51]. ROS
have been shown to be involved in nonhost resistance in
plants as well [52, 53].

e burst of the HR may ironically provide an advantage
for necrotrophic phytopathogens, as they acquire nutrients
exclusively from dead cells [54]. ROS have been thought to
enhance plant colonization by necrotrophic pathogens such
as Botrytis cinerea and Sclerotinia sclerotiorum [50, 51, 55].
Because many necrotrophic pathogens are able to produce a
wide array of HSTs or cell-wall-degrading enzymes that kill
host cells before colonization, leading to the accumulation of
ROS, the pathogens must have evolved effective mechanisms
to cope with the toxicity of ROS [47, 49].

A. alternata

ROS damage a wide range of biological molecules, including
fatty acids, proteins/enzymes, sugars, and nucleic acids; thus,
exposure to ROSmay result in cell death [56–58].e relative
sensitivity of the fungal pathogen to ROS is likely determined
by the effectiveness of its own ROS detoxi�cation ability.
In order to survive under aerobic conditions, fungi must
have detoxi�cation systems that can effectively scavenge ROS,
maintain reduced redox states within subcellular microen-
vironments, and repair ROS-triggered damage [22, 59, 60].
Molecular and genetic studies aimed at understanding the
mechanisms by which cells cope with the oxidative stresses
and are protected from the deleterious effects of ROS have
been intensively studied in both prokaryotes and eukaryotes.
In the budding yeast Saccharomyces cerevisiae, the YAP1 tran-
scription regulator plays a central role in the cellular pathways
associated with the oxidative stress response [61, 62]. YAP1 is
responsible for transcriptional activation of genes involved in
multidrug resistance as well. YAP1, resembling mammalian
AP-1, has a basic leucine zipper (bZIP) domain and has been
shown to be activated by H2O2 and various ROS-generating
oxidants, as well as heavy metals [63–66]. In the absence of
oxidative challenges, YAP1 can be found in the cytoplasm
at low levels. Upon perceiving oxidative or chemical stimuli,
YAP1 quickly forms disul�de bonds, changes conformation,
and is translocated into the nucleus where YAP1 regulates
the expression of genes responsible for stress alleviation [67–
71]. Conserved cysteine residues in both the amino and
carboxyl terminal domains are essential for the formation of
the disul�de bonds, nuclear relocalization and transcriptional
regulation of YAP1 [72].

Although all microorganisms employ complex mech-
anisms, both enzymatic and nonenzymatic to avoid ROS
toxicity [47, 61, 73], the pathological roles of oxidative stress
mitigation remain uncertain in pathogenic fungal species.
e role of ROS in host resistance and pathogen invasion is
likely dictated by the physiological conditions of the host, the
lifestyle of the pathogen, and the combination of different
stimuli [38, 41, 74–76]. Hence, ROS produced by plants
may have different effects against different pathogens [49,
75]. YAP1-mediated detoxi�cation of ROS is an essential
virulence determinant in the opportunistic human pathogen

Candida albicans and the biotrophic maize pathogenUstilago
maydis [77, 78]. However, YAP1 is not required for virulence
in the plant pathogens Cochliobolus heterostrophus and B.
cinerea and in the animal pathogen Aspergillus fumigatus,
even though the disruptedmutants exhibit increased sensitiv-
ity toH2O2 [79, 80].e necrotrophic fungus Sc. sclerotiorum
produces oxalic acid that suppresses host-generatedROS, and
thus facilitates fungal evasion [73]. e Magnaporthe oryzae
MoHYR1 gene encoding a glutathione peroxidase (GSHPx)
is required for detoxifying plant-generated ROS and full
virulence [81]. In S. cerevisiae, HYR1 forms a disul�de bond
with YAP1, inducing a conformational alteration and nuclear
localization of YAP1 upon exposure to ROS [82].

To thrive within host plants, A. alternatamust be able to
detoxify or obviate the ROS-mediated plant defense barriers.
Our studies have demonstrated that cellular detoxi�cation of
ROS regulated by the redox-responsive YAP1 transcription
regulator is important for pathogenesis of A. alternata to
citrus [83, 84]. Inactivation of the A. alternata AP1 gene
(designated AaAP1), encoding a YAP1-like transcription
factor, resulted in fungal mutants that are hypersensitive to
H2O2, menadione, and potassium superoxide (KO2). e
promoter of AaAP1 contains a putative stress responsive
element (STRE: AGAGGGG). Upon activation by H2O2,
the AaAP1::sGFP fusion protein became localized in the
nucleus. Fungal mutants lacking AaAP1 (Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 are weakly
virulent on susceptible citrus cultivars even though they
synthesize HST toxins normally. However, Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 mutant
is not sensitive to osmotic and salt stress-related com-
pounds (e.g., sorbitol, mannitol, NaCl, and KCl) (Figure
2). Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 mutant produces wild-type level of conidia that
germinate at a rate and magnitude similar to the wild-type
strain. e nonpathogenic phenotype of Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 mutant was
accompanied with reduced activities of fungal antioxidants,
including catalase, peroxidase, superoxide dismutase (SOD),
and glutathione reductase.e inability of Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦mutants to
incite necrotic lesions is likely due to the mutants’ inability
to detoxify ROS because coapplication of Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 mutants
with theNADPHoxidase inhibitor, apocynin, or diphenylene
iodonium, partially restored lesion-forming capability to the
mutants. Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 mutant is impaired in the penetration and
colonization stages because the impaired mutant did not
cause any visible necrotic lesions on wounded or unwounded
leaves of the citrus cultivar Minneola. All mutant phenotypes
were completely restored to the wild type in fungal strains
expressing a functional copy of 𝐴𝐴𝑦𝑦𝐴𝐴𝐴𝐴𝑦. Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 mutant
displayed severe defects in antioxidant activities and was
unable to detoxify H2O2 effectively. Our studies concluded
that effective detoxi�cation of ROS via the AaAP1-mediated
pathway is absolutely required for successful colonization
of citrus by A. alternata [83, 84]. e tobacco pathotype of
A. alternata impaired for the biosynthesis of mannitol, an
antioxidant and quencher of the hydroxyl radical, also greatly
reduces virulence [85, 86], consistent with the importance of
ROS detoxi�cation in the pathogenesis of A. alternata.

Furthermore, 𝐴𝐴𝑦𝑦𝐴𝐴𝐴𝐴𝑦 was found to be required for full
resistance to 2,3,5-triiodobenzoic acid (TIBA), 2-chloro-5-
hydroxypyridine (CHP), diethyl maleate (DEM), and many
pyridine-containing compounds [87]. Diethyl maleate is
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a glutathione-depleting agent that has been shown to gen-
erate a nonreversible modi�cation of cysteine residues in
the Schizosaccharomyces pombe Pap1 protein. As a result,
Pap1 is constitutively localized in nucleus and activates
the genes required for ROS tolerance [88]. TIBA is oen
used as herbicides or as an inhibitor of indole-3-acetic acid
(IAA) transportation [89, 90]. Pyridine is a heteroaromatic
compound composed of �ve carbons and one nitrogen atom.
Pyridine could accelerate the production of superoxide and
hydroxyl radicals when Cu2+ and H2O2 are present [91, 92].
Pyridine and its derivatives serve as constituents of RNA and
DNA, as electron carriers such as NADP/NADPH and �avin
nucleotides (FAD/FADH) and as energy storage molecules
such as ATP and GTP.

4. The “Two-Component” Histidine Kinase
(HSK) Signaling Pathway

All living cells have a complicated yet well-regulated network
oen comprising different signaling transduction pathways
to perceive changes in their environments and to adjust
physiological and developmental processes [93–99]. “Two-
component” histidine kinase (HSK) signaling transfer sys-
tems are commonly present in bacteria, slime molds, fungi,
and plants; however, these systems have not yet been identi-
�ed in animals [100, 101]. In bacteria, HSK signaling systems
contain a histidine kinase (HSK) and a response regulator
(RR); each is encoded by a separate gene [102, 103]. In
contrast, all fungal HSKs have both the HSK and RR domains
[101, 104, 105]. In response to environmental changes, a
series of phosphate transfers between histidine (His) and
aspartate (Asp) residues occurs in a pattern of His-Asp-
His-Asp to regulate downstream signaling pathways such
as mitogen-activated protein kinase (MAPK) cascades and
eventually leads to a change in gene expression [100, 106,
107].

e S. cerevisiae histidine kinase, designated SLN1p, is
required for osmotic adaption via the SLN1p-YPD1p (a
protein containing a His phosphotransfer domain)-SSK1p
or SKN7p cascade [108, 109]. SSK1p is the major regulator
for osmolarity response; SKN7p plays only a minor role in
osmosensing. Under normal osmolarity, the SLN1p kinase is
phosphorylated and able to activate YPD1p and SSK1p with
a phosphorelay mechanism (Figure 3). e phosphorylated
SSK1p is inactive and incapable of activating the High
Osmolarity-Glycerol 1 (HOG1) MAP kinase pathway (see
below for details). In contrast, SLN1p is not phosphorylated
under conditions of high osmolarity; therefore SSK1p is able
to activate theHOG1-signaling cascade.e activatedHOG1
pathway is responsible for glycerol accumulation, allowing
the yeast to cope with the high osmolarity. S. cerevisiae
also utilizes a non-HSK-related protein SHO1p to cope with
osmotic stress [108, 110]. However, deletion of an SHO1
homolog in A. alternata did not impact cellular tolerance to
oxidative and osmotic stress, fungicide sensitivity or fungal
virulence (L.-H. Chen, unpublished).

ebudding yeast S. cerevisiaehas only oneHSK; all other
fungi have multiple HSK signaling genes [111]. Fungal HSKs

are divided into 11 groups based on phylogenetic relation-
ships inferred from the conserved HSK and RR domains.
Among them, Group III HSK is one of the best characterized
HSKs in the �lamentous fungi. Collectively, Group III HSK
has been implicated in osmotic and oxidative responses,
toxin biosynthesis, hyphal development, conidia formation,
and virulence, as well as sensitivity to dicarboximide and
phenylpyrrole fungicides in different fungal species [112–
121].

Signals sensed by HSK are oen transduced down to
the HOG1 MAP kinase pathway. Fungi lacking Group III
HSK or HOG1 oen became resistant to dicarboximide and
phenylpyrrole fungicides and exhibited an elevated sensitiv-
ity to osmotic stress [117, 122, 123]. Although the HSK-
HOG1 signaling pathway is conserved, it may be recruited
for divergent functions in different fungal species. As dis-
cussed above, the S. cerevisiae SLN1p negatively regulates
HOG1 phosphorylation under conditions of high osmolarity
[100, 106, 107]. e �lamentous fungus Co. heterostrophus
Group III HSK (Dic-1) positively regulates phosphorylation
of the HOG1 MAP kinase, which subsequently activates
expression of genes responsible for osmotic resistance and
fungicide sensitivity [117]. In B. cinerea, the HOG1-like
MAP kinase is not required for fungicide sensitivity even
though it is negatively regulated by the “two-component”
HSK. Furthermore, the salt-tolerant yeast species, Hortaea
werneckii, copes with osmotic stress using a Group VII HSK-
HOG1 pathway [124]. ose studies indicate that the HSK-
HOG1 signaling pathways can be operated in very different
regulatory mechanisms in various species.

e AaHSK1 gene, encoding a putative histidine kinase,
was cloned from the tangerine pathotype ofA. alternata [87].
AaHSK1, containing no transmembrane regions, is required
for adaption to osmotic stress induced by sugars but not
by salts (Figure 2). Δℎ𝑠𝑠𝑠𝑠𝑠 displayed increased sensitivity to
glucose, sucrose, sorbitol, or mannitol, but not to H2O2, KCl,
or NaCl [125]. Similarly, the M. grisea HSK is required for
resistance to sugar, but not salt, osmotic stress [116]. e F.
oxysporum histidine kinase Fhk1 is responsible for resistance
to osmotic stress, menadione, but not H2O2 [126]. Similar
to Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑠 mutant, AaHSK1 disruption mutants displayed an
elevated sensitivity to TIBA and CHP, suggesting a possible
link between YAP1 and HSK. Δℎ𝑠𝑠𝑠𝑠𝑠 mutants displayed an
elevated resistance to dicarboximide (iprodione and vinclo-
zolin) and phenylpyrrole (�udioxonil) fungicides, suggesting
that AaHSK1 is one of the primary targets of these fungicides.
Similarly, resistance to dicarboximide and phenylpyrrole
fungicides has been demonstrated to be associated with a
mutation within the gene encoding a Group III HSK and/or
an HOG1 MAP kinase in a number of �lamentous fungi
[113–118, 121, 122, 126, 127]. However, HSK is not involved
in dicarboximide susceptibility in A. longipes.

e A. alternata HSK1 is not required for response to
oxidative stress. e AaHSK1 gene product is not involved
in pathogenicity or virulence because the AaHSK1-impaired
mutants (Δℎ𝑠𝑠𝑠𝑠𝑠𝑠 induced necrotic lesions at rates and mag-
nitudes similar to the wild-type strain or the genetically
reverted strain on wounded or unwounded leaves of citrus.
In contrast, Group III HSK is a virulence determinant in
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F 2: Phenotypic changes in A. alternata mutants lacking the transcription regulator (YAP1), the MAP kinase (HOG1), the “two-
component” histidine kinase (HSK1), the response regulator (SKN7), or the NADPH oxidase (NOXA). Open rectangles denote wild-type
phenotypes.

F 3: Schematic illustration and comparison of signaling pathways leading to osmotic stress resistance in the budding yeast, S. cerevisiae,
and the pathways leading to ROS resistance, osmotic stress response, fungicide sensitivity, and conidia formation in the tangerine pathotype
of A. alternata.
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the phytopathogenic fungiB. cinerea,Claviceps purpurea, and
Fusarium oxysporum and in the human pathogen Cryptococ-
cus neoformans [118, 126, 128, 129].

5. TheHOG1Mitogen-Activated Protein kinase-
(MAPK-) Mediated Signaling Pathway

eHOG1MAPK-mediated signaling cascades in eukaryotic
cells are vital for sensing environmental stimuli and for
transmitting these signals to the nucleus to modulate gene
expression [130, 131].MAPK-mediated cascade pathways are
composed of three serine/threonine protein kinases—MAP
kinase kinase kinase (MAPKKK), MAP kinase kinase
(MAPKK), and MAP kinase (MAPK). is signal transduc-
tion pathway, in conjunction with HSK, is well conserved
in all eukaryotes and functions in perceiving environmental
stimuli via phosphorylation and gene activation [132, 133].
e phosphorylated MAPK activates a set of genes via
regulating appropriate transcription factors.

e A. alternata ortholog (AaHOG1) contains a dis-
tinct phosphorylation motif (TGY) involved in the osmotic
stress response [134]. Inactivation of the HOG1 ortholog by
targeted gene disruption in the tangerine pathotype of A.
alternata resulted in mutants that are highly sensitive to the
oxidants tert-butyl-hydroxyperoxide, H2O2, and menadione,
salts (Figure 2), as well as TIBA andCHP [87]. Because fungal
strain lacking the FUS3 MAP kinase (Δ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 grew faster
than wild type in the presence of KCl or NaCl [125]. us,
AaHOG1 and FUS3 play an opposite role in KCl and NaCl
tolerance. HOG1 has been shown to suppress the FUS3/KSS1
signaling cascade during hyperosmotic stress in S. cerevisiae
[135, 136].A. alternata strains impaired atAaHOG1 (Δℎ𝑜𝑜𝑜𝑜𝑜𝑓
displayed wild-type levels of sensitivity to high concentra-
tions of glucose, sucrose, sorbitol, or mannitol (Figure 2)
even though sugar osmoticants increasedAaHOG1phospho-
rylation and subsequently nuclear localization in the Δℎ𝑓𝑓𝑠𝑠𝑜
mutant background. In the wild-type background, sugar
osmoticant had less effect on AaHOG1 phosphorylation and
did not facilitate nuclear localization of AaHOG1.

ewild-type isolate ofA. alternata is extremely sensitive
to dicarboximide and phenylpyrrole fungicides, whereas
fungal strain lacking AaHSK1 is highly resistant to them.
Compared to the resistance seen in mutants defective at
AaHSK1, Δℎ𝑜𝑜𝑜𝑜𝑜 mutant displayed only slightly increased
resistance to these fungicides. In the wild-type strain of
A. alternata, the AaHOG1 protein was phosphorylated at
low levels under normal conditions. Exposure to iprodione
or �udioxonil fungicide, NaCl, or H2O2 elevated AaHOG1
phosphorylation to varying degrees. Although impairment
of AaHSK1 reduces AaHOG1 phosphorylation, A. alternata
apparently recruits AaHSK1 and AaHOG1 to exert a unique
function in resistance to sugar osmoticants and salt stress,
respectively (Figure 3).

Under unchallenged conditions, expression of AaHOG1::
sGFP fusion protein under control of the endogenous
AaHOG1 promoter in the wild-type strain resulted in
green �uorescence uniformly diffused along the hyphal
cytoplasm. However, the green �uorescence became dense

patches aer exposure to H2O2, iprodione and �udioxonil
fungicides, or NaCl. us, nuclear localization is important
for proper functions of HOG1. Compared to Δℎ𝑓𝑓𝑠𝑠𝑜 or
Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑜 mutant, Δℎ𝑜𝑜𝑜𝑜𝑜 mutant was highly resistant to cell
wall-degrading enzymes (lyticase, driselase, 𝛽𝛽-D-glucanase,
and 𝛽𝛽-glucuronidase), thereby failing to generate any
protoplasts. As judged from distinct phenotypes in fungal
mutants impaired in the AaHSK1 or AaHOG1 gene in A.
alternata, it appears that AaHSK1 functions in osmotic
tolerance and fungicide sensitivity via AaHOG1 and other
gene (e.g., SKN7) activation branches.

AaHSK1 plays no role in pathogenesis of A. alternata.
On the other hand, pathogenicity assays revealed that the
AaHOG1-impaired mutants are nonpathogenic, producing
no necrotic lesions onMinneola leaves that were unwounded
or prewounded before inoculation. Similar to AaAP1 dis-
ruption, the AaHOG1-impaired mutant is defective at the
penetration and colonization steps. Inactivation of the
AaHOG1 gene did not impact the production of host-
selective ACT toxin by A. alternata. HOG1 is required
for virulence/pathogenicity in various fungal pathogens.
ese include Co. heterostrophus, Cryphonectria parasitica,
B. cinerea, Mycosphaerella graminicola, Ca. albicans, and C.
neoformans [137–142]. However, HOG1 is not a virulence
determinant in M. grisea, Colletotrichum lagenarium, Bipo-
laris oryzae and As. fumigatus [122, 143–145]. Again, a
conserved protein may have very different functions in fungi.

�. SK��-Mediated �OS �eto�i�cation

“Two-component”HSK-mediated signal transduction is vital
for sensing and adapting to environmental changes in
microorganisms. In S. cerevisiae, SLN1 histidine kinase
transmits signals via a phosphotransfer process down to
two response regulators, SSK1p and SKN7p, in response
to osmotic stress. However, SKN7p is not regulated by
the SLN1p-mediatd phosphorylation in the oxidative stress
response [146], indicating that there are two different acti-
vation mechanisms in response to osmotic and oxidative
stress. Under oxidative stress, SKN7p is phosphorylated at
serine or threonine residue, forming a heterodimer with
YAP1; together they transcriptionally activate the genes
involved in the oxidative stress response [146–152]. YAP1
regulates cadmium resistance independent of SKN7p [153].
SKN7p can also form a heterodimer with the heat-shock
transcription factor, the cell cycle transcription regulator, the
calcium responsive activator, or the Rho1 GTPase [154–157].

In �lamentous fungi, SKN7 is required for oxidative stress
adaptation, hypoosmotic stress response, cell cycle, sexual
mating, sporulation, cell wall biosynthesis, and fungicide
sensitivity [120, 146, 155, 158–163]. e A. alternata SKN7
homolog (AaSKN7) was cloned and characterized in the tan-
gerine pathotype [164]. e promoter of AaSKN7 contains a
putative stress responsive element (STRE: AGAGGGG) that
is oen present in genes induced by various stresses such as
oxidative damage in yeasts. AaSKN7 has a heat-shock tran-
scription factor- (HSF-) type helix-turn-helix DNA-binding
domain signature and a response regulatory (RR) domain.
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Genetic mutation analysis revealed that AaSKN7 is required
for resistance to osmotic and oxidative stress and fungicide
sensitivity, as well as conidiation and conidia morphology.
AaSKN7 is primarily localized in the nucleus, whereas YAP1
and HOG1 are quickly transported into the nucleus upon
sensing oxidative stress. AaSKN7 may interact directly with
AaAP1 in nucleus in response to oxidative stress as demon-
strated in the budding yeast [151]. BothA. alternataAP1 and
HOG1 are required for resistance to different types of ROS
including hydrogen peroxide, superoxide, and singlet oxygen.
On the other hand, AaSKN7 is required for resistance to
H2O2, tert-butyl hydroperoxide, and cumyl peroxide, but not
to superoxide-generating compounds—diamide, menadione
and potassium superoxide (Figure 2). It appears that AaSKN7
and AaHOG1 contribute independently to oxidative stress
in A. alternata. Because AaHSK1 is not required for ROS
resistance [87]; activation of AaSKN7 and AaHOG1 in
response to ROS is likely mediated by unknown regulatory
sensors other thanAaHSK1. Furthermore,A. alternataHSK1
apparently can recruit SKN7 and HOG1 to deal with sugar
and salt osmoticants, respectively. Although AaHSK1 and
AaSKN7 play no roles in resistance to salt-induced stress,
AaSKN7 is involved in resistance to sugar osmoticants likely
via the AaHSK1—mediated signaling pathway (Figure 3).
Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠Δ𝑠𝑠𝑠𝑠𝑠𝑠 double mutants were hypersensitive to both
salts and sugars, indicating thatA. alternata is capable of sens-
ing different environmental stimuli using distinct or shared
signaling pathways. Furthermore, AaSKN7, independent of
AaHSK1, is involved in conidia formation. Our studies also
revealed that formation of conidia by A. alternata is closely
regulated by the FUS3 and SLT2 MAP kinases-mediated
signaling pathways, as well as by the G-protein and the NOX
complex [125, 165–167]. However, recent studies revealed
that cAMP-dependent protein kinase A (PKA) suppresses
conidia formation by the tangerine pathotype of Alternaria
alternata [168]. It remains uncertain if these signaling path-
ways actually interact during conidia formation.

A. alternata strains deleted for HSK1 or HOG1 showed
an elevated resistance to dicarboximide and phenylpyrrole
fungicides. Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑠 mutant displayed an elevated resistance
to those fungicides at levels between Δ𝑠𝑠𝑠𝑠𝑠𝑠 and Δ𝑠𝑠𝑠𝑠𝑠𝑠
mutant strains, indicating that the involvement of SKN7 in
fungicide sensitivity is likely mediated by the HSK1 signaling
pathway. Fungal strain carrying skn7/hog1 double mutations
exhibited fungicide resistance, similar to the strain carrying
a single AaHSK1 gene mutation. e results indicated that
the signals associated with fungicide sensitivity are trans-
duced from AaHSK1 simultaneously down to both AaSKN7-
and AaHOG-mediated pathways. e HSK-HOG signaling
pathways are associated with fungicide susceptibility in A.
brassicicola and N. crassa [121]; yet SKN7 is not involved
in fungicide sensitivity in N. crassa. HSK governs Ssk1p
(an upstream regulator of HOG1) and Skn7p for osmolarity
adaption and fungicide sensitivity in the phytopathogenic
fungus Co. heterostrophus and the human pathogen C. neo-
formans [128, 169, 170].

e roles of SKN7 in pathogenicity/virulence vary among
fungal pathogens. A. alternata SKN7 is required for fungal
colonization and lesion development in susceptible cultivars

of citrus. Similar to Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑠 and Δ𝑠𝑠𝑠𝑠𝑠𝑠, mutational inactiva-
tion of AaSKN7 in A. alternata resulted in reduced activities
of catalase, SOD, and peroxidase, con�rming further that
the ability to detoxify host-generating H2O2 by A. alternata
is crucial for successful pathogenesis in citrus. e SKN7
homologs are required for virulence in the human pathogens
C. neoformans, Ca. albicans, and Ca. glabrata [150, 171, 172].
Again, in contrast, SKN7 is not a virulence determinant in the
plant pathogens Co. heterostrophus andM. oryzae and in the
human pathogen As. fumigatus [116, 162, 173].

7. The NADPHOxidase (NOX):
Mediated Signaling Pathway

e NADPH-dependent oxidase transfers electrons from
NADPH to the oxygen molecule, leading to the production
of a superoxide that is further metabolized to H2O2 by SOD
[174, 175]. NOX complex is commonly found in animals,
plants, and many multicellular microorganisms, but com-
pletely absent in prokaryotes [176]. Functionally, NOX com-
plex plays a crucial role in cellular differentiation and defence
response. In humans, the phagocytic NOX complex, involved
in the production of superoxide and immunity, contains
two major catalytic components gp22phox and gp9𝑠phox and
multiple regulatory subunits Rac (a small GTPase), p40phox,
p4𝑠phox, and p6𝑠phox [177]. NOX complex is also required
for the regulation of hormone responses, cell proliferation,
and apoptosis in animals ([178–180]. Activation of gp9𝑠phox

is primarily regulated by p6𝑠phox and Rac2 [181]. Plants also
have oxidases analogous to gp9𝑠phox, designated respiratory
burst homologs (Rboh), which are required for physiological
metabolisms and for ROS generation in response to pathogen
invasion [175, 182, 183].

Many fungi have NADPH oxidase orthologs, NOXA,
NOXB and NOXC that have been documented by genetic
analysis to be required for developmental, physiological and
pathological functions [25, 76, 184, 185]. Both NOXA, and
NOXB are analogous with mammalian gp9𝑠phox. Expression
of the NOXA/NOXB coding genes is closely regulated by
the regulatory subunit, NOXR (p6𝑠phox homolog), and the
small GTPase (Rac homolog) [185]. Fungal NOXC contains
a calcium-binding EF-hand motif and is analogous to the
mammalian NOX5 and the plant Rboh enzymes.

e functions of NOX complex in the regulation of
multicellular development and pathogenicity vary markedly
among fungal species that possess it [186]. Both NOXA and
NOXB are involved in the regulation of sclerotia formation
in both B. cinerea and Sc. sclerotiorum [141, 187]. In B.
cinerea, only NOXB is required for the formation of the
penetration structure, even though both NOX isoforms have
a role in pathogenicity. InM. grisea, NOXA, and NOXB play
a role in pathogenesis because both isoforms are required
for the formation of penetration peg under the appressorium
[188]. While NOXA is required for the development of
sexual fruiting body in fungi, only NOXB is required for
ascospore germination in N. crassa and Podospora anserina
[189–191].NOXA, but notNOXB, is required for establishing
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the mutualistic association between the fungal endophyte
Epichloë festucae and perennial ryegrass [76]. When inoc-
ulated into its grass host, E. festucae strain lacking NOXA
or NOXR becomes pathogenic, showing increased branching
and causing severe stunting and premature senescence of the
host [192, 193]. NOXA is coordinately regulated by the small
GTPase Rac andNOXR as evidenced by yeast two-hybrid and
pull-down analyses [194]. Furthermore, the yeast polarity
protein orthologs, Bem1 and Cdc24, have recently been
proven to be parts of fungal NADPH oxidase complex [195].

e tangerine pathotype of A. alternata has NOXA,
NOXB, andNOXR homologs.A. alternata NOXA (AaNOXA)
contains a NADPH-binding domain and six transmem-
brane domains and a ferredoxin synthase-type FAD-binding
domain, commonly found in the NOXA-like family. Genetic
analysis revealed that AaNOXA is responsible for producing
superoxide andH2O2.Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛mutants accumulated less ROS
within hyphae than the wild type, as judged by nitrob-
lue tetrazolium (NBT), 3,3�-diaminobenzidine (DAB), and
dichlorodihydro�uorescein diacetate (H2DCFDA) staining
for the presence of superoxide and H2O2. Moreover, deletion
of AaNOXA in A. alternata resulted in an elevated sensitivity
to H2O2, superoxide-generating compounds (menadione
and KO2), diamide, SDS, CHP, TIBA, and potent singlet
oxygen-generating compounds (hematoporphyrin and rose
Bengal) (Figure 2). ese de�ciencies are similar to the phe-
notypes previously seen forΔ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 orΔℎ𝑛𝑛𝑜𝑜𝑦mutant. Expres-
sion of the AaAP1 and AaHOG1 genes is likely regulated by
AaNOXA, as deletion of AaNOXA decreased the accumu-
lation of the AaAP1 and AaHOG1 gene transcripts. Rein-
troducing and expressing a wild-type AaNOXA in a Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
mutant restored ROS resistance and expression of both
AaAP1 and AaHOG1 genes. Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 mutants also displayed
increased sensitivity to NADPH oxidase inhibitors [dipheny-
lene iodonium (DPI) and apocynin], NO•-generating com-
pounds [sodium nitroprusside (SNP) and hydroxyl amine
HCl (HAD)], NO• synthase substrate (L-arginine) and NO•

synthase inhibitor [nitroarginine methyl ester (nitro-arg)].
Similar to Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 and Δℎ𝑛𝑛𝑜𝑜𝑦, Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 mutants, producing
normal ACT toxin, induced signi�cantly smaller and fewer
necrotic lesions than the wild type on detached Minneola
or calamondin leaves 3 days postinoculation, indicating that
NOXA is an important virulence determinant inA. alternata.

NOXA, NOXB, and NOXR are core components of the
NOX complex, responsible for the production of H2O2. All
three NOX components are required for vegetative growth,
conidiation, resistance to oxidative and nitrosative stress,
and full virulence. However, each isoform may indepen-
dently and cooperatively interact with other yet unidenti�ed
components under different environmental conditions and
during different developmental stages because the degree
of impairment varied considerably among individual Δnox
mutants. Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 mutant was more sensitive to H2O2, KO2,
and diamide than Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 or Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. In contrast, Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 or
Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 mutation strain was more sensitive to cumyl H2O2
and SDS than Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. e elevated sensitivity of Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
and Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 mutants to ROS was also accompanied by a
reduced expression of two redox-responsive genes AaAP1

andAaHOG1. Although expression ofAaAP1 andHOG1was
upregulated by the NOX system; both AaAP1 and HOG1
negatively regulate the expression of NoxB and NoxR. is
transcriptional feedback loop might allow fungus to avoid
excessive production of toxic ROS. In A. nidulans, NOXA
is regulated by an HOG1 homolog [189]. Expression of the
NOX complex coding genes has been shown to be regulated
by FUS3/KSS1 and SLT2 MAP kinases in N. crassa and
B. cinerea [141, 191]. Mammalian p47phox and p67phox are
phosphorylated by the p38 HOG1 MAP kinase.

In fungi, expression of NOXA and NOXB is regulated by
NOXR and Rac [141, 191, 194]. However,A. alternataNOXR
negatively regulated the expression of NOXA and had no
effects for the expression ofNOXB.Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛mutant was highly
resistant to calco�uor white, Congo red and dicarboximide
and phenylpyrrole fungicides compared to the wild type or
the mutant strain lacking NOXA and NOXR. NOXB seem-
ingly plays a negatively regulatory role in the biosynthesis
of chitin because Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, but not Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, had
higher chitin content than the wild type (S.L. Yang, personal
communication). As stated above, fungal strains disrupted
at any of the AaAP1, AaHSK1, and AaHOG1 genes were
all hypersensitive to CHP and TIBA. Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, and
Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 mutants also displayed increased sensitivity to these
two compounds, suggesting the existence of essential cross-
talks between different signaling pathways in the context of
multidrug resistance.

e NOX complex has been shown to be required for
pathogenicity/virulence in a number of fungal species [141,
167, 188, 196]. Pathogenicity assays revealed that Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
or Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 mutant is unable to produce necrotic lesions on
unwounded citrus leaves. Both mutants induced wild-type
lesions on citrus leaves that were wounded before inocula-
tion, indicating that Δ𝑛𝑛𝑛𝑛𝑛𝑛 mutants are primarily arrested in
the penetration stage.Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 andΔℎ𝑛𝑛𝑜𝑜𝑦mutants are blocked
in both penetration and colonization stages.

8. Nonribosomal Peptide Synthetase- (NPS-)
�ediated ��S �eto�i��ation

Deletion of an A. alternata gene (AaNPS6), encoding a
polypeptide analogous to fungal nonribosomal peptide syn-
thetases (NPSs) resulted in fungi that reduced accumulation
of host-selective toxin and melanin and displayed increased
sensitivity to H2O2, superoxide-generating compounds (KO2
and menadione), and iron depletion (L.-H. Chen, personal
communication). Δ𝑛𝑛𝑦𝑦𝑛𝑛6 failed to produce siderophore, a
low-molecular organic compound involved in acquiring iron
from the environment [197, 198]. In nearly all living cells,
iron required for numerous metabolic functions and electron
transfer processes plays a vital role for cell proliferation
and survival [199]. When starved for iron, microorganisms
secrete siderophores to solubilize and extract iron. All fungal
siderophores (rhodotorulic acid, fusarinines, coprogens, and
ferrichromes) that have been identi�ed contain hydroxam-
ates and are synthesized from an unconventional amino acid,
L-ornithine [197, 200, 201]. NPSs function to synthesize
linear or cyclic peptides without the aid of ribosomes, adding
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F 4: Schematic illustration of signaling pathways leading to ROS detoxi�cation in the tangerine pathotype of A. alternata. H2O2
produced by the membrane-bound NADPH oxidase (NOX) complex plays a central role in the activation of genes responsible for ROS
resistance. �pon exposure to ROS, YAP1 forms disul�de bonds between two conserved cysteine residues, undergoes conformation changes,
and is transported into the nucleus where YAP1 regulates the expression of numerous genes associated with environmental stress. e YAP1
and SKN7 redox-responsive regulators, the HOG1 mitogen-activated protein (MAP) kinase, the NPS6-mediated siderophore biosynthesis,
and the NOX complex are required for ROS detoxi�cation.NPS6 encoding a nonribosomal peptide synthetase is required for the biosynthesis
of siderophores, which can extract environmental iron. Iron is stored in vacuoles. Siderophore-mediated iron acquisition plays a critical role
if ROS resistance because iron is a major cofactor for the activities of catalase and SOD. HOG1, in cooperation with unknown regulators,
is also required for salt resistance. e two-component histidine kinase (HSK1), likely interacting with SKN7, is primarily used for cellular
resistance to sugars. Fungicide sensitivity involves HSK1, HOG1, and SKN7.

D- or L-amino acids, proteins, nonproteins, hydroxyl acids
and ornithine into nonribosomal peptides. Many of these
peptides have medicinal, pharmaceutical, or agricultural
values [202]. AM-toxin produced by the apple pathotype
of A. alternata, HC-toxin produced by race 1 of the maize
pathogen,Co. carbonum, and enniatin produced by Fusarium
spp. are all nonribosomal peptides [7, 203, 204].

Many Alternaria species produce and excrete dimethyl
coprogen siderophores [205–208]. Coprogen contains a
diketopiperazine ring (dimerium acid), in which two 𝑁𝑁5-
acyl-𝑁𝑁5-hydroxy-ornithine units are joined by a peptide
bond [198]. e third acyl ornithine unit is linked to
the ring via an ester bond. NPSs are involved in assem-
bling three 𝑁𝑁5-acyl-𝑁𝑁5-hydroxy-ornithine units, which are
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the immediate precursors of hydroxamate siderophores.
Fungi oen have multiple NPS genes; each encodes a
polypeptide with discrete domains—AMP-binding adenyla-
tion (A), thiolation (T) or peptidyl carrier protein (ACP),
and condensation (C) domains that are organized as a
module [209–212]. e adenylation domain is required for
recognition and activation of amino acid substrate. e thio-
lation domain is involved in 4�-phosphopantheine binding.
e condensation domain is involved in the formation of
a peptide bond and elongation and release of the newly
synthesized peptide.e number and order of modules in an
NPS affect the length and structure of nonribosomal peptide.
Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 and Δ𝑛𝑛𝑦𝑦𝑛𝑛𝑛 mutants of A. alternata displayed

varying levels of hypersensitivity to H2O2 and superoxide-
generating compounds. Δ𝑛𝑛𝑦𝑦𝑛𝑛𝑛 mutant is less sensitive to
ROS than Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦, displaying an increased sensitivity to the
test oxidants only when applied at higher concentrations:
H2O2 (≥0.2%), KO2 (≥20mM), and menadione (≥5mM).
However, elevated sensitivity to H2O2 seen in Δ𝑛𝑛𝑦𝑦𝑛𝑛𝑛 or
Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦 mutant was alleviated by adding ferric iron into
the medium, implicating an important role of iron and
siderophore-mediated iron acquisition in the ROS resistance.
We have observed that expression of the AaNPS6 gene was
signi�cantly downregulated in fungal mutant lacking YAP1.
Deletion of YAP1 inA. alternata also reduced the production
of siderophores. Moreover, the rescued strain expressing
a functional copy of YAP1 accumulated wild-type level of
siderophores and AaNPS6 gene transcript. Expression of
AaNPS6 and production of siderophores were also down-
regulated in fungal strain lacking HOG1 or NOXA (L.-H.
Chen and S.L. Yang, personal communication), con�rming
a close linkage between iron acquisition and ROS resistance.
e wild-type strain of A. alternata, when grown under iron-
depleted conditions, produced barely measurable catalase
and SOD activities (L.-H. Chen, personal communication).
Both antioxidant activities were detectable inA. alternata cul-
tured under iron-rich conditions. Hence, we concluded that
the increased sensitivity to oxidative stress and the reduced
pathogenicity seen in Δ𝑦𝑦𝑦𝑦𝑦𝑦𝑦, Δℎ𝑜𝑜𝑜𝑜𝑦, Δ𝑛𝑛𝑜𝑜𝑛𝑛𝑛𝑛, or Δ𝑛𝑛𝑦𝑦𝑛𝑛𝑛 were
seemingly due to the decreased ability of oxidative stress-
detoxifying enzymes.

Genetic analyses revealed that siderophore produced
by NPS6 is required for full virulence of the tangerine
pathotype of A. alternata. is is likely due to the inability of
Δ𝑛𝑛𝑦𝑦𝑛𝑛𝑛mutant to detoxify toxic ROS efficiently. Siderophores
are also required for fungal pathogenesis in A. brassici-
cola, As. fumigatus, Co. heterostrophus, Co. miyabeanus, F.
graminearum, and M. grisea [208, 210, 213, 214]. However,
siderophore is not required for pathogenesis of the basid-
iomycete maize pathogen, U. maydis [215]. It will be of great
interest to determine if NPS6 is also regulated by YAP1 and
HOG1 in other fungal species.

9. Conclusions

Based on the observed phenotypes derived from mutants
lacking YAP1, HOG1, SKN7, NOX, or NPS6, a regulatory
network is assembled to underscore the intricate interplays

among these signaling pathways in A. alternata (Figure 4).
e NOX complex appears to have an important role in the
production of ROS, which may act as secondary messages
to regulate various metabolic processes in A. alternata. e
NOX complex is required for transcriptional activation of
two important regulators, YAP1 and HOG1, which sub-
sequently regulate the expression of genes encoding the
nonribosomal peptide synthetase (NPS6) and perhaps other
enzymes involved in the biosynthesis of siderophores as
well. SKN7 physically interacts with YAP1, regulating the
genes involved in ROS detoxi�cation. Maintaining iron
homeostasis is critical for ROS detoxi�cation because of
the requirement of iron for antioxidant enzymatic activities.
Impairment of the NOX complex, the YAP1 regulator, the
HOG1 kinase, or the siderophore-mediated iron acquisition
in A. alternata impacts its ability to detoxify ROS and to
colonize host plant, implicating the importance of ROS
detoxi�cation in the successful pathogenesis of A. alternata.
In addition to detoxifying ROS, A. alternata utilizes special-
ized or synergistically regulated signaling pathways, involved
in HSK1, HOG1, and/or SKN7, in response to osmotic
stress, fungicides, and other toxic compounds. is cross-
interaction between different signaling pathways may have
eccentric advantages for integrating cellular responses to a
broader spectrum of environmental stimuli.
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