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Abstract

It is well known that even under identical task conditions, there is a tremendous amount of trial-to-trial variability in both
brain activity and behavioral output. Thus far the vast majority of event-related potential (ERP) studies investigating the
relationship between trial-to-trial fluctuations in brain activity and behavioral performance have only tested a monotonic
relationship between them. However, it was recently found that across-trial variability can correlate with behavioral
performance independent of trial-averaged activity. This finding predicts a U- or inverted-U- shaped relationship between
trial-to-trial brain activity and behavioral output, depending on whether larger brain variability is associated with better or
worse behavior, respectively. Using a visual stimulus detection task, we provide evidence from human electrocorticography
(ECoG) for an inverted-U brain-behavior relationship: When the raw fluctuation in broadband ECoG activity is closer to the
across-trial mean, hit rate is higher and reaction times faster. Importantly, we show that this relationship is present not only
in the post-stimulus task-evoked brain activity, but also in the pre-stimulus spontaneous brain activity, suggesting
anticipatory brain dynamics. Our findings are consistent with the presence of stochastic noise in the brain. They further
support attractor network theories, which postulate that the brain settles into a more confined state space under task
performance, and proximity to the targeted trajectory is associated with better performance.
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Introduction

An inverted-U relationship is well established between brain

function and many neuromodulatory influences, including arousal

[1], dopaminergic [2,3], cholinergic [4] and noradrenergic [5,6]

systems, with both insufficient and excessive levels of neuromodu-

lation causing impaired brain function and performance. Inter-

estingly, the possibility that a similar inverted-U function might

exist between trial-to-trial fluctuations of brain activity and

behavioral performance is seldom tested (but see [7–10]). The

vast majority of studies on the relationship between trial-to-trial

brain activity and behavior have only investigated a monotonic

relationship between them by, for example, comparing trial-

averaged brain activity between different categories of behavioral

performance (e.g., hits vs. misses) or computing the linear

correlation between trial-to-trial brain activity and performance

metrics [e.g., reaction times (RTs)]. These methods have been

successfully applied to reveal influence on cognition/behavior by

both pre-stimulus ongoing brain activity and post-stimulus brain

responses in functional magnetic resonance imaging (fMRI) [11–

15] and magnetoencephalography (MEG) [16,17] signals from

humans, as well as local field potentials (LFP) [18,19] and

neuronal spiking activity from primates [20–22].

Recently, it has been increasingly appreciated that across-trial

brain variability can be modulated independently from trial-

averaged brain activity [23–30]. Moreover, behaviorally relevant

information can be encoded within across-trial variability but not

trial-averaged activity [28,30]. This phenomenon predicts the

existence of a U- or inverted-U relationship between trial-to-trial

brain activity and behavioral performance. For example, if trials

with fast and slow reaction times are associated with a similar level

of trial-averaged activity but fast trials have smaller across-trial

variability, as observed previously [28,30], then brain activity

closer to the across-trial mean should be more likely to be

associated with fast RTs. Notably, several previous studies have

shown that pre-stimulus amplitude of brain oscillations in sensory

cortices has an inverted-U relationship with behavioral perfor-

mance: Intermediate amplitudes predict higher hit rate and faster

reaction times [7–9]. In light of the prevalent phase-amplitude

coupling in the human brain whereby lower-frequency phase

modulates higher-frequency power [31,32], we conjectured that

such an inverted-U relationship might also manifest in the raw

fluctuations of field potentials, which is dominated by low-

frequency activity [31].

Theoretically, the existence of both monotonic and inverted-U

relationships between trial-to-trial brain activity and behavioral

performance accord with the consideration that there are two

sources of brain variability: deterministic and stochastic. The

deterministic source of variability arises from spontaneous brain

activity related to overall brain functioning that varies from trial to

trial [33]. Theoretical work further suggests that small differences

in the initial state of a system can be deterministically amplified
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during responses to task [34]. The second source of variability is

stochastic noise: Ion channel behavior is fundamentally indeter-

minate; ion channel noise contributes to synaptic noise, thence to

membrane potential fluctuations and spike generation and

propagation [35–37]. As inescapable as stochastic noise is,

randomness at the behavioral level confers an evolutionary

advantage in a competitive ecological environment [35]. As

remarked by Alan Turing, ‘‘If a machine is expected to be

infallible, it cannot also be intelligent’’ (1947, Lecture to London

Mathematical Society).

Germane to the current thesis, the presence of stochastic noise

predicts an inverted-U relationship between trial-to-trial brain

activity and behavioral performance: Under a large amount of

noise, brain activity will be scattered across a wide range; under

low noise, activity will remain close to the center ‘‘targeted’’ value.

Even though the presence of stochastic noise is evolutionarily

advantageous and beneficial in contexts such as stochastic

resonance [38], gambling [35], and probabilistic decision making

[39], under a specific task condition it could still degrade

performance (e.g., musicians train for many years to attain motor

consistency and precision) [36]. Thus, the presence of stochastic

noise in the brain should impose an inverted-U relationship

between trial-to-trial brain activity and performance. Using

electrocorticography (ECoG) in patients undergoing invasive brain

monitoring for neurosurgical treatment, we found strong evidence

for such a phenomenon in the human brain.

Results

Five patients undergoing invasive brain monitoring for treat-

ment of epilepsy performed a visuomotor detection task (for details

see Materials and Methods). They fixated on a white cross in the

center of a black screen that occasionally changed to dark grey for

250 milliseconds at times unpredictable to the subject (inter-trial

intervals (ITI) ranged from 2 to 19.04 sec, Fig. 1A), and were

instructed to press a button as quickly as they detected the cue.

Each subject completed 6,8 blocks of visual detection task,

alternating between the use of left and right index finger for button

press. Overall, 149,200 trials were obtained in each subject under

contralateral or ipsilateral finger use (see Table 1). Their reaction

times (RTs) did not depend on ITI (Fig. 1B), suggesting a flat

hazard rate, i.e., subjects were unable to predict the upcoming

stimulus.

In total, 294 electrodes with good signal quality and no interictal

spike-wave discharges were recorded across the five subjects.

Demographic, clinical and data collection information in each

subject is included in Table 1, and the electrode locations are

shown in Fig. 1C. In order to focus on local brain activity

underneath each electrode, all ECoG data were transformed into a

Laplacian montage (see Materials and Methods). This resulted in

153 Laplacian electrodes in total. The Laplacian montage

approximates transcortical recording (i.e., with the recording

electrode on the cortical surface and the reference electrode in the

underlying white matter), under which surface negativity in

general indexes increased excitability, and surface positivity

decreased excitability [40,41].

Trial-to-Trial Variability Reduces after Stimulus Onset
Recent studies have reported that trial-to-trial variability

decreases after stimulus onset in neuronal spiking in primates

and rodents [23–25,28,29,42] as well as fMRI signals from

humans [30], suggesting that the brain settles into a more confined

state space under task stimulation. Moreover, variability reduction

can be decoupled from trial-averaged activity in both stimulus

modulation [23,25,30] and correlation with behavior [28,30],

predicting a U- or inverted-U relationship between trial-to-trial

brain activity and behavioral performance. To investigate whether

variability reduction might also be observed in ECoG recordings,

we first characterized the across-trial mean (similar to ERP) and

variability time courses for each electrode.

We first analyzed the contralateral data (i.e., the index finger

contralateral to the electrode grid was used for motor output).

Across 153 electrodes in five subjects, 76 electrodes showed net

negative deflections and 77 showed net positive deflections in the

trial-averaged activity (assessed by the integral in a 0,1500 ms

post-stimulus window). A majority of the electrodes (N = 104)

exhibited reduction of trial-to-trial variability in the post-stimulus

period (assessed by the integral in a 0,1500 ms post-stimulus

window). Fig. 2A shows the averaged ERP and trial-to-trial

variability time courses for 24 Laplacian electrodes from a

representative subject. Pooling across all 153 electrodes from five

subjects, we observed a dramatic reduction of across-trial

variability in the post-stimulus period that reached the minimum

at 646 ms and gradually recovered to baseline at around 2 sec

following the stimulus (Fig. 2B, left column). In single electrodes,

the reduction of variability was as much as 57.5%.

Strikingly, similar variability reduction was observed when the

ipsilateral hand was used for motor output (Fig. 2B, right column).

Across 153 electrodes, the magnitude of variability reduction was

slightly larger than when the contralateral hand was used (Fig. 2B).

This result is consistent with previous findings showing that the

ipsilateral hemisphere can exhibit variability reduction even

without a change in the trial-averaged activity [25,30] and that

the magnitude of variability reduction in the ipsilateral cortex can

exceed that in the contralateral cortex (see Fig. 6 in Ref [30]).

Relationship between the 1st Principal Component and
Hit Rate

To test the Inverted-U hypothesis in relation to hit rate (using

contralateral data), we first focused on a subject that had a

sufficient number of miss trials to be analyzed individually (Patient

#1, hit rate 55.7%, see Table 1). To reduce dimensionality, we

applied PCA [43,44] to data from all 36 electrodes, and extracted

the first principal component (PC) accounting for the largest

amount of variance. Trial-to-trial variability of this PC decreased

Author Summary

The human brain is notoriously ‘‘noisy’’. Even with identical
physical sensory inputs and task demands, brain responses
and behavioral output vary tremendously from trial to trial.
Such brain and behavioral variability and the relationship
between them have been the focus of intense neurosci-
ence research for decades. Traditionally, it is thought that
the relationship between trial-to-trial brain activity and
behavioral performance is monotonic: the highest or
lowest brain activity levels are associated with the best
behavioral performance. Using invasive recordings in
neurosurgical patients, we demonstrate an inverted-U
relationship between brain and behavioral variability.
Under such a relationship, moderate brain activity is
associated with the best performance, while both very low
and very high brain activity levels are predictive of
compromised performance. These results have significant
implications for our understanding of brain functioning.
They further support recent theoretical frameworks that
view the brain as an active nonlinear dynamical system
instead of a passive signal-processing device.

An Inverted-U Brain-Behavior Relationship
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in a sustained manner following stimulus onset (Fig. 3B, left),

despite a non-significant averaged ERP (Fig. 3A, left).

We computed the across-trial variability time courses for hit and

miss trials separately, and found significantly smaller variability in

hit than miss trials around and before the stimulus onset (Fig. 3B,

right). By contrast, the averaged ERP was indistinguishable

between hit and miss trials (Fig. 3A, right). Consistent with earlier

findings, these data suggest that behaviorally relevant information

can be encoded solely within the across-trial variability of brain

activity but not the across-trial mean [28,30]. Smaller variability in

hit than miss trials, without a difference in the trial-averaged

activity, is consistent with an inverted-U relationship between trial-

to-trial ECoG activity and hit rate.

To directly test the inverted-U relationship between ECoG

activity and hit rate, we binned all trials into quartiles according to

the activity of the first PC at stimulus onset, and calculated the hit

rate for each quartile separately. We found that the relationship

between hit rate and ECoG activity indeed followed an inverted-U

function, such that both very low and very high ECoG activity at

stimulus onset foreshadowed more misses (Fig. 3C, left). When the

ECoG activity was close to the across-trial mean, hit rate was as

much as 67.6%; whereas when it was most negative or most

positive, hit rate dropped to 51.4% and 43.2%, respectively. An

inverted-U relationship between trial-to-trial ECoG activity and

hit rate should also manifest as a negative monotonic relationship

between the rectified amplitude of ECoG activity and hit rate, as

activity closer to the mean is associated with smaller amplitude

(note that this relationship applies to broadband signals but not

narrow-band oscillations; see Fig. S1). We thus extracted the

instantaneous ECoG signal amplitude at stimulus onset via Hilbert

transform (throughout the article, ‘‘amplitude’’ refers to rectified

amplitude). By binning all trials into four groups according to

amplitude, we indeed uncovered a negative monotonic depen-

dence between hit rate and amplitude: Hit rate was 70.3% in the

lowest amplitude bin, and it dropped to 40.5% in the highest

amplitude bin (Fig. 3C, middle). Comparing hit with miss trials

directly, we found that ECoG signal amplitude at stimulus onset

was significantly smaller in hit than miss trials (Fig. 3C, right;

P = 0.007, Wilcoxon rank-sum test).

Across the remaining four subjects, there was a similar inverted-

U relationship between ECoG activity (the first PC extracted from

each subject’s data) at stimulus onset and hit rate (Fig. 3D, quartile

binning within each subject). Combining data across all five

subjects, the amplitude of the first PC at stimulus onset was

Figure 1. Task design, behavioral data and electrode coverage. (A) The distribution of inter-trial intervals (ITIs) in one task block containing
50 trials. This distribution is identical across blocks. (B) A scatter plot of reaction times (RT) against ITI across all hit trials in all subjects over
contralateral blocks. There was no dependence of RT on ITI (P.0.1, Spearman rank correlation). The red line indicates the best linear regression fit. (C)
Electrode locations in each subject overlaid on the pial surface reconstructed from the subject’s own anatomical MRI. All intracranial electrodes are
shown, including electrodes excluded due to signal quality issues or from the Laplacian montage derivation (those on the electrode strips or on the
edge of the grid). For Pt #3, the clinical CT scan was not acquired, thus electrode locations could not be determined in relation to the MRI and the
presurgical planning diagram is shown instead.
doi:10.1371/journal.pcbi.1003348.g001

An Inverted-U Brain-Behavior Relationship
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Table 1. Demographic, clinical and data collection information.

Pt# Age Gender Handed-ness Seizure focus No. of grid electrodes
No. of Laplacian
electrodes

1 45 F R L medial temporal 64 36

2 59 F L R inferior lateral parietal 62 32

3 58 F R L frontal 56 25

4 36 M L L medial temporal 48 24

5 19 M R R lateral temporal 64 36

Contra-lateral data

Pt# Total No. of trials No. of hit trials No. of miss trials Hit rate (%) Median RT (ms)

1 149 83 66 55.7 460

2 150 138 12 92.0 350

3 200 195 5 97.5 410

4 150 137 13 91.3 510

5 150 142 8 94.7 340

Ipsi-lateral data

Pt# Total No. of trials No. of hit trials No. of miss trials Hit rate (%) Median RT (ms)

1 150 99 51 66 415

2 150 143 7 95.3 360

3 200 192 8 96 418

4 150 129 21 86 510

5 150 145 5 96.7 365

doi:10.1371/journal.pcbi.1003348.t001

Figure 2. Reduction of trial-to-trial variability following stimulus onset. (A) Averaged ERPs (top) and trial-to-trial variability time courses
(bottom) for all 24 Laplacian electrodes from Pt #4 (contralateral data). The variability time course was computed as standard deviation (s.d.) across
trials, normalized to the mean of the pre-stimulus period (2500,0 ms) and expressed in %change unit. Thick black traces denote the average across
24 electrodes. (B) Top: Trial-to-trial variability time course averaged across all 153 Laplacian electrodes in five subjects. Dashed lines depict
mean6SEM. Bottom: Significance of the variability time course, assessed by a one-sample t-test across 153 electrodes against the null hypothesis of
no change from baseline. The left column is obtained using contralateral data, and the right column using ipsilateral data. Red dashed lines indicate
significance level of P = 0.001.
doi:10.1371/journal.pcbi.1003348.g002

An Inverted-U Brain-Behavior Relationship
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significantly smaller in hit compared to miss trials (Fig. 3E;

P = 0.008, Wilcoxon rank-sum test). These results suggest that

the first PC extracted from the ECoG data shows an

inverted-U relationship with hit rate, such that both very low

and very high activity levels at stimulus onset predict more

misses.

Lastly, we examined whether the inverted-U relationship

between ECoG activity and hit rate might also exist when the

ipsilateral hand was used for motor output. Again, PCA was

applied to each subject’s data to extract the first PC. Across five

subjects, the amplitude of the first PC did not significantly

differentiate between hit and miss trials, although there was a

trend effect (Fig. 3F, P = 0.062, Wilcoxon rank-sum test).

Analysis Combining across PCs
In order to generalize the above findings beyond the first PC,

we applied PCA to each subject’s data, sorted the PCs by the

amount of variance they explained in descending order, and

extracted the first 5 PCs in each subject. We sought to test whether

the population activity reflected across multiple PCs might also

exhibit an inverted-U relationship with behavior; we further

assessed the dependence of such a relationship on the number of

PCs included. To this end, we first computed the across-trial mean

time course for each PC. We then obtained the distance (i.e.,

absolute difference) between its activity in each trial and its across-

trial mean, and averaged this distance across the chosen number of

PCs to obtain a ‘‘summary’’ distance time course for each trial –

D(t) (for details see Distance-to-Mean Analysis in Materials

and Methods). The Inverted-U hypothesis suggests that in a given

trial, the farther the population activity is from the across-trial

mean (i.e., the larger the D(t)), the worse the behavioral

performance.

We first investigated the contralateral data. The top one, three

or five PCs from each subject were included in the analysis, which

accounted for 15.167.0% (mean6s.d. across subjects),

35.265.7% and 50.167.0% of total variance respectively. Pooling

data across all subjects, D(t) was smaller in hit trials than miss trials

around stimulus onset (t = 0 ms), regardless of the number of PCs

included (Fig. 4A). Hence, at stimulus onset, activity closer to the

across-trial mean predicted a higher hit rate. Interestingly,

increasing the number of PCs included in the analysis from 1 to

5 progressively decreased the strength of this relationship (Fig. 4A),

implying that the inverted-U relationship with hit rate was likely

localized to a subset of the electrodes, a topic that we shall return

to later.

Next, we computed the correlation between D(t) at each time

point and RT across all hit trials from all subjects. This analysis

revealed a positive correlation between RT and D(t) around the

time of behavioral responses (Fig. 4B), suggesting that in a given

trial, the closer the ECoG activity is to the across-trial mean, the

faster the reaction time. Contrary to the hit-vs.-miss analysis

(Fig. 4A), this effect was slightly stronger when more PCs were

included in the analysis (Fig. 4B), indicating that the inverted-U

relationship with RT was relatively distributed across electrodes.

To ensure that the correlation between D(t) and RT was driven by

trial-to-trial variability but not inter-subject differences, we plotted

D(t) against RT across all trials from all subjects, and confirmed

that the distributions for different subjects were largely overlapping

(see Fig. S2).

Results from similar analyses applied to ipsilateral data are

shown in Fig. 5. The top one, three or five PCs from each subject

accounted for 14.862.5% (mean6s.d. across subjects),

35.166.0% and 49.967.1% of total variance respectively.

Interestingly, the difference in D(t) between hit and miss trials

was more pronounced around behavioral responses in the

ipsilateral data (Fig. 5A), as opposed to being around the stimulus

onset in the contralateral data (Fig. 4A). In addition, the

correlation between D(t) and RT was less robust and more

sporadic in time in the ipsilateral data (Fig. 5B) as compared with

the contralateral data (Fig. 4B).

Figure 3. Inverted-U relationship between ECoG activity (the first PC) and hit rate. (A–C) Results from the first PC in Pt #1 (contralateral
data). (A) Left: Averaged ERP across all trials. Right: Averaged ERP for hit and miss trials separately. (B) Left: Across-trial variability time course; red
dots: P,0.005 (F-test, compared against pre-stimulus period). Right: Across-trial variability time course (normalized to the pre-stimulus mean
computed across all trials) for hit (N = 83) and miss (N = 66) trials separately; red dots: P,0.005 (F-test, hit vs. miss trials). (C) Left: Hit rate as a function
of raw ECoG activity at stimulus onset. Middle: Hit rate as a function of rectified ECoG signal amplitude at stimulus onset. Right: ECoG signal
amplitude at stimulus onset for hit vs. miss trials (P = 0.007, Wilcoxon rank-sum test). Red line and the edges of the box denote median, 25th and 75th

percentiles respectively. The whiskers extend to the range for data not considered outliers and the crosses indicate the outliers. (D) Hit rate as a
function of ECoG activity (from the first PC) at stimulus onset, averaged across Patients #2–5 (contralateral data). (E) ECoG signal amplitude (from the
first PC in each subject, contralateral data) at stimulus onset for hit vs. miss trials (P = 0.008, Wilcoxon rank-sum test). Data were pooled across all five
subjects. (F) Same as E, except using ipsilateral data across 5 subjects. Hit vs. miss: P = 0.062 (Wilcoxon rank-sum test).
doi:10.1371/journal.pcbi.1003348.g003

An Inverted-U Brain-Behavior Relationship
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Electrode-by-Electrode Analysis
The above results demonstrate the existence of an inverted-U

relationship between trial-to-trial brain activity and behavioral

performance at the principal-component level. An important

remaining question regards the spatial localizations of the

inverted-U relationship vis-à-vis the classical monotonic brain-

behavior relationship (e.g., [10,18]). To address this question, we

performed an electrode-by-electrode analysis on the contralateral

data. Given the above results (Fig. 4), for hit-vs.-miss analysis we

focused on ECoG activity at stimulus onset; for RT analysis we

focused on ECoG activity around the behavioral responses.

To identify a monotonic relationship between ECoG activity

and hit rate, we directly compared the ECoG signal value at

stimulus onset between hit and miss trials. To identify a U- or

Figure 4. PCA test of the Inverted-U hypothesis using contralateral data. (A) D(t) combined across the first one (top), three (middle) and five
(bottom) PCs in each subject, averaged for hit and miss trials separately (data from all subjects were included). Flanking dashed lines depict
mean6SEM. Red dots: P,0.005 for hit vs. miss trials, two-sample t-test. Vertical dashed line indicates stimulus onset. (B) Time courses of Pearson
correlation coefficient between D(t) and RT across all hit trials (including data from all subjects). D(t) was combined across the first one (top), three
(middle) and five (bottom) PCs in each subject. Red dots: P,0.005 for significant D(t)-RT correlation. Vertical dashed line indicates the time of median
RT across all subjects.
doi:10.1371/journal.pcbi.1003348.g004

Figure 5. PCA test of the Inverted-U hypothesis using ipsilateral data. (A and B) same as in Figure 4, except results were obtained using
ipsilateral data.
doi:10.1371/journal.pcbi.1003348.g005

An Inverted-U Brain-Behavior Relationship

PLOS Computational Biology | www.ploscompbiol.org 6 November 2013 | Volume 9 | Issue 11 | e1003348



inverted-U- (i.e., quadratic) relationship between ECoG activity

and hit rate, we compared the amplitude of the ECoG signal at

stimulus onset between hit and miss trials (as in Fig. 3E). Larger

amplitude in miss than hit trials indicates an inverted-U

relationship between trial-to-trial ECoG activity and hit rate (see

Fig. 3C). Across 153 electrodes in five subjects, 10 electrodes

showed a significant monotonic relationship, which was not

significant at the population level (population-level P = 0.09,

binomial statistics [30]), with exactly half of them having higher

activity in hit than miss trials. Twenty electrodes showed a

significant quadratic relationship to hit rate (population-level

P = 5.8e-5, binomial statistics), with 75% of them having larger

amplitude in miss than hit trials (i.e., an inverted-U relationship

between ECoG activity and hit rate). Three electrodes demon-

strated both a significant monotonic and a significant quadratic

relationship with hit rate. The spatial localizations of electrodes

showing monotonic vs. quadratic relationships and their overlaps

are shown in Fig. 6A.

To assess the relationship between ECoG activity and RT, for

each electrode we averaged the ECoG activity within a

340,510 ms post-stimulus window, as the median RT ranged

from 340 to 510 ms across subjects (see Table 1). We then

characterized both linear and quadratic relationships between the

ECoG activity and RT across trials. In total, 21 electrodes showed

a linear correlation between ECoG activity and RT (RT = bx+c,

where x is the ECoG signal value; population-level P = 1.9e-5,

binomial statistics), with 57% of them being a positive correlation.

Twenty-one electrodes showed a significant quadratic relationship

(RT = ax2+bx+c; population-level P = 1.9e-5, binomial statistics).

The coefficient of the quadratic term (a) is positive in 20 out of 21

(i.e., 95.2%) electrodes , suggesting that both very low and very

high ECoG activity levels were associated with slower RTs (i.e., an

inverted-U relationship between ECoG activity and response

speed). The spatial localizations of electrodes exhibiting linear vs.

quadratic relationship with RT and their overlaps (N = 8) are

shown in Fig. 6B.

Overall, electrodes demonstrating monotonic and quadratic

brain-behavior relationships tended to form separate but adjacent

clusters with limited overlap between them (Fig. 6). Detailed

characterizations of an example electrode showing a quadratic

relationship with RT are shown in Fig. 7. Its across-trial variability

time course showed sustained reduction following stimulus onset,

despite a transient change in the averaged ERP (Fig. 7A). We

separated all hit trials in this subject (N = 195) into two groups via

a median-split on RT, and found significantly smaller trial-to-trial

variability in this electrode for fast compared with slow trials at

around 400,500 ms (Fig. 7B). The difference in variability

between fast and slow trials was most pronounced at 447 ms

following stimulus onset (P = 1.1e-7, two-sample F-test). A scatter

plot of the ECoG activity at 447 ms against RT across all hit trials

is shown in Fig. 6C, which can be described by a U-shaped

function (P = 0.0001). Importantly, at slower RTs, the distribution

of the ECoG activity is wider, encompassing low, medium and

high values; by contrast, faster RTs are accompanied by a narrow

distribution of ECoG activity around medium values. This is

consistent with the idea that a higher level of stochastic noise,

which scatters the ECoG activity across a wider range, accompa-

nies slower reaction times.

Analysis Combining across Electrodes
So far we have demonstrated an inverted-U relationship

between task performance and ECoG activity at the principal-

component and single-electrode levels. These results suggest that

in a given trial, the closer the ECoG activity is to the across-trial

mean, the better the behavioral performance. Lastly, we sought to

test the Inverted-U hypothesis by combining information across all

electrodes. Because task processing requires coordinated actions

from distributed areas of the brain [45–47], we reasoned that if the

Figure 6. Electrode-by-electrode analysis (contralateral data). (A) Electrodes demonstrating a monotonic (red) or quadratic (orange)
relationship (P,0.05) between ECoG activity at stimulus onset and hit rate. Electrodes with both relationships are shown in white. (B) Electrodes
demonstrating a linear (red) or quadratic (orange) relationship (P,0.05) between ECoG activity around behavioral responses (averaged in a
340,510 ms post-stimulus window) and RT. Electrodes with both relationships are shown in white for Pts #1,2,4,5 (left) and yellow for Pt #3 (right).
Because CT data was not available for Pt #3, precise electrode localization could not be performed and presurgical planning diagram was used
instead. LH: left hemisphere; RH: right hemisphere.
doi:10.1371/journal.pcbi.1003348.g006

An Inverted-U Brain-Behavior Relationship
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system as a whole is farther away from its targeted trajectory

(approximated here roughly by the across-trial mean activity),

behavioral performance should be compromised.

To this end, we computed the distance-to-mean measure Di(t)

for each electrode instead of each PC, using the contralateral data.

Then, for both analyses on hit rate and RT, we obtained a

‘‘summary’’ distance time course D(t) for each trial by averaging

Di(t) across three electrode groups separately: i) all electrodes

showing a significant quadratic relationship with hit rate or RT

(see Fig. 6 A or B); ii) all other non-significant electrodes; and iii) all

electrodes. For the analysis on hit rate, we tested the difference of

D(t) between hit and miss trials; for the analysis on RT, we assessed

the linear correlation of D(t) and RT across all hit trials (as in

Figs. 4 & 5).

Combining information across all significant electrodes, we

found that D(t) differentiated between hit and miss trials

throughout the trial (Fig. 8A). By contrast, the difference between

hit and miss trials was much diminished when information was

combined across all non-significant electrodes (Fig. 8B) or all

electrodes (Fig. 8C). This is consistent with our earlier result

(Fig. 4A) implicating that the inverted-U relationship between

ECoG activity and hit rate was relatively localized to a subset of

electrodes.

From the analysis on RT, we found that combining information

across all significant electrodes yielded a significant correlation

between RT and D(t) mostly around behavioral responses (Fig. 8D,

red). Remarkably, combining information across non-significant

electrodes yielded stronger correlation throughout the trial

(Fig. 8D, blue), as did combining information across all electrodes

(Fig. 8D, black). The D(t)-RT correlation was present as early as

500 ms before the stimulus onset when information from all

electrodes were combined. This result confirms the earlier

impression (Fig. 4B) that the inverted-U relationship between

ECoG activity and response speed was relatively distributed across

electrodes.

Discussion

In summary, consistent with earlier studies [7–9], the present

results provide strong evidence for an inverted-U relationship

between trial-to-trial brain activity and behavioral performance

in the human brain, such that moderate activity predicts better

behavioral performance (more hits and shorter RTs), whereas

both very low and very high activity levels are associated with

degraded performance (more misses and longer RTs). While

these previous studies have focused on the amplitude of alpha

and mu oscillations in sensory cortices, the present study extends

the inverted-U relationship to the raw fluctuations of field

potentials (similar to single-trial ERPs) outside the sensory cortex.

Specifically, when the contralateral hand was used for motor

output, we found that the inverted-U relationship between trial-

to-trial ECoG activity and hit rate was most pronounced around

the stimulus onset (Fig. 4A) and was relatively localized to a

subset of electrodes (Fig. 8 A–C). By contrast, the inverted-U

relationship between ECoG activity and response speed was

strongest around behavioral responses (Fig. 4B) and was more

distributed across all electrodes (Fig. 8D). Interestingly, when the

ipsilateral hand was used for motor output instead, the inverted-

U relationship between ECoG activity and hit rate was most

pronounced around behavioral responses (Fig. 5A), and that

between ECoG activity and response speed was less robust and

more sporadic in time (Fig. 5B).

Figure 7. Inverted-U relationship between ECoG activity and response speed in an example electrode (from Pt #3, contralateral
data). (A) Averaged ERP (green) and across-trial variability (blue) time courses. Green and blue dots indicate P,0.005 compared to the pre-stimulus
period for ERP and variability respectively. (B) Across-trial variability time courses for fast and slow trials separately. Fast and slow trials were defined
by a median-split on RT across all hit trials (N = 195). Red circles: P,0.005 for variability between fast and slow trials (two-sample F-test for variance).
(C) Scatter plot of ECoG signal value at 447 ms against RT across all hit trials. Blue line indicates the best-fit quadratic function (P = 0.0001).
doi:10.1371/journal.pcbi.1003348.g007
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The Laplacian montage of ECoG approximates transcortical

recording, such that increased cortical excitability manifests as

more negative ECoG signals. Thus, the inverted-U relationship

between trial-to-trial ECoG activity and behavioral performance

suggests that both very low and very high cortical activity,

manifesting as most positive and most negative ECoG signals

respectively, are associated with compromised performance, while

intermediate activity levels are associated with better performance.

These findings support the notion that a higher level of stochastic

noise, which scatters the brain activity across a wider range, is

associated with degraded performance under a specific task

condition. Importantly, such an effect is not contradictory to a

potentially beneficial role of stochastic noise during development

or evolution [35,48]. For example, young adulthood is associated

with larger brain variability as compared with both childhood and

aging, and at the same time more accurate and consistent

behavioral responses [49–51]. We think that these observations are

complementary instead of contradictory to the present results, as

both a wider dynamic range at rest and the ability to quickly settle

into the desired state during task should be associated with better

function. Thus, across developmental stages, larger brain variabil-

ity is an index of a wider dynamic range and a greater repertoire of

potential brain states [48]. On the other hand, during task

processing, the ability of the brain to quickly settle into a particular

task state is highly desirable and predictive of better performance.

Indeed, post-stimulus brain responses appear to be more variable

in patients with autism [27] and schizophrenia [52].

An inverted-U brain-behavior relationship is consistent with the

present (Figs. 3B & 7B) and earlier [28,30] findings showing that

better behavioral performance can be accompanied by smaller

Figure 8. Analysis combining all electrodes (contralateral data). (A) Top: For each subject, D(t) was computed by combining across all
significant electrodes in the electrode-based analysis (orange and white electrodes in Fig. 5A), and then averaged for hit and miss trials separately.
Flanking dashed lines depict mean6SEM. Red dots: P,0.005 for hit vs. miss trials, two-sample t-test. Bottom: the P-value time course of the two-
sample t-test comparing D(t) between hit and miss trials. Dashed red line indicates significance level of P = 0.005. (B) As in (A), except that D(t) was
computed by combining across all remaining non-significant electrodes not included in (A). (C) As in (A), except that D(t) was computed by
combining across all electrodes. For (A–C), all subjects except Pt #3 were included, because Pt #3 did not have any electrode showing a significant
quadratic ECoG-hit rate relationship (see Fig. 5A). (D) Pearson correlation coefficient between D(t) and RT across all hit trials (pooled across all five
subjects). D(t) was combined across all significant electrodes from the electrode-based analysis (orange/white/yellow electrodes in Fig. 6B) (red line),
all remaining non-significant electrodes (blue line) and all (black line) electrodes. Dots at the bottom: P,0.005 for significant D(t)-RT correlation, with
D(t) computed using all significant (red), all non-significant (blue) or all (black) electrodes. Vertical dashed line indicates the time of median RT across
all subjects.
doi:10.1371/journal.pcbi.1003348.g008
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trial-to-trial variability, even without any correlation with trial-

averaged activity. An inverted-U relationship has also been

reported between trial-to-trial neuronal firing rate and movement

speed in the macaque premotor cortex [29]. In addition to the

different recording modalities and species, the present results

extend this previous finding in several directions by showing: i) the

inverted-U relationship is present in both post-stimulus brain

responses and pre-stimulus ongoing activity up to 500 ms before

the stimulus onset; ii) the inverted-U relationship had largely

separate spatial localizations from the monotonic brain-behavior

relationship (Fig. 6); and iii) the spatiotemporal patterns of the

inverted-U relationship differ between performance metrics (hit

rate vs. RT) and motor output (contralateral vs. ipsilateral) (Figs. 4,

5 & 8), suggesting functional specificity.

The difference in spatial localization for the inverted-U vs.

monotonic brain-behavior relationships is consistent with our

earlier observation that variability-based analysis results follow a

different spatial distribution from mean-based analysis results [30].

It is worth noting that the exact spatial localizations of the

quadratic and monotonic brain-behavior relationships in our

electrode-by-electrode analysis (Fig. 6) should not be over-

interpreted. This is partly because the spatial localizations revealed

by ECoG in neurosurgical patients are subject to limited electrode

coverage (especially under Laplacian montage) as well as

heterogeneous spatial sampling from subject to subject (Fig. 1C).

More importantly, as revealed in our analysis on RT (Fig. 8D),

there is a significant amount of behaviorally relevant information

distributed among non-significant electrodes. Our PCA analysis

also suggests that the inverted-U relationship with RT is

distributed amongst the top PCs (Fig. 4B). These results are

consistent with a recent fMRI study showing that with sufficient

signal-to-noise ratio, over 95% of the brain is involved in a simple

visual attention task [47]. Lastly, a limitation of the present study is

that the primary (visual) sensory regions were not sampled by the

ECoG electrodes (see Fig. 1C), hindering a direct comparison with

earlier studies on this topic [7–9]. Nonetheless, our results in

somatosensory/motor regions are consistent with earlier neuro-

physiological studies in the macaque [23,29].

The traditional framework in neuroscience surmises that brain

responses during task are the superposition of noise-like ongoing

activity and task-evoked activity. This framework predicts

variability increase after task onset [30] and a monotonic

relationship between trial-to-trial brain activity and behavioral

performance. Our findings of stimulus-induced variability reduc-

tion and an inverted-U brain-behavior relationship cannot be

accommodated within this traditional framework. Instead, our

results are readily embraced by attractor-network [53–55] and

liquid-state machine [56–58] theories. These theories predict that

as the network settles into a particular state or trajectory during

task processing, across-trial variability decreases [55,59]. The

faster the system converges onto this state, the more similar its

activity will be across trials, predicting a correlation between fast

RT and smaller across-trial variability (see Fig. 7B herein and Ref

[28–30]). Moreover, because the presence of stochastic noise

scatters brain activity across a wider range than the targeted state,

the closer the brain activity is to the targeted trajectory, the better

the behavioral performance, consistent with the inverted-U

relationship we observed. Notably, these ideas have close parallels

to the ‘‘optimal-subspace hypothesis’’ developed in the context of

motor preparation [60].

While the attractor-network framework provides potential

explanations for our observation of an inverted-U relationship

between post-stimulus brain activity and performance, what could

account for the presence of such a relationship at or before the

stimulus onset? One potential explanation for our results might be

provided by the sampling-based Bayesian framework [61]. This

idea proposes that the brain activity trajectory through the

multidimensional state space samples different potential states; the

distribution of the pre-stimulus samples constitutes the prior of its

internal model, and that of the post-stimulus samples constitutes

the posterior of the model. Accordingly, pre-stimulus activity

closer to the across-trial mean would represent cortical states that

are a priori more probable (assuming a unimodal distribution).

Speculatively, this ‘‘most probable’’ state might also be the most

‘‘ready’’ state, and thus be associated with better performance.

Another, not mutually exclusive, explanation lies in the framework

of stochastic resonance – a nonlinear effect whereby an optimal

level of noise facilitates the detection of a weak stimulus [62,63].

This framework has been invoked previously to explain the

inverted-U relationship between pre-stimulus amplitude of brain

oscillations and task performance [7]. Since low-frequency activity

phase modulates higher-frequency power [31,32], such a mech-

anism might explain our results pertaining to the raw fluctuations

of broadband signals as well. In addition, a theoretical model

utilizing input-output nonlinearity to explain an inverted-U

relationship between pre-stimulus oscillatory power and ERP has

been proposed [8]. Needless to say, the exact mechanisms of the

inverted-U brain-behavior relationship we uncovered in the pre-

stimulus period await future investigations. In particular, elucida-

tion of the interaction between higher-frequency brain oscillations

and lower-frequency raw signal fluctuations (such as the slow-

cortical potentials) [31,32,64,65] in the context of inverted-U

brain-behavior relationship might provide clues to the underlying

mechanism.

In conclusion, our results are in line with recent theoretical

frameworks suggesting that the brain is an active nonlinear

dynamical system whose activity trajectory embodies information

processing [48,56,57,66–69]. Interestingly, the inverted-U and

monotonic relationships between brain activity and behavioral

performance were largely segregated in their spatial localizations

(Fig. 6). While the presence of stochastic noise in the brain could

impose an inverted-U relationship between brain activity and

behavioral performance, it is tempting to speculate that the

monotonic relationship might have a larger contribution from the

deterministic source of brain variability. The underlying mecha-

nisms of these two dissociable types of brain-behavior relationships

should be an important topic for future experimental and

theoretical studies.

Materials and Methods

Ethics Statement
All patients gave informed consent, after full explanation of the

experiment, according to the procedures established by Washing-

ton University Institutional Review Board (Protocol: #06-1234,

PI: John Zempel).

Subjects
Five patients undergoing surgical treatment for intractable

epilepsy participated in the study. All patients had complex partial

seizures. To localize epileptogenic zones, patients underwent a

craniotomy for subdural placement of electrode grids and strips

followed by 1–2 weeks of continuous video and ECoG monitoring.

The placement of the electrodes and the duration of monitoring

were determined solely by clinical considerations. Exclusion

criteria were: (1) widespread interictal spike-and-wave discharges;

(2) age ,15 years old; (3) severely impaired cognitive capability; (4)

diffuse brain tissue abnormality, e.g., tuberous sclerosis, cerebral
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palsy; (5) limited electrode coverage. See Table 1 for demographic,

clinical and data collection information. Other analyses on data

from Patients #1–3, not relevant to the current topic, have been

published in a previous paper [31].

ECoG Data Acquisition
The electrode arrays (typically 868, 668 or 265) and strips

(typically 166 or 168) consisted of platinum electrodes of 4-mm

diameter (2.3 mm exposed) with a center-to-center distance of

10 mm between adjacent electrodes (AD-TECH Medical Instru-

ment Corporation, Racine WI). ECoG signals were split and sent

to both the clinical EEG system and a research EEG system

(SynAmp2 RT, Neuroscan, DC-coupled recording). All data in the

present study were from the research amplifier. Sampling

frequency was 1000 Hz. Noisy electrodes and electrodes overlying

pathologic tissue (including both the primary epileptogenic zone

and areas showing active interictal discharges) were eliminated

from all analyses.

Task
Subjects fixated on a white cross in the center of a black

screen; the cross occasionally changed to dark grey for 250 ms

at times unpredictable to the subject. Inter-trial intervals (ITIs)

ranged from 2 to 19.04 sec, randomly drawn from an

Exponential distribution (Fig. 1A). Subjects were instructed to

press a button as quickly as they detected the cue. Their force

and reaction times (RTs) were recorded. Each task block

contained 50 trials, lasting about 5 min. Subjects alternated

between the use of left and right index fingers in different

blocks. Each subject completed 6,8 blocks in total. Task blocks

using the finger contralateral and ipsilateral to the electrode grid

(coverage was confined to one hemisphere in each patient) were

analyzed separately. Unless otherwise noted, the reported results

were computed using the contralateral blocks. The total number

of trials completed by each subject ranged from 299 to 400 (see

Table 1).

Anatomical Magnetic Resonance Imaging (MRI)
Acquisition

MRI was conducted at the Washington University Neuroim-

aging Laboratories either before admission or after discharge from

the hospital. Patients were compensated for their time. Scanning

was performed on a Siemens 3-T Trio MRI scanner. Anatomical

images were acquired using a sagittal T1-weighted MP-RAGE

sequence (TR = 2200 ms, TE = 2.34 ms, flip angle = 7u, inversion

time = 1000 ms, 16161 mm3 voxels). The MRI of each patient

was co-registered to an atlas representative template, which was

produced by mutual coregistration of MP-RAGE images obtained

in 12 normal subjects and represented the Talairach coordinate

system [70].

Electrode Localization
Electrode localization followed procedures described previously

[40]. Plain radiographs and computed tomography (CT) scans

were acquired postoperatively with the subdural electrodes in

place to define the electrode positions in relation to the skull. The

CT images were co-registered to the subject’s own anatomical MR

image and then to the atlas-representative image. The Talairach

coordinates of the center of each electrode were then determined

using a custom-written automated procedure. Three-dimensional

renderings of the pial surface were generated from atlas-

transformed anatomical MR images using MRIcro (http://www.

mccauslandcenter.sc.edu/mricro/mricro/). Because the CT scan

was not acquired for Pt #3, precise electrode localization could

not be performed and the clinical presurgical planning diagram

was used instead.

ECoG Data Preprocessing
In order to focus on brain activity directly underneath each

electrode, we re-referenced the ECoG data to a Laplacian

montage (similar as in Ref [40]). Under the Laplacian montage,

the signal for each electrode is derived from the difference

between this electrode and four surrounding electrodes that are

nearest neighbors (1 cm apart from the center electrode). This

necessitates the presence of four surrounding electrodes, so only

electrodes on the grids (less the border rows) without an

excluded electrode in the vicinity can be used as the center

electrodes. The number of electrodes contributing to the

Laplacian montage derivation (including center and reference

electrodes) in each subject ranged from 48 to 64, and the final

number of Laplacian electrodes ranged from 24 to 36 in each

subject (see Table 1). Lastly, ECoG signals were filtered in

0.05,50 Hz range with a 3rd-order acausal Butterworth filter

offline, before any further analyses. The choice of the low-pass

filter at 50 Hz was to avoid power line noise at 60 Hz. High-

pass filter at 0.05 Hz was chosen in order to remove slow

artifacts including electrode drift, but to retain as much of

physiological signals in the low-frequency range as possible. It

was an empirically determined value based on our recording

set-up.

Event-Related Potential (ERP) Analysis
In all analyses, time 0 indicates stimulus onset (the onset of

crosshair dim). ERPs were obtained by averaging across trials in

an epoch of 2500,2000 ms. No baseline correction was

conducted in order to allow unbiased analyses of pre-stimulus

activity in relation to behavioral performance. The significance of

the ERP at single-electrode level was assessed by a paired t-test of

post-stimulus activity at every time point against the pre-stimulus

activity (averaged in a 2500,0 ms window) across trials.

Difference of the ERP between hit and miss trials was assessed

by a two-sample t-test at every time point.

Across-Trial Variability Analysis
Across-trial variability time courses were computed for each

electrode as the standard deviation (s.d.) of ECoG signal across

trials at each time point from 500 ms before to 2 sec after the

stimulus onset. The time courses were normalized to the pre-

stimulus mean (averaged in a 2500,0 ms time window) and

expressed in %change unit.

To assess significant post-stimulus increase or decrease of

across-trial variability for a single electrode or principal compo-

nent (PC), we used a two-sample F-test for variance. To increase

robustness, the pre-stimulus activity was averaged within a window

of 2100,0 ms, and the post-stimulus activity was averaged within

a 100-ms-long window centered at the time point of interest. The

F-test was conducted for pre-stimulus vs. post-stimulus activity

across all trials, and was carried out for each post-stimulus time

point from 50 to 1950 ms.

For hit vs. miss or fast vs. slow variability analyses, across-trial

variability time courses were computed for each subgroup of trials

(hit, miss, fast, slow). Difference in variability between two groups

of trials was assessed by a two-sample F-test for variance. To

increase robustness, the ECoG signal in each trial was averaged

within a 100-ms-long window centered on the time point of

interest. This test was carried out for every time point from 2450

to 1950 ms.
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Principal Component Analysis (PCA)
For each subject, we computed the covariance matrix across all

electrodes. The covariance matrix was computed on ECoG

activity in the 2500,2000 ms window for each trial and averaged

across all trials. Then PCA was applied to the averaged covariance

matrix using pcacov function in Matlab (the Mathworks, Inc.).

The coefficients from PCA were applied to the original ECoG

signals in each trial to extract the principal components (PCs).

Relationship between ECoG Activity and Hit Rate (PC-
Level Analysis)

To investigate the relationship between trial-to-trial pre-

stimulus ECoG activity and hit rate, we sorted all trials from

each subject into four quartiles according to the pre-stimulus

ECoG activity (see Table 1 for the total number of trials in each

subject), and calculated the hit rate for each quartile separately.

Approximately 37,50 trials were present in each bin. Two

metrics for defining the pre-stimulus activity were used: 1) the

averaged ECoG activity in a pre-stimulus window of 2200,0 ms;

and 2) the instantaneous ECoG activity value at stimulus onset.

The two metrics gave similar results, thus we only report results

using the instantaneous activity value here.

In addition, Hilbert transform was applied to ECoG activity in

each trial to obtain the instantaneous amplitude signal. The

amplitude at stimulus onset was analyzed in relation to hit rate.

Two analyses were carried out: (i) All trials in each subject were

sorted into quartiles according to the ECoG signal amplitude at

stimulus onset, and then hit rate was computed for each quartile;

(ii) The amplitude was directly compared between hit and miss

trials via a Wilcoxon rank-sum test.

Distance-to-Mean Analysis
To combine information across electrodes or principal compo-

nents, we first computed the mean across trials for each electrode/

PC:

meani tð Þ~ 1

M

XM

m~1

ECoGi,m tð Þ,

where i is the electrode/PC index (i = 1,2,… N), t ranges from

2500 ms to 2000 ms, and m is the trial number (m = 1,2,… M).

Then for each trial, we averaged the distance (i.e., absolute

difference) to the mean across electrodes/PCs:

Dm tð Þ~ 1

N

XN

i~1
Di,m tð Þ~ 1

N

XN

i~1
ECoGi,m tð Þ{meani tð Þj j:

Thus, we obtained a D(t) time course for each trial in each subject.

Next, we compared D(t) between hit and miss trials (combining

data across all subjects) using a two-sample t-test at each time point

t. A smaller D(t) in hit than miss trials suggests that activity closer

to the mean is associated with a higher hit rate. For each time

point t, we also calculated the linear correlation between D(t) and

RT across all hit trials, again combining data across all subjects. A

significant positive correlation indicates that the farther away the

system is from the across-trial mean, the larger the RT (i.e., an

inverted-U relationship between trial-to-trial ECoG activity and

response speed).

Electrode-Level Analysis
For each electrode, we investigated the dependence of hit rate

on trial-to-trial ECoG activity at stimulus onset. A monotonic

relationship was tested by a two-sample t-test on the ECoG activity

value at stimulus onset between hit and miss trials. A quadratic

relationship was tested by a Wilcoxon rank-sum test of the ECoG

signal amplitude at stimulus onset between hit and miss trials. A

smaller amplitude in hit as compared to miss trials means that hit

rate was higher when ECoG activity was closer to the mean.

To evaluate the dependence of RT on trial-to-trial ECoG

activity, we first averaged the ECoG activity in a post-stimulus

340,510 ms time window (because the median RT in each

subject ranged from 340 to 510 ms). Both linear (RT = bx+c) and

quadratic (RT = ax2+bx+c) relationships were assessed between

ECoG activity (x in the above equations) and RT across all hit

trials, using corr and regstats functions in Matlab respectively.

For a significant quadratic relationship, if the coefficient a is

positive, that means RT is shorter when ECoG activity was closer

to the across-trial mean (i.e., an inverted-U relationship between

ECoG activity and response speed).

Correction for Multiple Comparisons in the Time Domain
Several of our analyses relied on statistical tests on every time

sample (Figs. 3A–B, 4, 5, 7A–B & 8). Thus, it is important to

control for false positive rate due to the multiple comparisons

carried out. Because adjacent time points in broadband ECoG

activity are highly correlated [31], statistical tests on different time

points are not independent. To account for temporal autocorre-

lation in the ECoG signal and derive the true degree of freedom in

a 2.5-sec epoch, we employed Bartlett’s theory [71]. The Bartlett

correction factor (BCF) was calculated for every electrode as the

integral of the squared lagged-autocorrelation function [72,73].

The median of BCF across 153 electrodes for contralateral and

ipsilateral data was 307.4 and 266.3, respectively. Since the task

epoch contained 2501 time points, the upper limit for the number

of independent tests was 2501/266.3 = 9.4. Hence, under

Bonferroni correction, a P-value of 0.005 for the uncorrected test

would fall in the range of P,0.05 after correction for multiple

comparisons. We therefore thresholded all our results at a

significance level of P,0.005 (uncorrected).

Supporting Information

Figure S1 Examples of Hilbert transform applied to
broadband and narrowband signals to extract ampli-
tude. Related to Fig. 3 C–F. (A) Data from the first principal

component (PC) in Patient #1 using randomly chosen trials. Top:

The blue trace is the raw ECoG signal filtered in the 0.05,50 Hz

range (same band-pass filter as used in all data analyses). The red

trace is the amplitude time series extracted by Hilbert transform.

Notice that the time points in the raw signal that are close to 0 are

associated with a smaller amplitude. Thus, amplitude extracted

from the broadband data can supplement our time-domain

analyses by converting an inverted-U relationship for raw ECoG

activity (see Fig. 3C, left) to a negative monotonic relationship for

amplitude (see Fig. 3C, middle), which is more amenable to

statistical testing (see Fig. 3C, right). Bottom: Amplitude time

series (red) extracted by Hilbert transform applied to the raw

filtered time series in the 7,13 Hz range (blue). Notice that for

narrowband data, time points close to 0 are not associated with

smaller amplitude. (B) Simulated fractional Brownian motion

(fBm) [74,75] with a power-law exponent of 1.7 (i.e., the power

spectrum conforms to P(f )!1=f b), where b= 1.7). This choice of

b is close to the power-law exponent of low-frequency ECoG

activity [31]. Simulated fBm was filtered in the range 0.05,50 Hz

(top) and 9,11 Hz (bottom) and the instantaneous amplitude was

extracted via Hilbert transform. A narrower bandpass filter was
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used for the simulated fBm (9,11 Hz) than for the ECoG data

(7,13 Hz) because the ECoG signal contained an alpha

oscillation at ,10 Hz, which was not present in the simulated

fBm.

(TIF)

Figure S2 Correlation between RTs and D(t) across
subjects. Related to Fig. 4B (top). The first PC was extracted

from each subject’s data (using contralateral hand). Its distance-to-

mean D(t) time course was computed for each trial and averaged

within a post-stimulus 340,510 ms window around the behav-

ioral response, then plotted against RT across all hit trials in all

subjects. Different colors indicate different subjects. The Pearson

correlation coefficient and associated P-value computed across all

subjects are indicated in the graph.

(TIF)

Table S1 Talairach coordinates (mm) of electrodes
showing a significant linear or quadratic relationship

with hit rate (left column) or RT (right column), as well
as electrodes showing both relationships with hit rate or
RT. Data from Patients #1, 2, 4 & 5 are included (see Fig. 6).

Patient #3 is not included because the clinical CT scan was not

obtained, thus the electrode locations in relation to MRI could not

be determined.

(DOCX)
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