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Stress-inducible phosphoprotein 1 (STI1), a cochaperone
for Hsp90, has been shown to regulate multiple pathways
in astrocytes, but its contributions to cellular stress re-
sponses are not fully understood. We show that in re-
sponse to irradiation-mediated DNA damage stress STI1
accumulates in the nucleus of astrocytes. Also, STI1 hap-
loinsufficiency decreases astrocyte survival after irradia-
tion. Using yeast two-hybrid screenings we identified sev-
eral nuclear proteins as STI1 interactors. Overexpression
of one of these interactors, PIAS1, seems to be specifi-
cally involved in STI1 nuclear retention and in directing
STI1 and Hsp90 to specific sub-nuclear regions. PIAS1
and STI1 co-immunoprecipitate and PIAS1 can function
as an E3 SUMO ligase for STI. Using mass spectrometry
we identified five SUMOylation sites in STI1. A STI1 mu-
tant lacking these five sites is not SUMOylated, but still
accumulates in the nucleus in response to increased ex-

pression of PIAS1, suggesting the possibility that a direct
interaction with PIAS1 could be responsible for STI1 nu-
clear retention. To test this possibility, we mapped the
interaction sites between PIAS1 and STI1 using yeast-two
hybrid assays and surface plasmon resonance and found
that a large domain in the N-terminal region of STI1 inter-
acts with high affinity with amino acids 450–480 of PIAS1.
Knockdown of PIAS1 in astrocytes impairs the accumu-
lation of nuclear STI1 in response to irradiation. Moreover,
a PIAS1 mutant lacking the STI1 binding site is unable to
increase STI1 nuclear retention. Interestingly, in human
glioblastoma multiforme PIAS1 expression is increased
and we found a significant correlation between increased
PIAS1 expression and STI1 nuclear localization. These
experiments provide evidence that direct interaction be-
tween STI1 and PIAS1 is involved in the accumulation of
nuclear STI1. This retention mechanism could facilitate
nuclear chaperone activity. Molecular & Cellular Pro-
teomics 12: 10.1074/mcp.M113.031005, 3253–3270, 2013.

Stress-inducible phosphoprotein I (STI1)1 is a conserved
cochaperone protein that assists Hsp90 in managing client
proteins, by mediating the transfer of proteins between Hsp70
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and Hsp90 (1–3). STI1 contains several tetratricopeptide-re-
peat domains (TRP) that can serve as interaction modules
with Hsp90 and Hsp70 (4). STI1 helps to drive the sequential
steps involved in the Hsp90 chaperone machinery (5) and
regulates the ATPase activity of Hsp90 (6, 7). STI1 is also
secreted by distinct cells (8–12), using a noncanonical mech-
anism involving extracellular vesicles (11). Secreted STI1 can
activate multiple signaling pathways in distinct cell types (8–
10, 13–18).

Elimination of STI1 in yeast sensitizes cells to Hsp90 inhib-
itors, but it is not by itself lethal (19). STI1 can also be elimi-
nated in C. elegans, although it results in decreased life span
(20). In contrast, STI1 mutant mice do not survive E10.5 and
present several morphological defects, owing to decreased
levels of several Hsp90-client proteins (21). Mouse embryonic
fibroblasts obtained from STI1-deficient embryos also fail to
thrive and present increased levels of the DNA damage
marker �-H2AX, suggestive of increased cellular stress (21).
Hence, in mammals STI1 seems to play additional roles in
cellular survival that are not yet fully understood.

STI1 is abundantly expressed in the cytoplasm of cells, but
can also be found in the Golgi (22), in vesicles and in multi-
vesicular bodies (11). Moreover, this cochaperone has been
shown to shuttle between the cytoplasm and the nucleus in
cell lines (23). Cellular stress, arrest in G1/S phase of the cell
cycle and phosphorylation are factors that seem to regulate
STI1 nuclear localization (23, 24). Presumably nuclear STI1
can regulate chaperone activity, but whether it can interact
with nuclear proteins is unknown.

Previous experiments using cell lines have shown that
knockdown of STI1 increases susceptibility of cells to irradi-
ation (25). Whether changes in STI1 levels in primary differ-
entiated cells, such as astrocytes, may affect their response
to irradiation stress is unknown. This is of interest, as astro-
cytes, which can give rise to distinct tumor cells, are highly
radioresistant (26). Indeed, astrocytes have a noncanonical
DNA damage response (DDR) to irradiation (26). Here we
show that STI1 undergoes nuclear translocation in astrocytes
after �-radiation-induced DNA damage. Moreover, astrocytes
haploinsufficient for STI1 are more susceptible to cell death
induced by irradiation. To understand potential mechanisms
involved with STI1 nuclear retention, we have performed
yeast-two hybrid screenings to identify STI1 nuclear partners.
We identified protein inhibitor of activated STAT (PIAS1) as a
direct interactor of STI1 and provide evidence that it acts as a
small ubiquitin-like modifier (SUMO) E3 ligase for STI1. We
show this interaction is involved with STI1 nuclear retention
after irradiation. Interestingly, tissue microarray analysis dem-
onstrated that higher PIAS1 levels are found in glioblastoma
multiforme (GBM) when compared with non-neoplastic tissue.
Furthermore, we uncovered a positive relationship between
increased PIAS1 expression in GBMs and augmented STI1
nuclear localization. Our results reveal a novel mechanism by
which increased expression of PIAS1, as observed in GBM,

can increase the retention of nuclear STI1, a critical regulator
of the chaperone machinery.

EXPERIMENTAL PROCEDURES

Plasmids—YFP-Ubc9 and FLAG-Pc2 were kindly provided by Dr.
David Wotton (Professor of Biochemistry and Molecular Genetics of
University of Virginia, Charlottesville, US). The plasmids Myc-PIAS4
and Myc-PIAS1 were kindly provided by Dr. Lienhard Schmitz (Insti-
tute of Biochemistry, Medical Faculty Friedrichstrasse, Justus-Liebig
University, Giessen, Germany). GFP-STI1 and YFP-STI1 were gener-
ated by cloning STI1 in the SalI and KpnI restriction sites, and XhoI
and KpnI restriction sites of pEGFP-C1 and pEYFP-N1, respectively
(Clontech, Mountain View, CA). PML-YFP was kindly provided by
Marc Tini (Department of Physiology and Pharmacology, Schulich
School of Medicine and Dentistry, University of Western Ontario).
HA-STI1 was constructed by cloning STI1 in pCMVHA (Clontech)
using the restriction enzymes SalI and SfiI (BioLabs). Mutants of STI1
were generated in the pCMVHA construct. A mouse N-terminal (bp
1–870) portion of STI1, or smaller fragments within this region, were
amplified and ligated in frame with the yeast Gal4 DNA-binding do-
main (Gal4DBD) in the vector pGBKT7 (BD Biosciences, pGBKT7-
N-STI1). Full-length and truncated PIAS1 sequences were cloned into
pACT2 (Clontech) in frame with the yeast Gal4 transcriptional activa-
tion domain (Gal4AD). Site-directed mutagensis of PIAS1 was per-
formed by overlap extension PCR.

Mouse Line Generation—Genetically modified mice were gener-
ated using standard homologous recombination techniques, using
C57BL/6j ES cells. Mice were generated by Ozgene (Australia). Chi-
meric mice were bred to C57BL/6j mice and germline transmission of
the mutant STI1 allele was identified by Southern blot (not shown). F1
mice were crossed to constitutively expressing Cre mice to remove
loxP flanked regions. Cre recombined mice were then crossed to
C57BL/6j mice and progeny bearing the recombined STI1 allele, but
lacking the Cre transgene, were identified by Southern analysis (not
shown). These mice were then used to expand the colony. STI1�/�

mice were then intercrossed to generate STI1�/� mice. These mice
presented early embryonic lethality (E10.5) and a range of develop-
mental defects (21). We have attempted to generate mice with a
conditional STI1 floxed allele, however we found that after removal of
the Neo-cassete this particular floxed allele was null and also caused
embryonic lethality (results not shown). Hence, astrocytes could be
isolated only from STI1�/� mice. Haploinsufficient astrocytes have no
difference in their cell cycle and proliferative properties compared
with wild-type astrocytes (21).

Primary Culture of Astrocytes—Animals were maintained and han-
dled in the mouse vivarium at University of Western Ontario Animal
Care and Veterinarian Service (ACVS). Procedures were conducted in
accordance with the animal care guidelines of the CCAC. This study
was approved by the AUS committee at the University of Western
Ontario (Protocol # 2008–127). Nineteen day time-pregnant mice
(C57BL6/j) were euthanized and embryos were quickly removed and
decapitated to isolate cortical astrocytes (10). Cortical hemispheres
were dissected and separated from the striatum. Cortices were dis-
sociated in 5 ml Dulbecco’s modified Eagle’s medium supplemented
with 10% (v/v) fetal bovine serum and 1% (v/v) penicillin/streptomycin
by pipetting up and down several times with a serological pipette and
plated with additional 5 ml of medium in a 100 mm Petri dish. Cultures
were maintained in incubator at 37 °C, 5% CO2. Astrocytes were
used after 10–11 days in vitro.

Cell Culture, Transfections and Co-Immunoprecipitation—CF-10
cells were cultured and transfected as previously described (13).
HEK293 cells were grown and transfected as described (14). Fourth-
eight hours after transfection, cells were suspended in 300 �l of lysis
buffer containing 50 mM Tris-HCl,150 mM NaCl pH 7.5, with 0.5% or
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1% Triton X-100, 20 mM N-ethylmaleimide (NEM) and Protease In-
hibitor Mixture (Sigma). A total of 800–900 �g of protein extract were
incubated with 50 �l of anti-HA agarose-conjugated beads (Sigma);
subsequent steps followed the manufacturer’s protocols. Cell lines
were usually transfected with 80% efficiency. Astrocytes were trans-
fected with 30–40% efficiency.

Western-Blot—Cell extracts were prepared according to the meth-
odologies described above. Protocols for the Western blots were
previously described (14, 27). The antibodies used were: anti-FLAG
(Sigma, 1:1000); anti-Ubc9 (Invitrogen, Carlsbad, CA; 1:1000); anti-
MYC (1:1000), and anti-HA (1:1000) from Abcam (Cambridge, MA);
anti-PIAS1 (Santa Cruz, Santa Cruz, CA; 1:500, or Abcam, 1:1000);
anti-PIAS4 (Santa Cruz, 1:500); anti-STI1 (1:5000) (28). All blots were
quantified using the imaging system FluorChem® Xplor (Alpha Inno-
tech) and Image J software.

Immunofluorescence—For detection of endogenous or overex-
pressed proteins, cotransfected CF10 cells or astrocytes were fixed in
4% paraformaldehyde (Polyscience, Warrington, PA) for 20 min at
room temperature and immunostained as described (29). Primary
antibody used were Anti-Myc (Abcam, 1:100), for detection of PIAS1
or PIAS4-Myc; anti-Flag (Sigma, 1:100), for detection of Pc2; anti-
Histone H2A.X S139 (Cell Signaling, Danvers, MA; 1:100), for detec-
tion of foci formation; anti-STI1 (1:200) and anti-Hsp90 (Abcam, 1:50),
for detection of endogenous STI1 and Hsp90 respectively.

Fluorescence Imaging—Confocal microscopy was performed us-
ing a Bio-Rad MRC 1024 laser scanning confocal system running the
Lasersharp 3.0 software coupled to a Zeiss microscope (Axiovert 100)
with a 100�/1.4 or 63�/1.3 oil-immersion lens (Zeiss); a LSM 510
Meta laser-scanning confocal system coupled to a Zeiss microscope
or a Leica SP5 laser-scanning confocal microscope using a 63�/1.2
water-immersion or a 63x/1.4 oil-immersion lens (Leica). Image anal-
ysis and processing were performed with Lasersharp (Bio-Rad), Con-
focal Assistant, Adobe Photoshop, Metamorph, Leica Application
Suite Advanced Fluorescent Lite, and ImageJ (version 1.24) software.

Irradiation and Nuclear STI1 and Foci Counting—Cells were plated,
transfected with constructs of interest and after 48 h the dishes were
placed in a Faxitron RX-650 to receive a dose rate of 2 Gy/min. Cells
were lysed or fixed for different periods of time after irradiation. Ten
random fields of each dish were imaged and then analyzed by number
of cells, number of cells with nuclear STI1 (defined as homogenous
labeling in the cells, compared with nonirradiated cells that present no
staining in the nucleus for STI1) and total number of foci. The results
were then normalized by the total number of cells, which was �200
for each experiment.

Live/Dead Assay—STI1�/� and STI1�/� astrocytes were plated in
glass-bottom culture dishes (MatTek, Ashland, MA) irradiated and
used 48 h later. Subsequent steps were performed according to the
Live/Dead Assay Kit (Invitrogen). Ten random fields were imaged per
dish and live or dead cells were then counted with the cell counting
tool from Image J software.

LDH Release Assay—STI1�/� and STI1�/� astrocytes were
counted and 2 � 105 cells were plated on 35-mm Petri dishes. Dishes
were irradiated for 10 min at 2 Gy and 48 h later 50% of their medium
were collected and cleared from debris by centrifuging. Subsequent
steps were done following the manufacturer’s protocols (LDH assay
Sigma kit #MAK066–1KT).

Yeast Two-Hybrid Screening—Yeast strain AH109 was trans-
formed with pGBKT7 (Empty vector) or pGBKT7- N-STI1 and trans-
formants were selected on S.D. (synthetic dropout) plates, in which
the media lacks Trp. These selected yeast cells were transformed
with a mouse brain cDNA library (title 4.2 � 107 cfu/ml) fused with
Gal4ad in the vector pACT2 (Leu) (Clontech). 1.0 � 106 independent
clones were screened and yeast cells were selected for growth on
Ade/His/Leu/Trp - deficient medium and tested for lacZ expression

according to instructions provided by the manufacturer (Clontech).
The same STI1 construct was used for another screening using the
yeast mating protocol with a BD MatchmakerTM pretransformed hu-
man brain cDNA library (title 1.3 � 108 cfu/ml) fused with Gal4ad in
the vector pACT2. Procedures were carried out according to manu-
facturer’s protocols (Clontech). The Matting efficiency was 9.4% and
3.9 � 107 clones were screened. Attempts to express a C-terminal
STI1 construct is yeast did not work, so we restricted our analysis to
the N terminus.

Yeast two-hybrid assays for mapping the interaction domains of
PIAS1 and STI1 were carried out using diploid yeast cotransformants
produced by mating yeast strains Y187 and Y2HGold (Clontech)
transformed with pACT2- and pGBKT7-based plasmids, respectively.

Surface Plasmon Resonance—Surface plasmon resonance was
studied using Biacore X system (GE Healthcare, Pittsburgh, PA)
equipped with a CM5 chip. Recombinant STI1 and PIAS1 peptides
were produced using pE-SUMOstar Amp Kit (LifeSensors, Malvern,
PA) and purified to �95% purity estimated by SDS-PAGE. STI1 was
covalently bound to the chip using standard amine-coupling NHS/
EDC procedure (30) to the level of �8000 response units (RU). Before
injections the chip was equilibrated in the running buffer (25 mM

HEPES, 150 mM NaCl, pH 8.0). Different concentrations of PIAS1
peptides in the running buffer were injected at 5 �l/min rate for 6 min.
After that 2-min “off” reactions were recorded followed by washing
with running buffer. Between injections the chip was additionally
washed at 100 �l/min with 1-min injections of 10 mM HCl. The
background signal was obtained by injecting the same peptides
through a control flow cell with no bound STI1. Binding curves were
analyzed with Biacore software and GraphPad Prism 5 (GraphPad
Software, San Diego, CA). “On” curves were fitted with a one-site
interaction model. Off curves were fitted with an exponential decay
model.

In Vitro SUMOylation—Reactions were prepared with 1 �g of
SUMO-activating enzyme 1 (Aos1/Uba2) (human recombinant), 4 �g
of untagged ubiquitin conjugating enzyme UBC9 (SUMO E2) (human,
recombinant), 4 �g of His6-tagged SUMO proteins 1, 2, or 3, (human
recombinant) in SUMOylation Buffer plus 0.01 M Mg-ATP. All reagents
were obtained from a SUMOylation kit (BIOMOL International,
Farminfdale, NY). Either 1 �g of His tagged STI1 (mouse recombinant)
or 4 �g of GST-tagged RanGAP1 (positive control, human recombi-
nant) were tested according to the kit manufacturer’s protocols.

Identification of SUMOylation Sites by Mass Spectrometry—For in
vitro STI1 SUMOylation, 10 �g of His tagged STI1 (mouse), 3 �g of
SUMO-activating enzyme 1 (Aos1/Uba2) (human recombinant), 25 �g
of untagged Ubiquitin Conjugating Enzyme UBC9 (SUMO E2) (hu-
man), 10 �g of His6-tagged SUMO3 mutant protein (human) were
added to SUMOylation Buffer containing 0.6 M Mg-ATP. This mixture
was incubated at 37 °C under agitation for 1.5 h. 8 M urea was then
added to the final concentration of 4 M. Proteins were reduced with 5
mM tris-(2-carboxyethyl)-phosphine (TCEP, Pierce) for 20 min at 37 °C
and then alkylated with 50 mM chloroacetamide (Sigma-Aldrich) for 20
min at 37 °C. Excess chloroacetamide was neutralized by addition of
50 mM dithiothreitol. The solution was diluted to 1 M urea with 50 mM

ammonium bicarbonate and digested overnight with modified trypsin
(1:50, enzyme:substrate ratio) at 37 °C with high agitation. The digest
was acidified with trifluoroacetic acid (TFA), desalted using an Oasis
HLB cartridge (Waters, Milford, MA) and dried in a speed vacuum
concentrator.

LC-MS/MS analyses were performed on a nano-LC 2D pump
(Eksigent) coupled to a LTQ-Orbitrap Velos mass spectrometer via a
nanoelectrospray ion source (Thermo Fisher Scientific). Peptides
were loaded on an Optiguard SCX trap column (5 �m particle, 300Å,
0.5 ID � 23 mm, Optimize Technologies) and eluted on a 360 �m ID �
4 mm, C18 trap column before separation on a custom-made 150 �m
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ID � 10 cm nano-LC column (Jupiter C18, 3 �m, 300 Å, Phenomenex).
Tryptic digests were loaded on the SCX trap and sequentially eluted
using salt plugs of 0, 250, 500, 750 mM, 1, and 2 M ammonium
acetate, pH 3.5. Peptides were separated on the analytical column
using a linear gradient of 5–40% acetonitrile (0.2% formic acid) in 53
min with a flow rate of 600 nL/min. The mass spectrometer was
operated in data dependent mode to automatically switch between
survey MS and MS/MS acquisitions. The conventional MS spectra
(survey scan) were acquired in the Orbitrap at a resolution of 60,000
for m/z 400 after accumulation of 106 ions in the linear ion trap. Mass
calibration used a lock mass from ambient air [protonated
(Si(CH3)2O))6; m/z 445.120029], and provided mass accuracy within 5
ppm for precursor and fragment ion mass measurements. MS/MS
spectra were acquired in HCD activation mode using an isolation
window of 2 Da. Precursor ions were accumulated to a target value of
30,000 with a maximum injection time of 100 ms and fragment ions
were transferred to the Orbitrap analyzer operating at a resolution of
15,000 at m/z 400. The dynamic exclusion of previously acquired
precursor ions was enabled (repeat count 1, repeat duration: 30 s;
exclusion duration 45 s).

MS data were acquired using the Xcalibur software (version 2.1
build1139). Peak lists were generated using Mascot distiller (version
2.3.2.0, Matrix science) and MS/MS spectra were searched against
the IPI human database containing 75429 forward sequences (version
3.54, released Jan 2009) using Mascot (version 2.3.2, Matrix Science)
with a mass tolerance of 10 ppm for precursor ions and 0.05 Da for
fragments. The number of allowed missed cleavage sites for trypsin
was set to 3 and oxidation (M), deamidation (NQ), carbamidomethyl-
ation (C) and SUMOylation (K) (GGTQN: SUMO3) were selected as
variable modifications. A software application was developed to
search mascot generic files (mgf) for specific SUMO3 fragment ions
(e.g. m/z 132.0768, 226.0822, 243.1088, 344.1565, 401.1779; and
neutral losses of SUMO3 remnant) to produce a mgf file containing
only MS/MS spectra of potential SUMOylated peptide candidates.
SUMO fragment ions were removed from the corresponding mgf files
and searched again using Mascot as indicated above. Manual inspec-
tion of all MS/MS spectra for modified peptides was performed to
validate assignments.

Mutations—About 50–100 ng of pCMV5-HA STI1 were used to
generate point mutations or deletion mutants. Primers were designed
using Stratagene Software tool for QuikChange® Multi Site-Directed
Mutagenesis Kit. PCR mix, cycle parameters and transformation in
competent cells were done following the kit manufacturer’s protocols.
Sequence of primers is available on request. All mutants were con-
firmed by sequencing.

Quantification of Fluorescence—Intracellular distribution of STI1
was evaluated using the MetaMorph software. Total fluorescence in
the nucleus was measured and normalized by the total of fluores-
cence of the cytoplasm. The area of each cell was considered during
analyzes. Regions of interest were determined and total fluorescence
was detected automatically and independently by the software. Re-
sults were expressed as the mean of total fluorescence in the nucleus/
cytosol per cell. Colocalization analysis was evaluated using Image J
software. Each image first had its channels split; cells nuclei were the
chosen region of interest (ROI) and backgrounds were subtracted be-
fore colocalization measurement. The software detects the pixels that
colocalize between the channels and calculates the Manders M coeffi-
cient for each image, which identifies the percentage of pixels on one
channel overlapping with the other.

siRNA Transfection—A total of 0.8 �g of PIAS1 siRNA (NM_
016166) (Qiagen) and fluorescent nonrelevant siRNA controls (Invit-
rogen) were used to transfect astrocytes with the Effectene transfec-
tion kit (QUIAGEN). For these experiments cells were incubated with
the reagents for 24 h and used 72 h after transfection.

Patients and Tissue Microarrays—Tissue microarrays (TMA) were
prepared from formalin-fixed, paraffin-embedded GBMs (from De-
partment of Pathology of AC Camargo Cancer Center) and 14 non-
neoplasic samples (from surgically remediable patients with intracta-
ble mesial temporal lobe epilepsy from the Department of Pathology,
Federal University of Parana, Brazil). Samples were prepared after
approval from AC Camargo Cancer Center Research and Ethics
Committee (Process 1613/11 and 1692/12). From May 1980 to De-
cember 2004, 91 patients with GBMs underwent surgical treatment at
the Neurosurgery Department of AC Camargo Cancer Center. Anal-
ysis of PIAS1 and STI1 expression was possible in 87 cases (60%
males; mean age 53.5 � 18.3 y). None of these patients were treated
before surgery.

For immunohistochemistry (IHC), TMAs were incubated overnight
with primary antibody anti-PIAS1 (1:40, Cell Signaling) or anti-STI1
(1:40, Stressgen Bioreagents, AnnArbor, MI) at 4 °C, after antigen
retrieval. TMAs were incubated for 60 min at 37 °C with EnVision
labeled polymer peroxidase (Dako), developed using 3,3-diaminoben-
zidine tetrahydrochloride (Sigma), and counterstained with hematox-
ylin. Sections were observed under an Olympus IMT2-NIC micro-
scope. Virtual slides were created with the ScanScope System
(Aperio Technologies). The percentage of positive PIAS1 and STI1
nuclei was calculated according to the internal algorithm with Image-
Scope (IHC Nuclear v1).

Statistical Analysis—Mean values of at least three independent
datasets are shown in the figures; the error bars represent S.E.
Student’s t test was used to compare two groups. ANOVA followed
by appropriate post-hoc tests was used for multiple comparisons.
PIAS1 expression and STI1 nuclear localization in samples from pa-
tients with gliblastomas were correlated using Pearson’s correlation
coefficient. For all tests, results were considered statistically signifi-
cant when p value was � 0.05.

RESULTS

STI1 Accumulates in the Nucleus of Astrocytes in Response
to �-Radiation—Previous experiments have shown that in-
creased cellular stress by heat shock, or treatment with hy-
droxiurea, which arrests cell cycle, causes nuclear retention of
STI1 in cell lines (23, 24). To test the possibility that STI1
participates in the response to genotoxic stress in astrocytes,
we used ionizing radiation (IR, 2Gy/10min). To monitor DNA
damage in response to IR we measured phosphorylated his-
tone H2AX (�-H2AX S139), a well-established marker of dou-
ble-strand breaks (DSBs) and accumulation of nuclear foci
(31), as this is the most suitable marker for DNA damage in
astrocytes (26). We found that IR led to fast recruitment of
STI1-YFP (Fig. 1A) or endogenous STI1 to the nucleus (Fig.
1B), detected as increased proportion of astrocytes present-
ing nuclear STI1 labeling (Fig. 1C). This increased nuclear
localization of STI1 persisted up to 24 h after IR treatment.
Concomitant increase of �-H2AX foci was also observed (Fig.
1). Therefore, in support of previous reports using non-neu-
ronal cells and other types of cellular stress (23, 24), nuclear
localization of STI1 is increased in irradiated astrocytes.

STI1 Levels Regulate Astrocyte Cell Death After Irradia-
tion—To test if STI1 could have a role in the responses of
astrocytes to IR, we used astrocytes obtained from STI1
heterozygous knockout mice (21), which present 50% reduc-
tion in STI1 levels (Fig. 2A). By using Live-Dead staining we
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observed that wild-type astrocytes showed a small, but sig-
nificant increase in cell death in response to IR (2Gy/10 min,
Fig. 2B and 2C). Interestingly, STI1-deficient astrocytes pre-
sented increased cell death in response to irradiation when
compared with control astrocytes (Fig. 2B and 2C). We also
measured cell death by determining lactate dehydrogenase
(LDH) leakage from dying cells. In this experiment we could
not detect a significant increase in LDH leakage from wild-
type astrocytes in response to irradiation (Fig. 2D), likely be-
cause of lower sensitivity of this method. In contrast, astro-
cytes deficient for STI1 showed increased LDH leakage in
response to �-radiation (Fig. 2 D).

Increased nuclear localization of STI1 in response to irradi-
ation suggested a potential role for this protein in genotoxic
stress response in astrocytes. To identify potential nuclear
targets of STI1, two independent yeast-two hybrid screenings
were performed, one using a mouse and the other using a
human brain cDNA library. As expected, a number of positive
clones encoded for heat shock proteins of the Hsp70 family
(Table I), indicating that we were able to identify known inter-
actors of STI1 in the distinct screenings. Interestingly, in both
screenings we identified several genes coding for nuclear
proteins. These include UBC9, the unique E2 SUMO conju-
gation enzyme (32); and all members of the PIAS family
(PIAS1, PIAS2, PIAS3 and PIAS4), which have SUMO E3
ligase activity and also function as transcription and repres-
sion factors (33, 34). Pc2, a polycomb protein that has E3
SUMO ligase activity and is involved with DNA repair (35), was
also isolated in the screening (Table I). Although other cDNAs
were also identified, we focused further work on genes related
to the SUMOylation pathway.

To investigate the functional significance of these potential
interactions we examined the colocalization of these proteins
with STI1-YFP fusion constructs (36) in CF-10 cells because
of their neuronal-precursor like features (13). STI1-YFP is
localized mainly in the cytoplasm of CF-10 cells (Fig. 3A), as
previously described in other cell lines (23). In contrast, UBC9,
Pc2 as well as PIAS1 and PIAS4 (Fig. 3A), used as represen-
tatives of the PIAS family, show a predominant nuclear local-
ization. Interestingly, cotransfection of PIAS1 with STI1-YFP
led to increased nuclear localization of STI1-YFP in cells (Fig.
3B) and colocalization between STI1 and PIAS1. In contrast,
transfection of PIAS4, Pc2 and UBC9 did not affect the local-
ization of STI1 (Figs. 3C, 3D, and 3E respectively). Quantifi-
cation of fluorescence intensity showed that the nuclear/cy-
toplasmic (N/C) STI1 ratio was significantly increased with
overexpression of PIAS1, but not PIAS4 (Fig. 3F).

Localization of STI1, PIAS1 and UBC9 in astrocytes
showed essentially the same pattern observed in CF-10 cells
(compare Fig. 3 to Fig. 4). Moreover, overexpression of PIAS1
resulted in increased localization of STI1-GFP in the nucleus
and colocalization of PIAS1 with STI1-GFP is astrocytes (Fig.
4B). Nuclear retention of endogenous STI1 was also in-
creased by overexpression of PIAS1, but not by overexpres-

FIG. 1. Genotoxic stress-induced localization of STI1-YFP or
endogenous STI1 to the nucleus. A, Astrocytes were transfected
with STI1-YFP. The dishes were placed in a Faxitron RX-650 and
subjected to 2Gy of gamma-radiation for 10 min. Cells were fixed at
1 h after irradiation and analyzed by confocal microscopy, the cells
presented 30% of transfection efficiency. Foci were detected by
anti-H2AX (S139) Alexa Fluor 633. Data are representative of over 50
cells analyzed in four distinct experiments. Scale bars, 20 �m. B,
Astrocytes were subjected to 2Gy of gamma-radiation for 10 min.
Cells were fixed at 4, 8, and 24 h after irradiation and analyzed by
confocal microscopy. Endogenous STI1 was detected with anti-STI1
antibody (secondary Alexa Fluor 488) and foci with anti-H2AX (S139),
Alexa Fluor 633. C, Quantification of percent of cells with nuclear
STI1, data was analyzed and compared by one-way ANOVA (p �
0.028), and Newman Keuls post hoc test *, p � 0.05. D, Quantification
of number of foci per cell, data was analyzed and compared by
one-way ANOVA (p � 0.0075) and Newman Keuls post hoc test *, p �
0. 05. The images are representative from at least four experiments
for each condition, in which at least 50 cells were analyzed. Controls
were not irradiated. Scale bars: 12.5 �m.
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sion of UBC9 (Figs. 4C and 4D, respectively) in primary culture
of astrocytes. Colocalization of endogenous STI1 with over-
expressed PIAS1 was even more striking and most cells in
which PIAS1 was overexpressed showed predominant nu-
clear localization of STI1, in contrast to its cytosolic localiza-
tion in astrocytes not overexpressing PIAS1 (Figs. 4C and 4A).
Quantification of the results for images obtained in several
dishes from distinct cultures shows a Manders M average
coefficient of colocalization for PIAS1 and STI1 with values of
M1 � 0.963 � 0.070 (mean � S.D.) and M2 � 0.976 � 0.400

(mean � S.D.), respectively, indicating strong colocalization
between the two fluorescent channels.

PIAS1 has been shown to be present in PML bodies, which
are sites of protein-protein interaction in the nucleus (37–40).
To determine if STI1 could also be present in PML bodies in
PIAS1 overexpressing astrocytes we transfected these cells
with PIAS1 and PML-YFP and monitored the localization of
endogenous STI1. The results show that part of the endoge-
nous STI1 accumulates in PML bodies only in PIAS1 trans-
fected cells (Figs. 5A and 5B, arrowheads). Quantification of

FIG. 2. STI1 levels influence astrocyte death after irradiation. A, Western blot representing STI1 expression in primary culture of
astrocytes obtained from STI1�/� and STI1�/� mice. B, Primary culture of astrocytes obtained from STI1�/� and STI1�/� mice were submitted
to 2Gy of gamma-radiation for 10 min (20Gy of IR). Cells were stained 48 h later by using live/dead kit (green live cells/red dead cells) or had
their cultured media collected for LDH release assay after 48 h. Representative images of astrocytes stained using the live/dead kit in the
indicated conditions. C, Quantification of cell death in four independent experiments. D, LDH release in four independent experiments for the
indicated conditions. Data were analyzed and compared by one-way ANOVA (p � 0.0002) with Newman-Keuls post hoc test ***, p � 0.0001
**, p � 0.001 and *, p � 0.01.
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images from multiple cells showed colocalization of STI1 and
PML bodies in the presence of PIAS1 (0.28 � 0.03, Mean �

S.E.) when compared with cells in which PIAS 1 was not
overexpressed (0.09 � 0.02, Mean � S.E.; p � 0.001 when
the two colocalization indexes are compared). Moreover, be-
cause STI1 can biochemically and functionally interact with
Hsp90 we examined the localization of this chaperone in
astrocytes. STI1-GFP and Hsp90 show extensive colocaliza-
tion in astrocytes mostly in the cytoplasm (Fig. 5C). Remark-
ably, increased expression of PIAS1 caused both STI1 and
Hsp90 to be in the nucleus (Fig. 5D). Furthermore, colocaliza-
tion analysis in several images from distinct dishes suggest
that STI1, Hsp90 and PIAS1 colocalize in the nucleus of PIAS1
overexpressing astrocytes (Manders colocalization coefficient
of M1 � 0.92 � 0.10 and M2 � 0.93 � 0.09 (mean � S.D.) for
Hsp90 and STI1 and M1 � 0.89 � 0.10, M2 � 0.83 � 0.20 for
Hsp90 and PIAS1. Manders M coefficient of M1 � 0.98 �

0.05 and M2 � 0.92 � 0.20, for STI1-GFP and PIAS1-Myc
respectively.

PIAS1 is a SUMO E3 ligase and it is well known that
SUMOylation can increase nuclear localization and retention
of proteins (41–43). We envisioned two potential mechanisms
by which augmented expression of PIAS1 could increase
the nuclear localization/retention of STI1: (1) PIAS1 could
SUMOylate STI1, which would lead to its increased nuclear
retention; (2) PIAS1 and STI1 could interact directly and this
interaction would serve to retain nuclear translocated STI1
into the nucleus. To discriminate between these two possibil-
ities we first determined if STI1 could be SUMOylated. We
performed in vitro SUMOylation assays using recombinant
STI1, UBC9 and SUMO1, SUMO2, and SUMO3. ATP-de-
pendent SUMOylation of STI1 in vitro was observed as an
upward shift in the apparent molecular mass of the protein,
with several SUMOylated species of STI1 being detected (Fig.
6A, arrowheads, small protein fragments lower than STI1 are
likely proteolytic products). This experiment showed that

UBC9 can poly-SUMOylate STI1 in vitro in the absence of any
E3-ligase and that SUMO1, 2, and 3 can all be used to
SUMOylate STI1 (Fig. 6B). To further investigate STI1
SUMOylation in cells, and test the possibility that PIAS1 could
function as E3-ligase for STI1, we conducted assays in HEK
293 cells overexpressing SUMO and PIAS1. Extracts from
cells cotransfected with SUMO1, PIAS1 and STI1-HA were
immunoprecipitated using an antibody against HA and immu-
noprecipitated material (Fig. 6C) as well as cell lysates (Fig.
6D) were analyzed by Western blotting. Immunoprecipitates
from cells transfected with STI1 and SUMO1 showed
SUMOylated STI1 species (Fig. 6C), which were more pro-
nounced when PIAS1 was cotransfected with SUMO1 and
STI1. Similar results were obtained when cells were trans-
fected with STI1 and SUMO3 (not shown). STI1 SUMOylated
bands were also detected with SUMO antibodies (arrowheads
Fig. 6C), suggesting that indeed PIAS1 can act as an E3-
ligase for STI1. PIAS1 and presumably SUMOylated PIAS1
were also coimmunoprecipitated with STI1 in this condition
(Fig. 6C, anti-Myc). The different species of SUMOylated STI1
could be easily and specifically identified in cell extracts using
the STI1 antibody (Fig. 6D, anti-STI1).

STI1 SUMOylation Sites—Our data indicated that STI1 can
be poly-SUMOylated, therefore we used bioinformatic analy-
sis to identify potential STI1 SUMOylation sites. Our analysis
indicated the presence of 62 potential SUMOylation consen-
sus site (using SUMOsp 2.0 software). To determine the pre-
cise location of modified lysine residues on STI1, we performed
an in vitro SUMOylation assay using a His-tagged form of
SUMO3 that facilitates the identification of SUMOylation sites
(44). STI1 was incubated in the presence of UBC9, SAE1/2,
Mg/ATP, and this SUMO3 form, and proteins were subse-
quently digested with trypsin and analyzed by LC-MS/MS to
identify modified tryptic peptides bearing the remnant side
chain from the mutant SUMO3. Confirmation of modified res-
idues was obtained from the high resolution HCD MS/MS

TABLE I
Clones from cDNA Libraries

Clones isolated from cDNA Libraries with STI1 bate

Isolated clones Number of clones isolated
in the human brain library

Number of clones isolated
in the mouse brain library

Heat shock protein 70 (HSP70) 5 5
Melanoma antigen family D, 4 (MAGED4) 2 –
Fasciculation and elongation protein zeta 2 (FEZ 2) 3 2
Protein inhibitor of activated STAT 3 (PIAS3) 2 –
Protein inhibitor of activated STAT 2 (PIAS2) – 1
Protein inhibitor of activated STAT 1 (PIAS1) – 1
Protein inhibitor of activated STAT 4 (PIAS4) – 2
Ubiquitin conjugating enzyme E21 (UBC9) 4 14
Heat shock protein 8 (HSP8) – 36
Chromobox homolog 4 (PC2) – 20
Laminin, beta 2 (Lamb2) – 2
RAS protein-specific guanine nucleotide-releasing (Rasgrf1) – 14
Chromodomain helicase DNA binding protein 3 (Chd3) – 4
E3 ubiquitin protein ligase.HECT (Edd1) (UBR5) – 1
Homeodomain-interacting protein kinase 2b (HIPK2) – 2
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spectra of the corresponding tryptic peptides where specific
SUMO3 reporter ions were observed at m/z 132.08, 243.11
344.16 (supplemental Fig. S1A–S1E). These analyses indi-

cated that STI1 is SUMOylated in vitro at lysine residues 123,
210, 312, 395, and 486. All these sites are found in regions
predicted to be solvent exposed. We then generated a series

FIG. 3. PIAS1 expression in CF10 cells increases the retention of STI1-YFP in the nucleus. CF10 cells were transfected with indicated
constructs and 48 h later cells were imaged by confocal microscopy. A, Representative images of cells individually transfected with the
indicated constructs. B–E, Representative image of cells co-transfected with: STI1-YFP and PIAS1-Myc (B), STI1-YFP and PIAS4-Myc (C),
STI1-YFP and PC2-FLAG (D) and STI1-GFP and UBC9-YFP (E). F, Quantification of STI1 nucleus/cytoplasm ratio in cells overexpressing PIAS1
or PIAS4, note significant increase of nuclear STI1 with PIAS1 overexpression. These cells presented an average of 50% of transfection
efficiency. Images are representative from at least four experiments for each condition, in which at least 50 cells were analyzed. Scale bars,
20 �m. *, p � 0.0381.
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of lysine (K) to arginine (R) STI1 mutants, including point
mutations of each of the SUMOylation sites above, as well as
combinations of these mutations. We compared SUMOylation
of mutants with SUMOylation of STI1-HA in HEK 293 cell
lysates. For these experiments, HEK 293 cell were transfected
with SUMO1 and PIAS1, as STI1 is similarly SUMOylated by
both SUMO1 and SUMO3 (Fig. 6A). To detect only trans-
fected mutated STI1 (mutant or wild-type), we used an an-
ti-HA antibody for the immunoblots. The anti-HA antibody
was less effective than the STI1 antibody to detect minor

SUMOylated species of STI1, and only the three stronger
SUMOylated STI1 bands were detected (supplemental Figs.
S1F and S1G). We detected three main protein bands;
whereas the first and second bands ran close together around
120 kDa, the third band showed higher molecular mass (200
kDa). The K123R mutant showed a selective decrease in the
first and third bands, whereas the second band seemed pre-
served (supplemental Fig. S1F). In contrast, the intensity of
the three SUMOylated STI1 bands was weaker in all the
mutants in which K210 was changed (supplemental Figs. S1F
and S1G), suggesting that K210 may provide hierarchal con-
trol of STI1 SUMOylation. Individual mutants K312R, K395R,

FIG. 4. PIAS1 expression in astrocytes increases the retention
of endogenous STI1 in the nucleus. Primary cultures of astrocytes
were transfected with indicated constructs and 48 h later cells were
imaged by confocal microscopy. A, Representative images of local-
ization of STI1 and indicated proteins in astrocytes. B–D, Represent-
ative images of cellular localization of STI1-GFP or endogenous STI1
and indicated proteins in individually transfected astrocytes, there
was an average of 40% transfection efficiency. Images are represent-
ative from at least four experiments for each condition in which at
least 50 cells were imaged. Scale bars, 20 �m. Colocalization analysis
was performed, using the ImageJ software, for endogenous STI1 and
PIAS1-Myc in the nucleus of cells. The Manders M average coefficient
obtained was M1 � 0.963 � 0.070 (mean � S.D.) and M2 � 0.976 �
0.400 (mean � S.D.) indicating strong colocalization of STI1 with
PIAS1. For this analysis 20 cells were randomly chosen in five inde-
pendent experiments.

FIG. 5. STI1 colocalizes with PML-YFP and Hsp90 when PIAS1
is overexpressed. A, Representative image of astrocytes transfected
with PML-YFP and stained for STI1. B, Representative image of cells
transfected with PIAS1 and PML demonstrating colocalization of STI1
with PML NB. C, Representative image of astrocytes transfected with
STI1-GFP and stained for Hsp90 showing the colocalization and
cytoplasmic distribution of the proteins. D, Representative image of
astrocyte transfected with STI1-GFP and PIAS1-Myc and stained for
Hsp90 and Myc. Note that Hsp90 colocalizes well with STI1 in the
nucleus of cells expressing PIAS1. The cells presented an average of
30% transfection efficiency. The colocalization between Hsp90 and
STI1 or PIAS1 in the nucleus determined with Image J was processed
with average Manders colocalization coefficient (mean � S.D.): M1 �
0.92 � 0.10, M2 � 0.93 � 0.09 and M1 � 0.89 � 0.10, M2 � 0.83 �
0.20 respectively. STI1-GFP and PIAS1-Myc were analyzed as well,
and an average Manders M coefficient M1 � 0.98 � 0.05, M2 �
0.92 � 0.20. A total of 20 cells were randomly chosen from three
independent experiments for this analysis. Images are representative
of three experiments of each condition in which at least 50 cells were
imaged. Scale bars, 12.5 �m.
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and K486R did not show large effects on SUMOylated STI1
species (supplemental Fig. S1G). A mutant containing
changes in these five amino acids (K123–210-312–395-486R)
presented impaired SUMOylation (supplemental Fig. S1F, ar-
row, note that the HA antibody does recognize a nonspecific
band that migrates close to the SUMOylated STI1 bands).

Following the identification of STI1 SUMOylation sites we
assessed whether SUMOylation was responsible for the in-
creased nuclear retention of STI1 on PIAS1 overexpression.
For this experiment, we used the STI1 construct with all
SUMOylation sites mutated (K123–210-312–395-486R). HA-
tagged wild-type STI1 and the mutant STI1 presented similar
cytoplasmic localization in astrocytes (Fig. 7A). PIAS1 over-
expression increased the nuclear retention of both wild-type
and mutant STI1 (Figs. 7B and 7C). Hence, preventing STI1
SUMOylation did not affect its nuclear accumulation, sug-

gesting the possibility that a direct interaction between STI1
and PIAS1, rather than SUMOylation, is responsible for the
increased STI1 nuclear localization.

STI1 and PIAS 1 Interact Directly—Yeast-two hybrid
screening (Table I) suggested that STI1 and PIAS1 interact
directly. Additionally, cotransformation of yeast with a con-
struct containing the N-terminal region of STI1 and PIAS1
cDNA allowed cell growth in restrictive media, whereas no
growth was observed in yeast transformed with the empty
vector pGBKT7 and PIAS1-pACT2 (not shown), further sup-
porting a direct interaction between these two proteins. To
map the interaction sites we generated STI1 and PIAS1 de-
letion constructs. Multiple regions of STI1 containing the TPR
domains were sufficient for interaction with PIAS1 (Fig. 8A). In
contrast, a specific region in PIAS1 (a.a. 450–480) containing
the SUMO-interacting motif (SIM), was required for the inter-

FIG. 6. STI1 is SUMOylated and PIAS1 is a SUMO E3 ligase for STI1. Recombinant STI1 was subject to an in vitro SUMOylation assay
by using recombinant SUMO1, SUMO2, SUMO3, and the SUMO conjugating enzymes SAE1/2 and UBC9. A, The higher molecular weight
bands detected for STI1 (arrowheads) in the presence of ATP and SUMO1, 2, and 3, indicate that all SUMO isoforms are able to SUMOylate
STI1 in an ATP dependent process. B, UBC9 expression (arrowhead). C, HEK293 cells were cotransfected with HA-STI1, SUMO1 (or SUMO3 -
not shown) and PIAS1. STI1 was pulled down using HA agarose beads and blots were processed. IP of STI1 in cells expressing PIAS1 and
SUMO1. Arrowheads indicate SUMOylated STI1. D, Lysates of cells used in C. The data are representative of four experiments.
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action with STI1 in the yeast-two hybrid assay (Fig. 8B).
Substitution of alanine for each of the hydrophobic residues
(V457, V459, I460, L462) in the SIM domain of full-length
PIAS1 abolished interaction with STI1, whereas mutation of
other residues flanking the SIM within aa 450–480 in PIAS1
did not affect the interaction (Fig. 8C). These results indicate
that in the yeast two-hybrid assay, the SIM in PIAS1 is critical
for interaction with STI1. To further confirm the direct inter-
action of STI1 with PIAS1 we obtained recombinant proteins
in bacteria and used surface plasmon resonance (SPR). Full
length PIAS1 interacted with full length STI1 immobilized on
the SPR chip in a concentration-dependent way (Fig. 8D,
KD � 2.1 � 0.2 �M). A C-terminal peptide (amino acids 450 -
651) containing the SIM domain of PIAS1 interacted with full
length STI1 with similar affinity (Fig. 8E, KD � 2.3 � 0.3 �M). In
contrast, a peptide containing only the RING motif of PIAS1
did not interact with full length STI1 (Fig. 8F). These results
suggest that the two proteins can interact directly and that the
C-terminal region of PIAS1 containing the SIM motif is suffi-
cient for this interaction. Our observation that PIAS1 coimmu-
noprecipitates with STI1 in HEK293 cells (Fig. 6C) gives fur-
ther support for this interaction. To test if STI1 could form a
complex with PIAS1 in mammalian cells in the absence of
transfected SUMO, we transfected HEK 293 cells only with
STI1-HA and PIAS1-Myc. Pull-down of STI1 with HA-beads
co-immunoprecipitated PIAS1 (Fig. 8G). PIAS1 was not co-
immunoprecipitated from HEK 293 cells with anti-HA antibod-

ies when cells were not transfected with STI1-HA, demon-
strating specificity.

PIAS1 is Required for Nuclear Retention of STI1 After Geno-
toxic Stress in Astrocytes—To further determine if the nuclear
accumulation of STI1 was indeed because of the interaction
with PIAS1, we generated a PIAS1 mutant lacking amino acids
450–480 (PIAS1-Myc	450–480). Localization of the PIAS1 mu-
tant was indistinguishable from that of wild-type PIAS1 (Fig. 9A).
Importantly, whereas overexpression of PIAS1 induces nuclear
accumulation of STI1, overexpression of the mutant does not
(Figs. 9B and 9C).

To test whether PIAS1 plays a role in the nuclear retention
of STI1 in response to IR, we used siRNA to knockdown
PIAS1 in astrocytes (Fig. 10). siRNA transfection decreased
PIAS1 expression by 75% and abolished immunostaining
of PIAS1 in the nucleus of astrocytes (Figs. 10B and 10C,
respectively), whereas a control scrambled siRNA had no
effect on PIAS1 expression when compared with nontrans-
fected astrocytes (Figs. 10A–10C). Irradiated astrocytes
transfected with PIAS1 siRNA presented STI1 mainly in the
cytoplasm (Fig. 10D). A correlation analysis indicated a
relationship between PIAS1 levels and STI1 nuclear local-
ization (Fig. 10E). These results indicate that retention of
nuclear STI1 after irradiation depends on its interaction with
PIAS1 in the nucleus.

GBMs Express Higher Levels of PIAS1 and Nuclear STI1
than Non-neoplasm Samples—To evaluate the potential sig-
nificance of increased PIAS1 expression and STI1 nuclear
localization in astrocytes, we evaluated these proteins in
GBM, the most aggressive and common CNS tumor in adults.
GBMs present altered DDR (45) and are fairly resistant to
irradiation (46). IHC analysis showed that PIAS1 is expressed
only in the nucleus of GBM samples (Fig. 11A), whereas STI1
is highly expressed in the cytoplasm of non-neoplasm and
tumor cells (Fig. 11C). Remarkably, GBMs presented higher
PIAS1 expression (Fig. 11B) and an increment of STI1 nuclear
localization (Fig. 11D), when compared with normal brain
tissue. Furthermore, there was a significant positive correla-
tion among GBMs with higher levels of PIAS1 expression and
increased STI1 nuclear localization (r � 0.364, p � 0.0005).
These findings are consistent with our observations in astro-
cytes suggesting that PIAS1 can modulate nuclear STI1
localization.

DISCUSSION

We show that decreased levels of STI1 increase the sensi-
tivity of astrocytes to �-radiation-induced cell death, suggest-
ing a role for STI1 in response to this specialized form of
stress. Our data show that STI1 is retained in the nucleus in
response to �-irradiation and we identified several nuclear
proteins that can interact with STI1. Functional overexpres-
sion assays identified PIAS1, a critical nuclear protein that
regulates the DDR and gene transcription (47, 48), as a direct
interactor for STI1. Although PIAS1 has E3-ligase activity

FIG. 7. STI1 nuclear retention is independent on SUMOylation.
A, Representative images for localization of STI1 or a mutant STI1
(K123, 210, 312, 395, 486R) individually transfected in astrocytes. B
and C, Representative images of astrocytes cotransfected with
STI1-HA or STI1-HA mutant and PIAS1-Myc. Note that in cotrans-
fected cells the labeling is predominantly nuclear, transfection effi-
ciency was of 30%. Images are representative of at least four inde-
pendent experiments in each condition in which at least 50 cells were
imaged. Scale bars, 12.5 �m.
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toward STI1, we demonstrated that STI1 nuclear accumula-
tion is independent of its SUMOylation, but it seems to de-
pend on the interaction between STI1 and PIAS1. This inter-
action requires multiple domains on STI1 and the SIM domain
on PIAS1. Our biochemical experiments however show that
the two proteins can interact independently of SUMOylation.
Importantly, localization of STI1 in the nucleus in response to
�-irradiation depends on PIAS1, suggesting that PIAS1 is a
novel interacting partner for STI1 that promotes its nuclear
retention during genotoxic stress.

It seems that a number of proteins involved in signaling for
canonical DDR response, such as ATM and p53, play less
important roles in astrocytes when compared with cancer
cells (26). Furthermore, it has been shown that astrocytes do

not activate apoptosis in response to irradiation (26). Although
we did not examine apoptosis, our results are compatible with
these previous observations, and show that wild-type astro-
cytes are indeed highly resistant to IR. Using the Live-Dead
assay we were able to detect a small, but significant increase
in astrocyte cell death after IR. Importantly, astrocytes iso-
lated from STI1 heterozygous knockout mice showed in-
creased cell death after �-irradiation when compared with
wild-type astrocytes, suggesting the possibility that STI1 is
involved in modulating cell survival in response to DNA dam-
age. These results are in agreement with previous observa-
tions showing that knockdown of STI1 specifically sensitizes
YAC-1 cells (mouse lymphoma cells) to irradiation mediated
cell death (25).

Nuclear accumulation of STI1 in response to IR in astro-
cytes was fast (within minutes), persisted for at least 24 h and
was dependent on PIAS1 expression. Interestingly, although it
is known that STI1 accumulates in the nucleus of cell lines in
response to other types of cellular stress (23), its nuclear
functions are poorly understood. STI1 has both nuclear local-
ization signals (e.g. a.a. 222–239) and nuclear export signals
(23). Inhibition of nuclear export of proteins with leptomycin B
increases the localization of STI1 in the nucleus, suggesting
that the protein normally shuttles between nuclear and cyto-
plasmic locations (23).

Nuclear STI1 did not appear to be initially recruited to DNA
breaks, as it did not colocalize with �-H2AX foci (Fig. 1), a
marker of DNA damage. Thus, the pattern of STI1 nuclear
localization is not completely identical to that of PIAS1, which
is recruited to sites of DNA damage (48). However, PIAS1 has
also been found to colocalize with PML in PML nuclear bodies
(NB) (49); thus the STI1-PIAS1 interaction may serve to direct
STI1 to specific locations in the nucleus (such as PML NBs) or
to specific client proteins. In agreement with the potential for
STI1 to act as a cochaperone when recruited by PIAS1,
Hsp90 was also recruited to the same sites.

STI1 was previously reported to function in DNA damage/
repair pathways as a cochaperone for CHK1 (50) and the DNA
repair protein Ssl2, the yeast homolog of XPB (51), a DNA
helicase that can function in DNA repair pathways. Interest-
ingly, a recent report pointed out that CHK1 activation in

Fig. 8. STI1 interacts with PIAS1. A–C, Yeast cotransformed with plasmids directing expression of the indicated fusion proteins, or vector with
no insert (-), were patched onto solid medium lacking histidine and supplemented with the histidine analog 3-amino-1,2,4-triazole (3-AT), and
interaction of the fusion proteins was assessed based on growth of yeast after incubation at 28 °C for 5 days. Positions of truncation points
or point mutations relative to functional domains in PIAS1 and STI1 are indicated. D, Kinetics of PIAS1 peptides binding to STI1 immobilized
on a CM5 chip were followed by surface plasmon resonance (SPR) signal using Biacore X system (GE, USA). Graph showing binding curves
for the full-length PIAS1 (a.a. 1–651). Darkening shades of gray represent increasing (0.31 to 5 �M) concentrations of full-length PIAS1. “On”
and “off” kinetics were analyzed as described in Methods to give KD � 2.1 � 0.2 �M, koff � 0.23 � 0.02 s�1 and kon � 1.1 � 0.1 � 105 M�1�s�1.
E, The same for the C-terminal PIAS1 peptide (a.a. 451–651). Darkening shades of gray represent increasing (1 to 8 �M) concentrations of
C-terminal PIAS1. KD � 2.3 � 0.3 �M, koff � 0.19 � 0.04 s�1 and kon � 8.3 � 2.0 � 104 M�1�s�1. F, Injections of 1 to 4 �M PIAS1 RING domain
(a.a. 300–450) did not cause significant SPR signals. Binding curves are representatives from three independent experiments. G, Represent-
ative immunoblots showing co-immunoprecipitation of PIAS1 with STI1 from HEK293 cells. HA-STI1 was precipitated with anti-HA beads and
specific antibodies were used to detect STI1 or Myc (PIAS1). The data are representative of four independent experiments for each condition.

FIG. 9. Overexpression of mutant PIAS1 does not retain STI1 in
the nucleus. A, Astrocytes were transfected with either PIAS1 or
PIAS1	450–480-Myc and imaged. B, Astrocytes were transfected with
PIAS1-Myc and endogenous STI1 (green) or Myc (red) were imaged.
C, Astrocytes were transfected with PIAS1	450–480-Myc and STI1
(green) or Myc (red) were imaged. The cells presented a transfection
efficiency of 30%.
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FIG. 10. STI1 retention in the nucleus after genotoxic stress is dependent on PIAS1 expression. A, Expression of PIAS1 in control
astrocytes, astrocytes transfected with PIAS1 or control siRNA. B, Western-Blot quantification of PIAS1 expression in siRNA-transfected
astrocytes. C, PIAS1 expression determined by immunolocalization in astrocytes transfected with the indicated siRNA. Green staining
represents anti-� tubulin used to determine cell morphology. Note that transfection of control siRNA has no effect on PIAS1 expression. D,
Cellular distribution of STI1 and expression of PIAS1 in control or irradiated astrocytes, the cells presented a tranfection efficiency of 30%. E,
Irradiated cell transfected with siRNA for PIAS1 were quantified for nuclear STI1 and PIAS1 expression and a correlation between the levels
of PIAS1 expression and nuclear STI1 was determined. Nuclear localization of STI1 was correlated to decreased PIAS1 expression. R2 � 0.38,
Pearson r � 0.6164 and p � 0.0064. Data are representative of three independent experiments for each condition in which �50 cells were
imaged and analyzed. Scale bars, 25 �m.
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response to DNA damage is dependent on the integrity of
PML NBs (52). Although the failure to activate CHK1 in re-
sponse to DNA damage may be as a result of impaired ssDNA
formation in PML depleted cells (52), it is tempting to specu-
late that PML NBs localization could facilitate STI1 interaction
with CHK1.

PML NBs are populated by various factors involved in DNA
repair, cell cycle checkpoint and apoptosis and have emerged
as important regulators of the DDR (38, 53). Several reports
have described the relocalization of a number of proteins to
PML NBs in response to DNA damage, including p53 (54), IKK
family member IKK� (55) and Mre11 (56). We have recently
shown that loss of STI1 causes a decrease in the levels of p53
(21). Although functioning in distinct pathways, these proteins

all have in common a protective function against the threat of
DNA damage. PML bodies serve also as sites for accumulation
of SUMOylated proteins. We show that STI1 is SUMOylated
and defined five SUMOylation sites on STI1. The precise role
of STI1 SUMOylation on STI1 cochaperone activity will need
to be studied in the future. However, STI1 SUMOylation is not
required for its nuclear retention. It is likely that on recruitment
of STI1 to the nucleus, the interaction of STI1 with PIAS1 will
allow for SUMOylation of the former, which may help STI1 to
regulate its nuclear interaction network.

Consistent with the possibility that STI1 may serve as a
cochaperone in the nucleus, we found that Hsp90 colocalized
with nuclear STI1. Interestingly, elimination of embryonic STI1
is lethal likely because of loss of Hsp90 client proteins such as
Grk2, STAT3 and p53 (21), without changes in the levels of
Hsp90. Nuclear Hsp90 has recently emerged as a regulator
for the DDR (57). Phosphorylation of Hsp90 by IR led to its
accumulation in �-H2AX foci and knockdown of Hsp90 led to
less efficient DNA repair as well as a decrease in �-H2AX foci
with both events occurring concomitantly 3 h after irradiation
(57). Moreover, BRCA1, a critical protein involved in DSBs has
recently been shown to be a Hsp90 client (58).

There are different subtypes of human brain tumors, how-
ever GBMs are the most aggressive and common tumors in
the adult CNS. These tumors are highly proliferative, present
diffuse infiltration, propensity for necrosis and robust neovas-
cularization. Despite their histological similarities GBMs have
recently been suggested to represent heterogeneous dis-
eases (59). Therapeutic options to approach these tumors
increased in the last years, nevertheless the prognosis is still
poor (60). We show here that GBMs express higher levels of
PIAS1. In agreement with results in mouse astrocytes, we
detected a positive correlation between increased levels of
PIAS1 and increased nuclear STI1 in GBMs, suggesting the
possibility of pathological relevance for the interaction we
described. It is known that mTOR signaling is one of the key
pathways altered in GBMs and resistance to mTOR inhibitors
has been associated to PML overexpression (61). Nuclear
PMLs can be regulated by arsenic trioxide, a drug used to
treat acute promyelocytic leukemia (62) and also proposed to
be used in GBMs (61). This agent is known to induce PML-NB
SUMOylation followed by polyubiquitination and proteasomal
degradation (62) or to modulate sequestration of PMLs in
cytoplasmic complexes of PML and nucleoporins (63). Our
data showed that STI1 colocalizes with PML-NB when PIAS1
is overexpressed. It is unknown if the complex STI1/PIAS1
can modulate PML-NB SUMOylation or have any chaperone
activity on PML-NB, but this possibility deserves further in-
vestigation.

The precise role for nuclear STI1 in irradiation and particu-
larly its consequences in GBM treatment with radiotherapy
will need to be further explored, but few possibilities can be
envisioned. Some of the subnuclear structures, such as PML
NB, that have crucial functions in the DDR present high levels

FIG. 11. Expression of PIAS1 and STI1 in GBMs. (A, C) Repre-
sentative IHC staining in GBM and non-neoplasm samples (NN) for
PIAS1 and STI1 respectively. B, Quantification of PIAS nuclear local-
ization in GBMs compared with NN. D, Quantification of STI1 nuclear
localization in GBMs compared with NN. Scale bars, 50 �m. Negative
means a tumor slide stained only with secondary antibody, developed
and counterstained as described for STI1 and PIAS1. Numbers be-
tween brackets represent the total number of samples. *, p � 0.05
Student’s t test.
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of accumulated proteins (40). Having functional Hsp90-STI1
chaperone machinery in the nucleus may allow higher con-
centration of client proteins in these structures without pro-
miscuous interactions or formation of higher order aggre-
gates. Indeed, STI1 has been shown in yeast to cure prions
via Hsp104 (64), a mechanism that is not well understood, but
may depend at least in part on protein disaggregation. More-
over, in the absence of embryonic STI1 cells present in-
creased �-H2AX sites and commit to apoptosis (21). In agree-
ment with the notion that STI1 may indirect affect DNA repair,
p53, a Hsp90 client, is decreased by 50% in embryos lacking
STI1 (21). Interestingly, interference with the interaction be-
tween STI1 and Hsp90 induces cytotoxicity in GBM cell lines,
by reducing levels of p53 and other Hsp90 client proteins (65).
STI1 may also serve as a scaffold for bridging Hsp90 to other
proteins, as recently suggested for regulation of Piwi and its
piRNAs in canalization mechanisms in Drosophila (66). Our
results provide a novel mechanism for interplay among STI1,
Hsp90, PIAS1, and DNA damage in astrocytes. Further iden-
tification of interactions of STI1 and nuclear proteins may
shed new light on multiple functions of STI1 as a cochaperone
protein and scaffolding molecule.
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