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MicroRNAs (miRNAs) regulate gene expression through
translational repression and RNA degradation. Recently
developed high-throughput proteomic methods measure
gene expression changes at protein level and therefore
can reveal the direct effects of miRNAs’ translational re-
pression. Here, we present a web server, ProteoMir-
Express, that integrates proteomic and mRNA expression
data together to infer miRNA-centered regulatory net-
works. With both types of high-throughput data from the
users, ProteoMirExpress is able to discover not only
miRNA targets that have decreased mRNA, but also sub-
groups of targets with suppressed proteins whose
mRNAs are not significantly changed or with decreased
mRNA whose proteins are not significantly changed,
which are usually ignored by most current methods. Fur-
thermore, both direct and indirect targets of miRNAs can
be detected. Therefore, ProteoMirExpress provides more
comprehensive miRNA-centered regulatory networks. We
used several published data to assess the quality of our
inferred networks and prove the value of our server.
ProteoMirExpress is available online, with free access to
academic users. Molecular & Cellular Proteomics 12:
10.1074/mcp.O112.019851, 3379–3387, 2013.

MicroRNAs (miRNAs)1 are small noncoding RNAs that reg-
ulate gene expression by causing either translation inhibition

or mRNA decay (1). Posttranscriptional regulation by miRNA
is an important level of the complex gene regulatory net-
work, and it controls a wide range of biological processes.
Deregulation of miRNA expression can lead to various diseases,
including many human cancers (2). Therefore, understanding
the regulatory networks of miRNAs in different biological pro-
cesses is crucial to unraveling their functional importance and to
providing a pool of targets for medical therapies.

Several approaches have been proposed to predict miRNA’s
targets and to construct miRNA-centered regulatory networks.
Computational approaches include miRNA target prediction
based on the binding energy of miRNA–mRNA interactions (3, 4)
and on the evolutionary conservation of the seed regions (5–7).
Experimental approaches include the identification of destabi-
lized mRNAs in the presence of an miRNA or high-throughput
methods to detect mRNAs bound by argonaute proteins and
miRNA cleavage sites (8). Databases such as MiRecords (9) and
TarBase (10) collect experimentally validated miRNA targets,
and starBase (8) collects miRNA–mRNA interaction maps from
argonaute CLIP-Seq and Degradome-Seq data.

The anticorrelation between miRNAs and their targets has
been widely used to infer miRNA–target relationships. Several
web servers have been developed to infer miRNA targets
based on the expression profiles of miRNAs and mRNAs from
the same set of biological samples (11–16). For example, the
generative model for miRNA regulation (GenMir��) uses a
Bayesian model to predict miRNA targets based on both
target genes’ 3� UTR region sequence features and the cor-
relation between expressions of miRNA and its targets (15).
When miRNA expression data are not available, active miRNA
and its targets can be inferred from the enrichment of its
recognized motifs in the 3� UTRs of suppressed genes in a
biological state or process (17–20). Moreover, the condition-
specific mRNA–miRNA network integrator (mirConnX) uses
transcription factor (TF) binding in the promoter region of
miRNAs, as well as mRNA, to construct a transcriptional-
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posttranscriptional regulatory network (21). In addition,
miRNA function can also be annotated by its target genes’
enrichments in biological pathways, gene ontology, or dis-
eases (11, 22–24).

Despite the great success of these methods, none of them
consider the effects of an miRNA on a target gene’s output at
both mRNA and protein levels. In addition to destabilization of
the mRNA product, translational repression has been pro-
posed to be another major mechanism of miRNA regulation.
Many examples have shown that miRNA is able to decrease
protein levels without changing mRNA abundance (25–27). It
is considered that when the mature miRNA pairs with its
target perfectly, the argonaute protein’s endonucleolytic ac-
tive site will cleave the target mRNA’s nucleotides that pair
with bases 10 and 11 of the miRNA guide strand (1). In cases
of imperfect pairing or of argonaute proteins lacking endonu-
cleolytic activity, miRNAs regulate genes through translation
repression (1, 28). However, a recent study by Brodersen et al.
found that translational repression happened irrespective of
the degree of complementarity or location of target sites
within mRNAs (29). Complete complementary pairing miRNA
may engage in both mRNA cleavage and translational repres-
sion, and consequentially lead to decreased protein product.
Several models have been suggested to describe the trans-
lation repression mechanism, including competition between
miRNA-induced silencing complexes and the essential trans-
lation initiation factor elF4E for binding to the mRNA 5� cap
structure, deadenylation of the mRNA tail, ribosome drop-off,
and reduced translation elongation (1). Two recent papers
reported that miRNA first inhibited translation initiation and
then induced mRNA deadenylation and decay (30, 31). Even
though most of the miRNA targets undergo translational re-
pression followed by decay, there is a subgroup of targets
primarily regulated by translation repression without significant
mRNA decay (30). It is still unclear why some target mRNAs are
degraded and others are not.

Because of the different mechanisms of miRNA regulation,
its targets can be translationally repressed without a signifi-
cant decrease in mRNA abundance or with a concordant
decrease in mRNA abundance, or mRNA abundance might be
significantly decreased with few protein changes at a certain
time point (28, 32, 33). Current methods that use only mRNA
abundance to study miRNA regulatory effects might miss
many targets that are suppressed at the protein level without
detectable mRNA changes, or they might overestimate
miRNA’s effect on targets that do not have detectable
changes at the protein level but do demonstrate decreases in
mRNA. These kinds of false negative and/or false positive
links between an miRNA and its targets may lead to misun-
derstanding of an miRNA’s regulatory network, for example,
when the miRNA’s target is a TF.

Recently, the development of high-throughput quantitative
proteomic methods has provided the opportunity to study the
effect of miRNA on targets’ protein outputs (32, 34, 35).

However, most of these studies are restricted to one or a few
miRNAs or proteins. Furthermore, there is no published tool
for inferring miRNA-centered regulatory networks from high-
throughput proteomics data. To fill the gap, we present here
a new web server, ProteoMirExpress, which integrates mRNA
and protein expression data to infer miRNAs’ activities on
their direct and indirect targets in the absence or presence of
miRNA expression data and construct the regulatory net-
works controlled by miRNAs. We further use several pub-
lished data to assess the quality of our inferred networks. The
assessment shows that ProteoMirExpress is able to effec-
tively infer a miRNA-centered regulatory network and identify
subgroups of miRNA targets, which are usually ignored by the
currently available tools. The web server is freely available at
http://jjwanglab.org/ProteoMirExpress.

EXPERIMENTAL PROCEDURES

Web Server Integration and Implementation—ProteoMirExpress in-
tegrates mRNA and protein expression data together to infer miRNA-
centered regulatory networks for a specific biological stage or proc-
ess. The workflow of ProteoMirExpress is briefly described in Fig. 1.
It accepts both high-throughput transcriptomic and proteomic profil-
ing data, and optionally the expression of miRNAs, preferably gener-
ated under the same experimental conditions (Fig. 1A). The server has
the following functions: (i) In the absence of miRNA expression infor-

FIG. 1. Overview of ProteoMirExpress workflow. A, input of high-
throughput transcriptomic mRNA and protein profiling data; input of
miRNA expression is optional. B, data analysis of ProteoMirExpress. C,
the information sources of miRNA target. D, tabulated outputs. E, visu-
alization of miRNA-centered posttranscriptional regulatory networks
and miRNA–target interactions.
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mation, ProteoMirExpress will classify the input genes into different
groups according to their mRNA and protein levels and infer miRNA
networks by calculating the overlap between the potentially sup-
pressed gene sets and the miRNA’s target genes (Fig. 1B). (ii) In the
presence of miRNA expression information, the targets of active
miRNA will be inferred by the anticorrelation between miRNAs and
their potential targets at either the mRNA or the protein level, or both
(Fig. 1B). The miRNA target genes are collected from multiple
sources, including computational predictions, CLIP/Degradome-Seq,
and experimental verifications (Fig. 1C). The inferred active miRNAs
and their targets will be ranked according to their p values (Fig. 1D).
(iii) Indirect targets of miRNAs are also predicted by scanning sup-
pressed mRNAs’ promoters with the binding site information of
miRNA-targeted TFs. (iv) The miRNA-centered regulatory network will
be visualized on the web page (Fig. 1E). Users can click on each
miRNA to inspect all of its targets, as well as miRNA–target
interactions.

Inputs—ProteoMirExpress takes inputs in tab-delimited format
containing high-throughput protein and mRNA expressions. With
data obtained from the same biological condition, ProteoMirExpress
accepts mRNA and protein expression levels from one biological
stage or expression changes from two biological stages. For data
from one biological stage in one file, the input file should contain three
columns: the identifier of the genes, the corresponding expression
values of mRNAs, and the expression values of the proteins. Protein
and mRNA expression data can also be inputted in two files, one for
protein and the other for mRNA. Each file should contain two col-
umns: the first one is the identifier of the protein or mRNA, and the
second is the expression value. ProteoMirExpress will match the
protein and mRNA from the same gene for the users if the input
identifiers are in different types. ProteoMirExpress can recognize
protein and mRNA identifiers from various databases, such as
RefSeq, Ensemble, UCSC, Uniprot, PDB, etc. With samples from two
biological stages, such as before and after a certain biological treat-
ment, ProteoMirExpress accepts the expression fold change (or
log2(fold change)) of the mRNA and protein in one file or two files with
the same format described above. ProteoMirExpress also considers
the expression change p value from two-stage data if the user in-
puts the p value in the column next to the expression change. Then
the input files mentioned above should contain five columns and three
columns, respectively. The expression data of miRNAs can also be
optionally inputted with the same format as used for mRNA and
protein. Furthermore, to serve more users, ProteoMirExpress also
accepts data from only mRNA or protein for analysis.

Data Analysis Procedure—The input genes or miRNAs will be clas-
sified into different classes according to their expression levels (or
changes), as well as their p values, if applicable. Users can input a
customized expression level (or change) and a p value cutoff for gene
classification. For example, if the expression change cutoff is 1
(using log2, 1 means the fold change cutoff is 2-fold), then genes
whose expression decreases to less than 0.5-fold (log2(expression
change) � �1) will be classified as decreased (D), whereas genes
whose expression change is more than 2-fold (log2(expression
change) � 1) will be increased (I), and the rest will be unchanged (U).
Genes with low expression or expression suppression at either the
protein or the mRNA level will be regarded as potential targets of
miRNA for further analysis. If the p value cutoff is set at 0.05, for
example, only genes whose p value is lower than 0.05 will be classi-
fied as significantly increased or decreased genes.

In the absence of miRNA expression information, ProteoMirExpress
will calculate the significance of overlaps between the potential sup-
pressed gene sets and the predicted target genes of each miRNA with
a hypergeometric test or permutation test. With N genes in the whole
genome, m genes in the potential suppressed gene set (set A), n

genes that are the predicted target genes of an miRNA (set B), and k
genes in the overlap of gene sets A and B, the hypergeometric p value
is calculated by Equation 1.

p �
�m

k ��N � m
n � k �

�N
n�

(Eq. 1)

The permutation test is performed by randomly selecting m genes
from the genome 1000 times. If the selected genes in q of the 1000
times have more than k genes that are the predicted targets of an
miRNA, the permutation p value is calculated as p � q/1000 (36). The
cutoff for the hypergeometric and permutation p value is set as 0.05
by default, but this can be adjusted by the user.

In the presence of miRNA expression information, the targets of
active miRNA will be inferred by the anticorrelation between the
miRNA expression levels (or changes) and the mRNA or protein levels
(or changes) of the potential targets. The miRNA information is col-
lected from miRBase (37), and information about the target genes is
collected from multiple databases. Computational prediction data-
bases include TargetScan (6), miRanda (5), PicTar (7), and PITA (4),
and experimental databases include starBase (8), miRecords (9), and
TarBase (10). starBase contains miRNA targets identified via the
high-throughput methods CLIP/Degradome-Seq, whereas miRecords
and TarBase contain experimentally verified targets. To integrate
multiple databases from heterogeneous sources, we use an interac-
tion score (IS) to represent the confidence of the link between an
miRNA and its target. The IS is calculated as the sum of a weighted
proportion of the target databases containing the gene with at least
one miRNA target site in the three groups of databases (21). We
assign different weights for the three different groups of databases
according to reliability, with experimentally validated targets receiving
a weight of 4, high-throughput methods a weight of 2, and compu-
tational prediction a weight of 1 (Equation 2).

IS �
�i�I Si

4
� 2 � SstarBase � 4 �

�i�J Si

2
, (Eq. 2)

where I � (TargetScan, miRanda, PicTar, PITA), J � (miRecords,
TarBase), and Si � 1 if the target is present in databases I or J and 0
otherwise. The users can input the cutoff to filter targets with low
scores. For example, if the cutoff is 0.5, then only targets reported in
at least two of four computational predictions or any one of the
CLIP/Degradome-Seq and experiment collection databases will be
selected for the analysis.

Besides direct targets, indirect targets of each miRNA are further
predicted. When miRNAs suppress the protein abundance of a TF,
targets of the TF may also be suppressed indirectly. Thus, after
miRNA-targeted TFs are identified, the promoters of genes with sup-
pressed mRNA levels are scanned for putative binding sites of the TFs
with the method described by Qin et al. (38). Indirect targets of the
miRNAs are defined as genes with decreased mRNA abundance and
putative binding sites of miRNA-targeted TFs whose protein abun-
dance is decreased. Users can adjust several parameters for the
binding site scanning, including the size of the promoter region, the
statistical p value cutoff of binding site significance, the conservation
cutoff, and the TF information sources.

Output—The inferred miRNA-centered regulatory network will be
visualized on a Cytoscape page (39). The network contains regulatory
relationships between miRNAs and their targets. Each node is an
miRNA or a target gene, and each edge is an arrow pointing from an
miRNA or a TF to its target, which indicates that the miRNA is directly
or indirectly suppressing the target. The weights of the lines are
proportional to the IS scores of the miRNA–target pairs. Targets from
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different expression gene classes are labeled in different colors (Fig.
2). For instance, the class “UD,” which is colored blue, represents
genes that have unchanged mRNA levels (U) but decreased protein
levels (D), whereas class “ML,” which is colored light purple, repre-
sents genes with a medium expression level in mRNA (M) but a low
expression level in protein (L).

On the second tap, the inferred active miRNAs are ranked accord-
ing to their p values in the potential target gene set. When the users
input miRNA expression data, the server will report two lists of sig-
nificant miRNAs; one is listed in the “Inputted miRNA” tap, which
contains the miRNAs that have high expression or significant expres-
sion changes according to the inputted data, and the other is in the
“All enriched miRNA” tap, which also includes other miRNAs that are
not inputted miRNAs but have enriched target genes with expression
changes. Users can select a subgroup of miRNAs of interest from one
or both miRNA lists to redraw the regulatory network. Edges between
an miRNA from the “Inputted miRNA” list and its targets will be shown
as purple lines, and edges between other enriched miRNAs and their
targets will be gray lines. Indirect targets are also shown in the
network. Arrows pointing to an indirect target are in sage green. When
the user clicks on an miRNA node, a list of its targets will pop up. By
hovering over a target node, users can find its inputted identifier and
gene symbol. When the target node is clicked on, the user will be
taken to its web page from the National Center for Biotechnology
Information, where detailed information about the gene will be found.

In addition to targets with suppressed mRNA, ProteoMirExpress
also outputs targets with proteins suppressed but mRNAs un-
changed. miRNAs enriched in different gene sets classified according
to mRNA and protein levels can be viewed by clicking on different
“Type” buttons. When an miRNA in the network or tables is clicked
on, a list of its targets will be shown in a pop-up window. The

miRNA–mRNA interaction site information, the hybridization struc-
ture, and their sources can be viewed by clicking on the hyperlinks in
the “Interaction” and “RNAHybrid” columns.

RESULTS

To evaluate the performance of ProteoMirExpress, we ran
several example tests with data from Baek et al. (35). In the
first example, miR-124 was overexpressed in HeLa cells, and
the global mRNA and protein expressions were quantified
after 24 h and 48 h, respectively. With the inputs of mRNA and
protein expression profiles and miR-124 as the known miRNA
with an expression change, ProteoMirExpress generated a list
of predicted active miRNAs and their targets (Table I). As
expected, miR-124 was ranked on the top with the most
significant hypergeometric p value (1.19E-15) in the potential
target gene set, in which genes were down-regulated in either
protein or mRNA level. According to protein and mRNA ex-
pression changes, these potential targets were further classi-
fied into three gene sets: “DD” containing genes for which
both mRNA and protein are down-regulated; “UD” containing
genes for which mRNA levels are unchanged but protein
levels are decreased; and “DU” containing genes for which
mRNA levels are decreased but protein levels are unchanged.
In the DD and DU gene sets, the hypergeometric p values of
miR-124 also ranked first. In UD, even though miR-124 was
not the most significant miRNA, the targets of miR-124 were

TABLE I
Active miRNAs inferred by ProteoMirExpress in HeLa cells with miR-124 overexpression (p value � 1E-4)

miRNA
Number of

targets
p value

Number
in DDa

p value
in DDa

Number
in UDa

p value
in UDa

Number
in DUa

p value
in DUa

hsa-miR-124 51 1.19E-15 12 2.04E-08 9 1.83E-03 30 2.62E-08
hsa-miR-506 46 4.96E-13 11 2.49E-07 9 1.28E-03 26 2.03E-06
hsa-miR-760 13 3.09E-06 3 5.41E-03 3 1.44E-02 7 1.82E-03
hsa-miR-943 9 1.78E-05 3 1.01E-03 2 3.20E-02 4 1.45E-02
hsa-miR-548m 16 2.19E-05 5 3.47E-04 5 1.99E-03 6 6.31E-02
hsa-miR-545 18 2.94E-05 3 4.21E-02 5 5.24E-03 10 5.11E-03
hsa-miR-525-3p 7 4.94E-05 2 7.43E-03 0 – 5 4.21E-04
hsa-miR-802 14 6.03E-05 4 1.99E-03 3 4.03E-02 7 1.49E-02
hsa-miR-1252 16 1.15E-04 5 6.69E-04 6 5.45E-04 5 1.50E-01
hsa-miR-432 14 1.17E-04 2 1.05E-01 5 1.38E-03 7 1.98E-02
hsa-miR-564 5 1.48E-04 1 6.58E-02 1 9.12E-02 3 4.33E-03
hsa-miR-323b-5p 10 2.50E-04 2 4.52E-02 3 1.30E-02 5 2.27E-02
hsa-miR-513c 10 4.32E-04 3 5.90E-03 2 8.99E-02 5 2.89E-02
hsa-miR-544 30 4.46E-04 6 1.50E-02 6 6.47E-02 18 1.21E-02
hsa-miR-548p 18 5.42E-04 4 1.69E-02 5 1.36E-02 9 4.25E-02
hsa-miR-922 13 5.53E-04 2 1.10E-01 2 1.73E-01 9 2.65E-03
hsa-miR-1301 10 6.76E-04 2 5.64E-02 2 9.83E-02 6 1.11E-02
hsa-miR-518b 5 7.05E-04 1 9.08E-02 2 8.42E-03 2 7.02E-02
hsa-miR-1197 8 7.33E-04 4 1.26E-04 3 6.30E-03 1 3.55E-01
hsa-miR-518c* 6 7.37E-04 0 – 2 1.85E-02 4 5.40E-03
hsa-miR-381 33 7.81E-04 6 3.07E-02 8 2.08E-02 19 2.58E-02
hsa-miR-765 11 8.46E-04 4 1.22E-03 3 2.95E-02 4 1.31E-01
hsa-miR-1227 6 8.75E-04 1 1.37E-01 1 1.82E-01 4 6.05E-03
hsa-miR-1266 8 9.01E-04 1 2.19E-01 2 5.50E-02 5 9.63E-03
hsa-miR-661 8 9.66E-04 3 2.57E-03 3 7.10E-03 2 2.44E-01

a Gene class DD contains genes for which both mRNA and protein are down-regulated. UD contains genes for which mRNA levels are
unchanged but protein levels are decreased. DU contains genes for which mRNA levels are decreased but protein levels are unchanged.
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also significantly enriched. Thus, ProteoMirExpress is able to
find not only targets with decreased mRNA abundance, but
also those whose protein abundance is decreased.

Three miR-124-targeted TFs, SP1 (NM_138473), TFAP4
(NM_003223), and TEAD1 (NM_021961), were found to have
predicted targets whose mRNA expressions are suppressed
in the presence of miR-124 (Fig. 2). Because only TFs whose
protein abundance is decreased will be analyzed in order to
predict indirect targets, all three of these TFs have reduced
protein levels. However, only for TEAD1 is mRNA significantly
decreased as well. The mRNA abundance of SP1 and TFAP4
is not significantly changed (92% and 89% of control, respec-
tively), even though their protein abundance is less than 50%
of the control’s (29% and 43%, respectively). SP1 and TFAP4
have nine and seven targets in the miR-124-controlled net-
work, respectively, which indicates that they may be impor-
tant downstream regulators for the function of miR-124. How-

ever, these TFs may not be reported as miR-124’s targets by
other tools that use only mRNA expression data for the
analysis.

Other miRNAs with significantly enriched targets in the
result list are possibly functionally related to or co-expressed
with miR-124 (Table I). For example, hsa-miR-506, belonging
to the same miRNA family, has expression profiles that are
very similar to those of miR-124 in lung carcinogenesis (40,
41) and in breast cancer samples (42). miR-124 is known as a
neural-specific miRNA and is suppressed in Huntington dis-
ease, and hsa-miR-760, hsa-miR-432, and hsa-miR-1301 are
also found to be down-regulated in that disease (43). The
miR-Ontology Database miRò also reports that hsa-miR-124,
hsa-miR-760, and hsa-miR-432 are all associated with brain
tissues, and other enriched miRNAs, such as hsa-miR-943,
hsa-miR-548m, hsa-miR-1301, etc., are associated with Al-
zheimer disease (44). The regulatory network controlled by the
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FIG. 2. miRNA regulatory network with the top 5 enriched miRNAs in HeLa cells with miR-124 overexpression (p value < 1E-4). Each
node is either an miRNA or a gene. Each edge is an arrow pointing from an miRNA to its target, indicating its suppressing role. The weights
of the lines are proportional to the IS scores of the miRNA–target pairs. Purple lines: connection between an miRNA from the “Inputted miRNA”
list and its targets. Gray lines: connection between other enriched miRNAs and their targets. Nodes in blue: genes in UD class having
unchanged mRNA levels (U) but decreased protein levels (D). Nodes in green: genes in ML class having a medium expression level in mRNA
(M) but a low expression level in protein (L). Nodes in pink: genes in D class having decreased expression in mRNA or protein when only mRNA
or protein data are inputted, but not both.
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top five enriched miRNAs is shown in Fig. 2. More enriched
miRNAs are listed in supplementary Table S1. Both the hy-
pergeometric p value and the permutation p value of each
miRNA are shown, and the Pearson’s correlation coefficient
between two p values is as high as 0.89.

To further test the performance of ProteoMirExpress in
inferring co-expressed miRNA, we ran a second example in
which miR-223 was knocked out in mouse neutrophils and the
mRNA and protein expression were quantified on day 8 from
progenitor differentiation (35). Again, miR-223 was reported as
the most significantly active miRNA by ProteoMirExpress with
the inputs of mRNA and protein expression changes (log2(wild
type/knockout)) (supplemental Table S2). Of 57 miRNAs in 20
families that were co-expressed with miR-223, 44 miRNAs in
15 families were shown in the significant miRNA list generated
by ProteoMirExpress (supplemental Table S2). The co-ex-
pression of miRNAs and the co-occurrence of targeting sites
on 3�-UTR are highly correlated (p value � 2.2E-16 in Fisher’s
exact test). The regulatory network with all co-expressed
miRNAs gives an overview of the collaborative regulation of
these miRNAs on their targets (Fig. 3). It can be seen that
ProteoMirExpress is able to infer active miRNAs in a biological
process successfully. In both cases, ProteoMirExpress fin-

ishes the analyses within minutes. By integrating protein ex-
pression data, ProteoMirExpress takes three subgroups of
targets into consideration to construct the miRNA-centered
regulatory networks, which provides a more comprehensive
understanding of the targets and regulatory functions of
miRNAs.

DISCUSSION

The identification of miRNA targets and the construction of
an miRNA regulatory network are two major steps in studying
the function of miRNA in the complex gene regulatory system.
Perturbation of the expression of an miRNA is commonly used
to infer the targets of an miRNA. Genes with significant
changes in mRNA or protein levels after the perturbation are
usually considered as the targets of the miRNA. However, in
our first case study, miR-124 overexpression caused 105
genes to show significantly down-regulated expression, but
only 56 of them were direct or indirect targets of miR-124.
This left 46% of the down-regulated genes unexplained. Thus,
we also reported other miRNAs whose targets are enriched in
the differentially expressed gene set, which provides the user
with hints about other miRNAs that may be co-expressed with
or regulated by miR-124. These regulatory links are shown as
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FIG. 3. miRNA regulatory network with the co-expressed miRNAs in miR-223 expressed mouse neutrophils. Refer to Fig. 2 for a
detailed description of the graph.
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gray lines to distinguish them from those of miR-124 (Fig. 2).
With both analyses on inputted miRNAs and other enriched
miRNAs, as well as the prediction of indirect targets, Pro-
teoMirExpress provides a more complete view of miRNA’s
effects on the suppressed genes, which covers 92% of the
down-regulated genes. Besides perturbation experiments
with miRNAs, our web server can also be applied to other
biological studies, such as comparisons between different
developmental stages or disease status, inferring an miRNA-
centered regulatory network that controls the gene expres-
sion changes between different biological conditions.

With the recent development of high-throughput proteomic
methods such as stable isotope labeling by amino acids in cell
culture (45, 46), the proteomic investigation strategy for mam-
mals (47), and label-free quantitative methods (48), research-
ers are able to quantify protein expression on a large scale.
More and more high-throughput proteomic data have been
generated for the study of a variety of biological processes
(49–55). This facilitates studies on gene regulation at the
posttranscriptional level. The complexity of miRNA function
mechanisms makes it difficult to infer which level miRNA uses
to control each individual target. Integrating high-throughput
mRNA and protein data provides an opportunity to solve this
problem. ProteoMirExpress, taking multiple miRNA function
mechanisms into consideration, studies the effect of miRNA
on both mRNAs and proteins. ProteoMirExpress reports not
only miRNA targets with decreased mRNA levels, but also
subgroups of targets whose proteins are suppressed but
whose mRNAs are not significantly changed, or whose
mRNAs are decreased but whose proteins are not signifi-
cantly changed, which is possible only with high-throughput
proteomic data. Current tools commonly use only mRNA ex-
pression data to construct miRNA regulatory networks. With
these tools the subgroups of miRNA targets with suppressed
proteins but little-changed mRNAs would be completely lost
in the network. In the case study of miR-124, TFs SP1 and
TFAP4, which are regulated by miR-124, did not display any
significant change in their mRNA abundance. Without pro-
teomic data, they might not be detected as targets of miR-124
in the network, even though both of them have several down-
stream targets that are indirectly regulated by the miRNA.
Moreover, when a TF is in a subgroup of miRNA targets with
decreased mRNA but little-affected protein, genes with puta-
tive binding sites of the TF would be reported as indirect
targets of miRNAs by tools using only mRNA expression data.
However, because the protein abundance of the TF is not
significantly changed, its effects on the downstream targets in
the reported network might not be true. The same problem
would also occur when miRNA-regulated proteins control
downstream pathways, which leads to misunderstanding of
the functions of these miRNA-regulated proteins in the
network.

In the two case studies analyzed above, out of 51 direct
target genes that are significantly suppressed by the overex-

pression of miR-124 in HeLa cells (either the mRNA level is
less than 67% or the protein level is less than 50% of that of
the control, as the protein level is measured one day later than
the mRNA level, and having at least one miR-124 site), 12
genes (23%) are suppressed in both mRNA and protein level,
9 genes (18%) are suppressed in protein level but not mRNA
level, and 30 genes (59%) are suppressed in mRNA level but
not protein level. Out of 35 direct target genes that are sig-
nificantly suppressed by miR-223 (either mRNA in miR-223
knockdown is less than 67% or protein is less than 67% of
that in the control neutrophil cells, and having at least one
miR-223 site), 6 genes (17%) are suppressed in both mRNA
and protein level, 24 genes (69%) are suppressed in protein
level but not mRNA level, and 5 genes (14%) are suppressed
in mRNA level but not protein level. It seems that the propor-
tion of each subgroup of targets can be different for different
miRNAs, or maybe for different cells. The data collection time
is also thought to affect the proportion of different subgroups:
short time courses after miRNA perturbation but before dead-
enylation may lead to more observations of the UD group (30,
31, 56, 57), and long time courses after miRNA perturbation,
when mRNA deadenylation and decay show strong effects,
might lead to more genes being reported from the DD group
(58, 59). However, in an experiment with long time scales in
which the miRNA effects are steady, fewer direct targets and
more indirect targets will be detected. Thus, the selection of a
data collection time is an important issue in miRNA target
identification studies.

It has been reported that miRNA affects target genes’ ex-
pression through both translation inhibition and RNA degra-
dation, and the former effect is relatively mild compared with
the latter (32). This implies that multiple strategies are used by
miRNA to refine their control over their targets in a quantitative
manner. In the ProteoMirExpress analysis, we found a sub-
group of targets whose mRNAs are suppressed but whose
protein levels are not significantly changed. This indicates that
the degradation of mRNA might not immediately suppress the
protein level. This might be caused by the low protein-degra-
dation rate of these targets. Thus, for this group of targets,
miRNA seems to stop the increase in protein level but not
immediately decrease it. The three groups of targets detected
by ProteoMirExpress demonstrate the limitations of using
either mRNA or protein data alone to study the effect of
miRNA. Either method may miss a subgroup of targets. Thus,
with the integrative approach, ProteoMirExpress provides us-
ers with a more complete and detailed regulatory network
controlled by miRNAs. Further analyses on the functions,
binding site sequences, and expression details of different
subgroups of miRNA targets will improve our understanding
of the strategy that miRNA uses to precisely control thou-
sands of targets.
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