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The localization of phosphorylation sites in peptide se-
quences is a challenging problem in large-scale phospho-
proteomics analysis. The intense neutral loss peaks and
the coexistence of multiple serine/threonine and/or tyro-
sine residues are limiting factors for objectively scoring
site patterns across thousands of peptides. Various com-
putational approaches for phosphorylation site localiza-
tion have been proposed, including Ascore, Mascot
Delta score, and ProteinProspector, yet few address
direct estimation of the false localization rate (FLR) in
each experiment. Here we propose LuciPHOr, a modi-
fied target-decoy-based approach that uses mass ac-
curacy and peak intensities for site localization scoring
and FLR estimation. Accurate estimation of the FLR is a
difficult task at the individual-site level because the de-
gree of uncertainty in localization varies significantly
across different peptides. LuciPHOr carries out simulta-
neous localization on all candidate sites in each peptide
and estimates the FLR based on the target-decoy
framework, where decoy phosphopeptides generated
by placing artificial phosphorylation(s) on non-candidate
residues compete with the non-decoy phosphopeptides.
LuciPHOr also reports approximate site-level confi-
dence scores for all candidate sites as a means to lo-
calize additional sites from multiphosphorylated pep-
tides in which localization can be partially achieved.
Unlike the existing tools, LuciPHOr is compatible with
any search engine output processed through the Trans-
Proteomic Pipeline. We evaluated the performance of
LuciPHOr in terms of the sensitivity and accuracy of FLR
estimates using two synthetic phosphopeptide libraries

and a phosphoproteomic dataset generated from com-
plex mouse brain samples. Molecular & Cellular Proteom-
ics 12: 10.1074/mcp.M113.028928, 3409–3419, 2013.

Phosphorylation is a common and essential form of post-
translational regulation that has been extensively studied via
mass spectrometry (1–5). However, tandem mass spectra
produced from phosphorylated peptides can be difficult to
interpret because of their relatively low abundance within the
cell and the presence of intense neutral loss peaks in the
MS/MS spectra (6, 7). Correctly determining which residue
bears the phosphate group is typically a tedious and error-
prone process. Most commonly used database search tools
for peptide identification from MS/MS spectra are not opti-
mized for site localization of a post-translational modification,
nor do they provide any confidence score for the assigned
site. In addition, manual verification of the modification sites is
a time-consuming process that requires expertise in mass
spectrometry. As a result, the challenges of site localization
have been acknowledged by the proteomics community, in-
cluding within the latest version of the data publication guide-
lines of this journal (8).

A number of computational approaches that localize phos-
phorylation sites have been reported in the literature, enabling
automated phosphoproteomic analysis (reviewed in Ref. 9).
These tools either rescore the MS/MS spectra to assign con-
fidence measures for individual sites based on site-determin-
ing ions (10–15) or derive localization scores directly from the
search engine output (16, 17). Ascore, a representative tool in
the rescoring category, scores each candidate phosphosite
based upon the peaks representing the site-determining ions
and subsequently reports a confidence score for the phos-
phopeptide sequence (11). This algorithm uses the binomial
distribution to compute the probability of a random (incorrect)
localization for each candidate site in each spectrum. Phos-
phoRS extends the scoring approach of Ascore by adjusting
the probability of random peak matching based on the density
of peaks in different regions of each spectrum (18). In con-
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trast, the Mascot Delta score (MD-score)1 determines the
confidence of phosphosite localization on peptides as the
difference in Mascot ion scores between the highest scoring
phosphopeptide (the peptide reported by the search engine)
and the next best scoring phosphopermutation (same peptide
sequence, alternative phosphorylation site (17)). Thus, the
MD-score represents the second type of approach, which,
instead of rescoring MS/MS spectra for the purpose of im-
proved site localization, derives the scores directly from the
database search engine output. A similar idea was imple-
mented in the SLIP score using a modified version of the
Batch-Tag search engine of the ProteinProspector suite (16)
and in the variable modification localization score of the pro-
prietary software Spectrum Mill (9). These tools, however,
apply the logic of delta scoring for individual sites, not for the
whole peptide; this is an important consideration in the case
of multiply phosphorylated peptides.

Although these tools have significantly improved the quality
of published phosphopeptide identification data, several im-
portant issues remain. The level of uncertainty in modification
site localization varies significantly across different peptides
depending on the total number of candidate sites and the
number of phosphorylated residues on the peptide. This, in
turn, makes it difficult to compare localization scores between
different peptides. Secondly, few algorithms provide a direct
estimation of the false localization rate (FLR) in filtered data.
Thirdly, most existing algorithms are tied to specific search
engines and/or require proprietary libraries (e.g. Ascore and
MD-score were developed for SEQUEST and Mascot, respec-
tively; PhosphoRS requires proprietary libraries from Thermo
Scientific). This makes it difficult to access these tools and to
compare their performance.

Here we present LuciPHOr, an alternative approach for site
localization and direct FLR estimation. We introduce a novel
scoring approach that utilizes both peak intensity and mass
accuracy to aid the computation of an objective score for
phosphosite determination and dynamically adapts to char-
acteristic peak properties in different types of instrumentation
and fragmentation methods. LuciPHOr computes the scores
for phosphosite permutations and associated FLR estimates
for the best scoring prediction at the peptide level. It also
reports site-level scores for multiphosphorylated peptides,
with an acknowledgment that it is difficult to rigorously esti-
mate the FLR in such cases. We also highlight the practical
utility of LuciPHOr, which is capable of processing the results
of any database search tool (including commonly used search
engines X! Tandem (19), SEQUEST (20), and Mascot (21)) that
is supported by the widely used Trans-Proteomic Pipeline
(TPP) (22). We benchmark LuciPHOr using two previously

published datasets generated using synthetic phosphopep-
tide libraries and demonstrate similar or better performance
relative to the existing methods. We also demonstrate the
high accuracy of the FLR estimated by LuciPHOr obtained
using a target-decoy modification site framework. Lastly, the
performance of LuciPHOr is further investigated using a com-
plex mouse brain dataset, and we also discuss the issue of
site-level scoring in the analysis of multiphosphorylated
peptides.

MATERIALS AND METHODS

RAW File Conversions—Thermo Fisher RAW files for all datasets
were deisotoped and converted to Mascot generic format and
mzXML using msconvert (version 3.04140) (23).

Synthetic Phosphopeptide Libraries—RAW files for the two syn-
thetic peptide libraries were generously provided by Dr. Bernhard
Kuster and colleagues (17, 24). The first dataset included spectra that
were produced using either collision-induced dissociation (CID) or
high-energy collision-induced dissociation (HCD). The Mascot ge-
neric format files were searched directly using Mascot (version 2.4)
with the same parameters as described in the original publications.

The first library consisted of 180 synthetic peptides (17). The data
were searched using the SwissProt human protein sequence
database (release 2011_10, 86,975 entries) as the search space. The
database was inspected to verify that it contained all of the peptides
from the synthetic phosphopeptide library. The sequences of any
missing peptides together with the common proteomic contaminants
and reverse decoy sequences were appended to the database.
Searches were performed with carbamidomethyl cysteine as a fixed
modification, and oxidized methionine, protein N-terminal acetylation,
and phosphorylation of serine, threonine, and tyrosine were specified
as variable modifications. Trypsin was specified as the enzyme, and
up to three missed cleavages were permitted. The precursor ion
tolerance was set at 10 ppm, and the fragment ion tolerance was set
at 0.5 Da for the CID data and 0.02 Da for the HCD data.

The second synthetic phosphopeptide MS/MS dataset was gen-
erated from a collection of 96 separate libraries containing a total of
57,830 phosphopeptides (24). Mascot searches were performed
against the sequence database provided by the authors. This data-
base included the common contaminants and reverse decoy se-
quences. Carbamidomethyl cysteine was specified as a fixed modi-
fication, with oxidized methionine and phosphorylation of serine,
threonine, and tyrosine specified as variable modifications. The
search was restricted to fully tryptic peptides, allowing up to two
missed cleavages. The precursor ion mass tolerance and fragment
ion mass tolerance were set at 5 ppm and 0.02 Da, respectively.

For both datasets, Mascot search results were subsequently pro-
cessed using the TPP to produce the resultant PeptideProphet pep-
XML files (25). PeptideProphet was run using high mass accuracy
binning, and all peptide spectrum matches (PSMs) were reported in
the output pepXML file regardless of their computed probability. For
the subsequent site localization analysis, PSMs were filtered based
upon the PeptideProphet probabilities. In the first and second syn-
thetic libraries, PSMs with PeptideProphet probabilities below 0.1 and
0.99, respectively, were discarded. These thresholds were empirically
chosen for each library to remove low-confidence PSMs (the unusu-
ally low probability threshold for the first library was chosen because
of the very small size of the dataset).

Mouse Brain Data—The mouse brain dataset was originally de-
scribed in Ref. 26. Mascot searches on these data were performed
using the Swiss-Prot mouse protein sequence database (release
2013_04) appended with reverse decoy sequences and common

1 The abbreviations used are: CID, collision-induced dissociation;
FLR, false localization rate; HCD, high-energy collision-induced dis-
sociation; MD-score, Mascot Delta score; PSM, peptide spectrum
match; TPP, Trans-Proteomic Pipeline.
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contaminants (101,826 sequences). The search parameters were se-
lected as described in the original work. Carbamidomethyl cysteine
was specified as a fixed modification, and oxidized methionine and
phosphorylation of serine, threonine, and tyrosine were set as variable
modifications. Trypsin was specified as the enzyme, allowing fully
tryptic peptides with up to two missed cleavages. The precursor ion
mass tolerance was set to 10 ppm, and the fragment ion mass
tolerance was set to 0.02 Da.

To estimate the FLR in this dataset using the approach described
in Ref. 16 (SLIP score), Mascot searches were performed with and
without decoy phosphorylation of proline (P) and glutamic acid (E).
Prior to running LuciPHOr on this dataset, TPP results were filtered to
remove PSMs with a PeptideProphet probability of less than 0.99.

LuciPHOr Score—The LuciPHOr score calculation is based on the
computed scores for all matched peaks in the experimental MS/MS
spectrum. The underlying modeling is performed under different as-
sumptions for the distributions of high mass accuracy (HCD) and low
mass accuracy (CID) fragment ion data. Within each category (high or
low mass accuracy data), the learning step is performed specifically
for each dataset (“dynamic training”). This ensures that the model
parameters are unique to a given dataset, thus allowing for the
variable properties of mass accuracy and signal intensity distributions
that are produced.

MS/MS spectrum i is represented by ni peaks, where peak j has
intensity Iij and m/z distance Dij to the closest theoretical ion. All
experimental peaks are labeled as either matched or random. The
matched peak is taken as the most intense experimental peak that
can be associated with a theoretical fragment ion within a specified
mass tolerance window (by default, �0.25 Da for CID and �0.025 Da
for HCD data) (see supplemental Fig. S1 for an illustration). After all
possible permutations for a phosphopeptide have been iterated over,
with the best candidate peaks recorded for each permutation’s frag-
ment ion ladder, all matched peaks in the spectrum are identified. All
remaining peaks are deemed random peaks (i.e. unmatchable for the
given peptide in any phosphosite permutation). This includes peaks
that fall within the mass tolerance window of a theoretical fragment
ion but are not the most intense candidate peaks in that window.

The principle of scoring in LuciPHOr is that the observed distribu-
tions of peak intensities and m/z distances (later referred to as mass
accuracies) are mixtures of signal (matched peaks) and noise (random
peaks) components, and for each peak one can calculate the odds
ratio that the peak originates from either distribution. To reflect the
fact that the score distributions differ by the type of matched fragment
ions, separate distributions are specified for the b and y ions. Peaks
representing neutral loss of the phosphate group are also considered
in scoring, whereas peaks representing neutral loss of water or am-
monia are not. Before any processing begins, the intensity values are
normalized by the median intensity of all peaks in each spectrum. Let
fbm, fym, and fu denote the intensity distributions for the peaks
matched to b-ions, y-ions, and random peaks, respectively. Likewise,
define gbm, gym, and gu as the mass accuracy distributions for the
corresponding peaks. For CID data, each of the six distributions is
defined as a parametric (Gaussian) distribution. This assumption is
well supported by empirical observations and allows quick computa-
tion. In the case of HCD data, the mass accuracy distribution gu for
random peaks is specified as a uniform distribution, followed by
nonparametric modeling. This model specification is based on the
observation that the m/z distances of randomly matched peaks are
uniformly distributed within the mass tolerance window of �0.025 Da
specified for high mass accuracy data.

Following the dynamic training step of establishing the above dis-
tributions, the score for each peak j in spectrum i is calculated as
follows. For low fragment ion mass accuracy data (CID), if peak j is
matched to a b-ion, the log odds score is computed as Sij � wij

log(gbm(Dij)/gu(Dij)), where the weighting factor reflects the peak inten-
sity and is obtained using the Bayes rule with equal prior probability
of 0.5 (i.e. wij � 1/(1 � exp(�fbm(Iij)/fu(Iij))). This weighting strategy is
better suited for the scoring of low mass accuracy fragment ions
because the intensity directly and significantly complements the low
specificity of matched peaks identified based on m/z distance only.
For high fragment ion mass accuracy data (HCD), the log odds score
is computed as Sij � log(fbm(Iij)/fu(Iij)) � log(gbm(Dij)/gu(Dij)). This addi-
tive scoring strategy is more suitable for HCD data, where it allows the
peak intensity to contribute to the score that is otherwise driven by
the mass accuracy component—by far the most discriminative scor-
ing component in these data. Peaks matched to y-ions are scored in
the same way, using their corresponding distributions.

The total score for the match between spectrum i and peptide
phosphopermutation k is then computed as the sum of scores of all
matched ions (i.e. as a cumulative log odds for spectrum i), Si(k) �
�jSij. The delta score is then computed by subtracting the second
best scoring permutation k2 from the best scoring permutation k1 (i.e.
�Si � Si(k1) � Si(k2)). This score is assigned to the best scoring
permutation, transforming the score into the odds ratio, which is more
comparable across different peptides than the odds score per se.

FLR Estimation—Using the notation x � �S for brevity, let hd(x) and
hf(x) denote the density functions for decoy and non-decoy PSMs,
respectively. The cumulative distribution functions (up to the score
threshold �) for decoys and non-decoys, Hd and Hf, are defined as

Hd��� ��
x � �

hd�x� dx and Hf��� ��
x � �

hf�x� dx.

(Eq. 1)

The tail probabilities for decoys and non-decoys are defined as

Td � 1 � Hd and Tf � 1 � Hf. (Eq. 2)

The FLR is then computed at that score threshold as

FLR��� � �Nd /Nf	 � �Td���/Tf���	. (Eq. 3)

In addition to the global FLR estimated above, we also estimate the
local FLR as

IFLR��� � �Nd/Nf	 � �hd���/hf���	, (Eq. 4)

which is equivalent to the local false discovery rate (27). In the
derivations above, the factor Nd /Nf is used to approximate the pro-
portion of incorrect localizations in all non-decoy assignments. Here,
Nd and Nf are the numbers of PSMs with LuciPHOr delta scores
greater than zero having the modification localized to decoy and
non-decoys sites, respectively.

Comparison with Representative Existing Algorithms—To obtain
the MD-score, Mascot search results (.dat files) were parsed using the
MascotDATfile parser (v3.4.9) (28). For singly phosphorylated pep-
tides, the MD-score was computed as defined in Ref. 17 (i.e. as the
difference between the Mascot ion scores for the top two alternative
phosphosite permutations on the same peptide). For multiply phos-
phorylated peptides, we extended this definition to permit the site-
level MD-score, or the difference between the best Mascot ion score
for the phosphopermutation in which a particular site is modified and
the best Mascot ion score among all phosphopermutations of the
same peptide sequence in which that site is not modified. A small
number of MS/MS spectra had a single PSM reported in the Mascot
output file. For these, the MD-score was taken as the Mascot ion
score of that single PSM. With this modified MD-score definition, we
calculated the MD-scores for as many sites as the number of phos-
phorylations reported on each peptide (i.e. M top scoring sites with
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positive scores on peptides with M modifications). In the analysis of
the mouse brain dataset, the FLR estimation method proposed in Ref.
16 was also implemented, allowing prolines or glutamic acids to be
phosphorylated, followed by the scoring steps as described above.

To perform a comparison with Ascore (compatible with the
SEQUEST search engine only), MS data for the first synthetic dataset
were searched with SEQUEST (version 28, rev. 13) using the same
protein database and search parameters as described above for
Mascot searches. The Ascore program was downloaded from the
Harvard Medical School website (download date: February 22, 2013).
The SEQUEST OUT and DTA files were then converted to an XML file
for input into Ascore using the Out2XML program provided in the
download. The output from Ascore was a comma-delimited file that
contained scores for up to six residues in a phosphopeptide. This file
was parsed, and only the PSMs of peptide sequences from the
synthetic library were retained for the downstream analysis.

RESULTS

Overview of the LuciPHOr Algorithm—LuciPHOr takes as
input the database search results processed using Pep-
tideProphet (pepXML files) and the corresponding MS data
files in mzXML or mzML format. It records all phosphopeptide
identifications and extracts the associated MS/MS spectra. It
then proceeds to the training step to learn the distributions of
the peak intensities and mass accuracies of all matched and

random peaks (Fig. 1). This training step is carried out for each
and every dataset (dynamic training), allowing the model pa-
rameters to be adjusted to better reflect the properties of the
data (see “Materials and Methods”).

Second, for each high-scoring PSM in the dataset, all pos-
sible phosphosite permutations for peptide sequences of
these PSMs are generated. The total number of permutations
for a phosphopeptide is computed from the binomial coeffi-
cient, known as “n choose k.” A peptide with n candidate
sites, k of which are reported to be phosphorylated, will have
C(n,k) permutations to be considered for localization scoring.
The theoretical ion fragments for each permutation are gen-
erated, and the algorithm then tries to match these ions to the
peaks in the spectrum. For any given phosphosite permuta-
tion, a matched peak is scored based on its intensity and
mass accuracy, quantifying its contribution to support the
given permutation. Using the densities of the positive (cor-
rectly matched peaks) and negative (random peaks) distribu-
tions estimated in the training step, the score for each
matched peak is computed as the ratio of its positive versus
negative density functions evaluated at the given value. This
ratio corresponds to the odds of the peak being a correct

FIG. 1. Scoring framework. The algorithm first goes through a training step in which it learns the peak feature distributions for matched and
random peaks. With this information, each phosphosite permutation is scored using all the peaks in the given spectrum, and the FLR is
computed using the target-decoy framework for various score thresholds. On the right, two permutations derived from the same peptide are
shown with their detailed scores using the information from peak feature distributions, along with the final delta score.
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match for the corresponding fragment ion given its ob-
served intensity and mass accuracy. The score of each
permutation is calculated as a cumulative sum of the log-
odds scores over all matched peaks. The phosphosite per-
mutation with the highest score is taken to be the best
permutation. The confidence for the reported permutation is
measured by the difference between the scores of the top
two scoring permutations, the LuciPHOr delta score (see
“Materials and Methods”).

Next, LuciPHOr computes the FLR at the peptide level
using the delta scores. The FLR estimation procedure is
based on a nonparametric empirical Bayes method that mod-
els the score distribution with a mixture of two distributions:
one for the permutations with correct localization, and the
other for those with incorrect localization (27). Decoy permu-
tations are generated by artificially placing phosphorylation on

non-S/T/Y residues in the peptide sequences. For multiphos-
phorylated peptides, the decoys are generated with the same
number of non-S/T/Y residues modified. All of the possible
decoy permutations of a peptide are then scored (Fig. 2A).
From the resulting scores of both decoy and non-decoy per-
mutations, the density functions of the two score distributions
are estimated separately (Fig. 2B), using a standard technique
for nonparametric density estimation with Gaussian kernel
and normal distribution approximation for bandwidth selec-
tion (29, 30). The density estimation step performs smoothing
of FLRs, ensuring that these estimates are not rugged be-
tween similar score thresholds. Then the mixing proportion is
computed as the number of decoy permutations with positive
delta scores divided by the number of such forward permu-
tations. Finally, FLR estimates are computed for every delta
score threshold as the ratio of the right tail areas under the

FIG. 2. Decoy generation and FLR estimation. A, decoy generation and scoring, illustrated using the singly phosphorylated peptide
LQTVHSIPLTINK. The peptide harbors three potential sites (highlighted in red), and all other sites (in green) were used to generate decoy
permutations with one modified site. In the first scenario, the non-decoy permutation with modification on the first threonine (T) scores the
highest, followed by another non-decoy permutation with modification on the serine (S). In the second scenario, the decoy permutation with
valine (V) scores the highest, followed by a non-decoy permutation with the first threonine (T) modified. B, the FLR is computed using the
statistical method for estimating local false discovery rates based on the empirical Bayes method. The mixture model serves as a smoothing
step to overcome the granularity of simple counts of decoys. The proportion of decoys is estimated as the number of effective (positive scoring)
decoy permutations divided by the number of all scored non-decoy permutations.
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two distributions (Fig. 2B). See “Materials and Methods” for
the details of the FLR estimation procedure.

For peptides with multiple (M) phosphorylations, LuciPHOr
can also compute the site-level scores and report the delta
scores for M highest scoring sites in addition to the single
peptide-level score for the best permutation. These scores
are defined as the ratio of the odds score between the best
scoring (non-decoy) permutation with phosphorylation on a
given site and the best scoring (non-decoy) permutation with
no phosphorylation on that site. Constructed from the odds at
the permutation level, the site-level score carries the meaning
of the odds ratio of phosphorylation, which is a standardized
relative confidence of the modification on a particular site over
the best alternative. This way, the site-level relative confi-
dence scores can still be compared across different peptides,
just as the peptide-level scores can. Note that the site-level
score defined here is always identical to the peptide-level
score for singly phosphorylated peptides.

LuciPHOr was designed to run in a two-step fashion: (i)
scoring all phosphosite permutations, including decoy permu-
tations, followed by the FLR estimation at various delta-score
threshold values, as described above, and (ii) scoring using
the same procedure but without decoy permutations, fol-
lowed by generation of the final report, which includes the
associated FLR rates estimated in step (i).

First Synthetic Phosphopeptide Library Dataset—We used
two datasets generated using synthetic phosphopeptide li-
braries to examine the accuracy of LuciPHOr and to compare
LuciPHOr to MD-score and Ascore as representative existing
methods for the two major categories of site localization tools.
The advantage of using data generated using synthetic librar-
ies is that the true phosphorylation sites are known for all
peptides a priori, and as such, the true FLR can be computed.
MS/MS database searches for each phosphopeptide library
dataset were performed using Mascot and SEQUEST, and the
MD-score and Ascore were used to compute site localization
scores for each PSM (see “Materials and Methods”). The
Mascot results were post-processed with PeptideProphet
to generate the pepXML files that are the main input for
LuciPHOr.

The first library consisted of 180 synthetic peptides ana-
lyzed by both CID and HCD (17) (see “Materials and Meth-
ods”). The PSMs assigned to any of the phosphopeptides
from the library were collected, resulting in 1194 and 1120
PSMs for the CID and HCD datasets, respectively. Although
two different search engines were used (Mascot and
SEQUEST), the total numbers of PSMs used for localization in
each tool were similar in both CID and HCD datasets. After the
database search, spectra with PeptideProphet probabilities
less than 0.1 were removed to filter out poor-quality matches.

Fig. 3 reports the proportion of correctly localized phospho-
sites as a function of the FLR computed based on the known
modification location as specified in the library annotation file.
One limitation of this dataset was the relatively small size of

the phosphopeptide library. Thus, the estimated FLR was
sensitive to a small number of incorrectly localized phos-
phosites in the high-confidence region. As such, false lo-
calization on a few peptides could significantly affect the
performance evaluation of any of the three tools we exam-
ined. Despite this caveat, Fig. 3 shows that LuciPHOr and
the other methods could localize an equivalent number of
sites at all FLR levels in both datasets (CID and HCD),
suggesting that all three methods performed equally for
these data. For the CID data (left-hand panel of Fig. 3A),
LuciPHOr, the modified MD-score (extended to the site level
to accommodate multiphosphorylated peptides), and As-
core correctly predicted 708 (78%), 620 (70%), and 708
(77%) sites at the FLR of 1%, respectively. For the HCD
data (right-hand panel of Fig. 3B), LuciPHOr, the modified
MD-score, and Ascore correctly predicted 544 (61%), 437
(49%), and 309 (32%) PSMs, respectively. The MD-score
eventually identified more sites than LuciPHOr, but in the
higher error rate region (FLR above 2%). See supplemental
Tables S1 (CID data) and S2 (HCD data) for the top-scoring
localizations for each spectrum matched to a phosphopep-
tide from the library.

Although the small size of this library prevented a more
in-depth comparison, the results suggest that LuciPHOr’s
performance is at least comparable to that of existing meth-
ods with respect to the sensitivity (the number of correctly
localized sites). An important advantage of LuciPHOr, how-
ever, is the fact that it can directly estimate the FLR from each
dataset. We evaluated the accuracy of these FLR estimates
by comparing them with the true FLR obtained using the
known site information (see Figs. 3C and 3D for the CID and
HCD data, respectively). In the CID dataset, the FLRs esti-
mated by LuciPHOr were close to the true values across all
thresholds. In the HCD data, LuciPHOr somewhat underesti-
mated the FLR in the score range of 5–9, which is in a
high-confidence region. A closer examination of the data re-
vealed that the incorrect localizations in this score range all
resulted from five scans of the peptide ESKsSPRPTAEK and
two scans of the peptide SSsPTQYGLTK, suggesting that the
locally inaccurate estimates can be attributed in part to the
small size of this library (and possibly to the problems with
the synthetic library itself).

Second Synthetic Phosphopeptide Library Dataset—The
second dataset was generated using a much larger phospho-
peptide library that recently became available (24). This data-
set consisted of MS/MS spectra generated using peptides
from 96 separate libraries. Each library contained variants of
the same peptide motif with one phosphorylation event and all
possible variations of the flanking residues. This yielded
57,830 non-redundant singly phosphorylated peptides,
which were analyzed using HCD fragmentation. Our Mascot
search of this dataset initially reported 60,354 PSMs. When
processed by the TPP, 35,459 PSMs were assigned a Pep-
tideProphet probability equal to or greater than 0.99, ac-
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counting for 15,300 unique phosphopeptides. These high-
confidence PSMs were then analyzed by LuciPHOr and
MD-score (see supplemental Table S3 for the top-scoring
localizations for each PSM).

Fig. 4 summarizes the result of this analysis. Fig. 4A shows
the distribution of LuciPHOr delta scores when analyzed with
decoys. The red bars indicate the scores of decoy permu-
tations outscoring their non-decoy alternatives. The mound
on the right-hand side of the histogram primarily represents
unambiguous cases (i.e. peptide sequences that contain
only one possible phosphorylation site). Note that inclusion
or exclusion of the unambiguous phosphopeptides in the
analysis does not affect the accuracy of the FLR estimates.
The main effect of removing the unambiguous cases is a
uniform increase in both the true FLR values and the FLRs
estimated by LuciPHOr. We included the unambiguous
cases in the FLR estimates because we were presenting all
phosphopeptide identifications as a single file.

The FLR accuracy plot obtained using the knowledge about
the sites of modifications in the synthetic phosphopeptide li-
brary is shown in Fig. 4B. The solid line shows the true FLR
plotted against the threshold values, whereas the dashed line
shows the estimated FLR as reported by LuciPHOr at the same
thresholds. The plot suggests that the estimated FLR is very
accurate up to 1.5%, where localization is assigned on the
majority of the peptides. As indicated in Ref. 24, the entire list of
phosphopeptide identifications as reported by the Mascot
search tool was thought to carry an FLR of less than 2%. This
was consistent with our analysis, as all critical delta score
thresholds corresponding to the FLR range between 0.5% and
2% were constrained within a small window of values (delta
scores of 3 to 5).

The impact of the FLR accuracy in the most relevant region
of delta scores is illustrated in the (pseudo)receiver operating
characteristic plots in Figs. 4C and 4D. The black solid lines
indicate the number of spectra and unique peptides, respec-

FIG. 3. Analysis of the first synthetic library dataset. A, B, the proportion of correctly localized sites obtained using Ascore (red curve),
LuciPHOr (black), and MD-score (blue) plotted as a function of the true FLR in CID (A) and HCD (B) data. Shown in parenthesis are the total
numbers of sites considered by each of the methods. The vertical dashed gray line indicates the FLR threshold of 0.01 (1%). C, D, comparison
between the FLR estimated by LuciPHOr (dashed line) and the true FLR (solid line) at various delta score thresholds.

LuciPHOr—A Phosphorylation Site Localization Algorithm with FLR Estimation

Molecular & Cellular Proteomics 12.11 3415

http://www.mcponline.org/cgi/content/full/M113.028928/DC1


tively, having correct localization. The dashed lines show what
would have been achieved if the estimated FLR were used as
the horizontal coordinate in the plots. It is evident that the
whole trajectory of these estimated FLR values as a function
of the LuciPHOr delta score threshold was very close to that
observed for the true FLR. For the same set of PSMs, we also
computed the MD-score directly from the Mascot search
results. The comparison between the numbers of correct
localizations computed at various FLR threshold values
shows that LuciPHOr made far fewer errors in the high-con-
fidence regions (
1% FLR) and identified more spectra and
unique peptides with correct localizations at fixed FLR rates
than the MD-score.

Mouse Brain Dataset—To demonstrate the performance of
LuciPHOr on a dataset with a more realistic sample complex-
ity, we analyzed a mouse brain dataset generated using an
LTQ-Orbitrap Velos instrument with HCD fragmentation (26).
For the purpose of comparison, we analyzed the same data
using the MD-score (modified to allow site-level scoring; see
“Materials and Methods”) and we also used the FLR estima-
tion method proposed by Baker et al. (16) for the SLIP score
of ProteinProspector. In that study, the searches were per-

formed allowing phosphorylation on proline (P) and glutamic
acid (E), and the FLR was estimated using the proportion of
phosphorylated prolines or glutamic acids in the data (referred
to as FLR-E/P below). This strategy was adopted here for the
MD-score.

Fig. 5A shows the LuciPHOr delta score plotted against
the LuciPHOr-estimated FLR (see supplemental Table S4
for the top-scoring localizations for each PSM). In this data-
set, the FLR estimates were slightly higher than those in the
synthetic library datasets at the same delta score threshold
values. For example, a delta score of 3 corresponded to an
FLR of less than 2% in the second synthetic library dataset,
whereas the FLR was estimated to be close to 4% here. This
likely reflects the increased amount of noise in complex da-
tasets at borderline delta score thresholds. Fig. 5B shows the
pseudo-receiver operating characteristic curve, in which the
number of correct localizations was estimated by multiplying
the total number of localized sites by (1 � FLR). The figure
also shows the results of applying the MD-score, in which
case the FLR was estimated using the proportion of either
proline or glutamic acid residues reported to be phosphory-
lated. Unlike the finding reported in Ref. 16, the FLR-E/P

FIG. 4. Analysis of the second synthetic library dataset. A, histogram of LuciPHOr delta scores in non-decoy (white) and decoy (red)
permutations used to estimate the FLR. B, estimated and true FLR as a function of delta score threshold values. C, number of spectra with
correct localization obtained using LuciPHOr at various true FLR (solid black line) or estimated FLR (dashed line) thresholds. Also shown is the
number of correct localizations obtained using MD-score as a function of true FLR (blue line). D, same as C for the number of unique peptides
with correct localization.
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estimates varied considerably depending on which residue
was used to quantify the errors (the FLR-P estimates were
more conservative than FLR-E). Furthermore, in this complex
dataset, the FLR-E/P of 1% corresponded approximately to
the MD-score threshold of around 5 (see Fig. 5B), whereas the
same FLR values were observed for MD-score thresholds
around 15 in the synthetic library datasets (data not shown).
Typically, as the complexity of the dataset increases, the
score threshold corresponding to a particular fixed FLR value
(such as at 1%) also increases. The opposite trend observed
here suggests that the FLR-E/P may be underestimated.

This dataset was also used to further investigate the utility
of computing the site-level scores in the case of multiphos-
phorylated peptides. In total, about 4919 (27%) of all the
peptides (18,112) were multiphosphorylated. The delta score
threshold of 4.57 corresponded to a 1% FLR, and among
these, 23,642 sites were from the peptides surpassing the
threshold. In addition, nearly 15% more sites (3391) could be
reported as confidently localized (site-level delta scores pass-
ing the 4.57 score threshold) even though their peptide-level
delta scores were below that threshold (supplemental Fig.
S2). This shows that there were a significant number of pep-
tides with multiple phosphorylations, but not all the phospho-
sites on those peptides could be localized with confidence.

DISCUSSION

In this work we introduced LuciPHOr, a novel approach for
phosphosite localization and FLR estimation. LuciPHOr learns
the properties of good matched peaks from the highest qual-
ity spectra in such a way that the scoring dynamically adjusts
to varying peak properties across different types of instru-
ments. The method then computes a cumulative log-odds
ratio score for every theoretical phospho-permutation of a
peptide and reports the phospho-permutation with the high-

est score as the localization. It also derives confidence scores
at the site level to allow the extraction of additional sites on
multiphosphorylated peptides that are partially localizable.
When tested on two synthetic phosphopeptide library data-
sets, including a large dataset that has just become available
(24), LuciPHOr was able to estimate the FLR accurately in all
datasets.

With continuing improvements in mass spectrometry, the
number of identified phosphopeptides, and especially mul-
tiphosphorylated species, will continue to increase. As a re-
sult, proper scoring and FLR control should be regarded as
important components of data analysis. In this context, we
demonstrated statistically powerful scoring and accurate FLR
estimation using the target-decoy phosphosite localization
strategy. A major benefit of the peptide-level localization
scores computed by LuciPHOr is that these scores are log
odds ratios and thus are standardized across different spec-
tra, enabling straightforward estimation of the FLR with the
help of appropriately generated decoys. In addition, confi-
dence scores can be derived for individual sites and used for
localizing sites on partially localizable multiphosphorylated
peptides.

The key aspect of the decoy phosphosite generation pro-
cess, important for obtaining accurate FLR estimates, is to
ensure that a random match to a decoy site is equally as likely
as an incorrect match to a non-decoy site. Only under this
scenario is the proportion of localizations on the decoy sites
with a score passing a certain threshold representative of the
real FLR in the non-decoy data. It is inherently difficult to
generate the representative set of decoy modification sites
satisfying this condition, because the numbers of candidate
sites and actual phosphorylated sites on each peptide are
usually different. Nonetheless, because our method attempts
to score all possible decoy permutations, the FLR estimates

FIG. 5. Analysis of the mouse brain dataset. A, the estimated FLR plotted against LuciPHOr delta score thresholds. B, the estimated
number of spectra with correct site localization obtained using LuciPHOr plotted against the LuciPHOr-estimated FLR (black curve). Also
shown are the results obtained using MD-score plotted against the FLR, with the FLR estimated using the number of decoy localizations on
proline (FLR-P approach) and glutamic acid residues (FLR-E approach). The circles indicate the MD-score threshold of 10, and the triangles
the MD-score threshold of 5, with the corresponding FRL-P and FLR-E values being lower than the true FDR values observed at these same
score thresholds in the synthetic datasets.
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are at least likely to be on the conservative side of the true
FLR. In the two synthetic phosphopeptide datasets used in
this work, LuciPHOr’s FLR estimates were reasonably accu-
rate in the most critical region (and, as expected, more con-
servative beyond that point).

Although the principle and implementation vary across dif-
ferent methods, currently available localization tools all share
the common goal of assigning confidence scores for individ-
ual candidate sites. To do so, they contrast the best scoring
localization on the peptide of interest against the next best
alternative site on the same peptide. One key motivation
behind this work was to investigate the probabilistic assump-
tions behind the site localization process, including compu-
tation of site-level scores in the case of multiphosphorylated
peptides. A score for each serine, threonine, and tyrosine can
be computed as some form of likelihood of that residue being
phosphorylated in the peptide. For singly phosphorylated
peptides, this delta score represents the relative confidence
(based on the information in the MS/MS spectrum) of one site
compared with the next best site on the same peptide. How-
ever, this is not the case for multiply phosphorylated peptides:
a localization score obtained this way for one site is depend-
ent on the concurrent modification status of other sites. This
is because some, if not all, site-determining ions for one site
will have different mass shifts depending on the modification
status of the other sites. Thus, the probability that a particular
site is phosphorylated on a multiphosphorylated peptide is
the confidence score not of just that site alone, but of the
simultaneous configuration of all sites. In addition to the pep-
tide-level delta score as the main score, LuciPHOr provides
the site-level scores, which are useful for the identification of
partially localizable multiphosphorylated peptides. However,
it is important to bear in mind that considering these site-level
scores as confidence measures associated with specific sites
is a probabilistic approximation.

One of the main motivations behind the development of
LuciPHOr was that few existing methods directly estimate the
FLR in each and every dataset. From the user’s point of view,
an interpretable estimate of the statistical error is a useful
summary for determining a score threshold for reporting
phosphosite localization. To the best of our knowledge, direct
estimation of the FLR from the data was published only as a
part of the SLIP score method presented in Ref. 16. In that
work, the authors allowed proline or glutamic acid to be
phosphorylated in the database search and reported the fre-
quency of localization on each residue (P or E) as an estimate
of the FLR in a particular mouse dataset (31). In this work, we
presented an alternative decoy generation and FLR estima-
tion strategy and showed that it was able to provide accurate
estimates in the datasets tested.

To summarize, we believe that the method described in this
work provides an improved foundation for phosphosite scor-
ing and FLR estimation. We demonstrated the performance of
our algorithm on two synthetic phosphopeptide library data-

sets and on a mouse brain dataset representative of complex
protein samples. Our algorithm was able to identify more
correct phosphosites at equivalent FLRs than several repre-
sentative existing methods. Last but not least, the software
tool LuciPHOr has an important practical advantage: because
of its compatibility with the file formats used by the TPP suite
of tools, LuciPHOr allows the analysis of peptide identifica-
tions obtained using all commonly used database search
engines supported by that pipeline.

LuciPHOr was written for Linux in C�� and uses the
ProteoWizard library for reading mzXML, mzML, and other
open-source formats (32). The program is multithreaded and
is available for download online.
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