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OK, maybe the title is a little cheeky, but it does accurately and humorously convey a
valuable learning experience that I recently had: a large dataset is absolutely critical for
statistically significant results with tight confidence intervals. In this case, bigger really is
better! Of course, more accurate data is better too.

The Community Structure-Activity Resource (CSAR)1 periodically holds exercises to allow
scientists to test their docking and scoring methods. This issue of the Journal of Chemical
Information and Modeling presents the papers that resulted from our most recent exercise,
one based on blinded data. CSAR was very fortunate to receive large datasets of
unpublished protein-ligand binding data from Abbott and Vertex. My concern was that there
was too much data to use in an exercise; surely, it would take participants too long to
accurately calculate all the possibilities. To make the exercise tractable in a limited period of
time, I decided that we should use a smaller subset of data for the exercise and release the
full set after it concluded. Unfortunately, reducing the size of the dataset made the error
estimates very large, and it was very difficult to compare the results. To quote one of the
participants, “Thanks, but no thanks!” To address this issue, we asked that participants
submit papers to this issue of the Journal of Chemical Information and Modeling that
present both their initial, blinded results and results based on the full dataset.

Guidelines to help you plan ahead
In the medical and social sciences, studies that involve human subjects require a great deal
of oversight. This includes approval of the design of the study, number of subjects, and the
statistics proposed for analysis before any data are collected. In the field of computational
chemistry, statistics are usually considered at the end of the project. The worst do not
consider statistics at all, leading to erroneous conclusions. However, papers with rigorous
statistical analysis indicate a higher regard for the data and the potential information gained
from the research; they include estimated error bars, 95%-confidence intervals, p-values,
and maximal information coefficients.

Too frequently, we see papers that compare two computational methods, declaring one to be
superior when the size of the dataset is too small to support the conclusions. For instance, a
dataset of 200 complexes is too small to support the claim that one approach with a
correlation to experiment of Pearson R = 0.7 is superior to another with Pearson R = 0.6.
This may sound surprising to many, and it underscores the need to better educate our
community. Consider that squaring a Pearson R of 0.7 leads to R2 = 0.49 (in a linear least-
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squares fit, the coefficient of determination – R – is equal to the square of the Pearson
correlation coefficient). This means that the “better” method only captures half of the
experimental trend; half of the variance is not explained. A different slice through protein-
ligand space with a different set of 200 complexes could easily lead to both methods having
the same correlation to experiment.

Below, I outline the linear regression that is typically used to evaluate methods, the simple
least-squares analysis used to compare a calculated binding affinity to the actual
experimental value. One issue that has received attention recently is the accuracy of
experimental data and its influence upon this type of analysis2. Of course, highly accurate
data with low error is essential to developing good methods. Here, I describe the influence
of many factors on linear regression and highlight the limits that they impose. To improve
our field, this information should be considered before initiating any study.

Basics of linear regression
Let us assume that you have a set of calculated affinities kd(calc)i for a given set of N
protein-ligand complexes. Those complexes are accompanied by experimentally determined
affinities kd(expt)i. The calculated values are predictions, so they are plotted on the X-axis.
The experimental values are plotted on the Y-axis. The data is usually normally distributed
along the y-axis. A simple, least-squares linear regression, starts with a fit line that must
intersect the point (x¯, ȳ, the average calculated and experimental values. The fit is then
dictated by finding a slope that minimizes the squared distances in the y-direction between
the data points and the fit line (ie, the residuals in Figure 1).3 A tighter correlation means
better agreement between the data points and the fit line; therefore, there are smaller
residuals and a tighter distribution of those residuals around the value zero. A tighter
distribution means that there is a smaller standard deviation of the distribution of the
residuals for the data points (ie, smaller σres) and a higher R. As noted above, R2 is the
percentage of the total variation that can be fit by the line. While there is an inherent
relationship between R and σres, there is no inherent relationship of R and σres to the slope
and intercept of the fit line. Weak and tight correlations can be obtained for lines with any
slope and intercept, and the scatter plots in Figure 1 are meant to show this variation.

A more predictive method will have a tighter correlation to the experimental values, and we
typically designate methods with larger R2 as better than methods with lower R2. A perfect
method would have R2 = 1.0, slope = 1.0, and intercept = 0. However, a fit with a slope of 1
and intercept of 0 does not necessarily have a high R2; that is dictated by the spread of the
points around the line. High R2 can be obtained for any slope and intercept, provided there is
a good linear relationship. A method with a high R2 and any slope/intercept is preferable
because it is more predictive than a method with low R2 but a slope and intercept near 1 and
zero, respectively. The one with high R2 is more predictive because it does a better job at
relative ranking. This is further underscored if we consider examples where the fit lines
happen to have a slope ～1 and an intercept of ～0, but with varying values of R2. In these
cases, σres is also the root mean squared error (RMSE) for the method, and clearly, the cases
with lower R2 have higher RMSE. In cases where the slopes ≠ 1 and intercepts ≠ 0, σres is a
“relative RMSE” or an RMSE of the rescaled values from the predictive method.

Influence of experimental error on linear regression
It is important to recognize that the value of σres is a “relative RMSE” for the scoring
method, not a measure of the error in the experimental measurements themselves. The range
of affinities in Figure 1 is quite large, much larger than the inherent errors in the methods.
This is an important property for linear regression.
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Experimental error can be incorporated as error bars in the y-direction if there is a need to
address some difference in uncertainty between different data points. This simply calls for a
weighted linear regression. The weights bias the fitting to preferentially minimize the
residuals of the points with the smallest error. Though straightforward, this is usually not
used in scoring function papers because the error of the data points is assumed to be roughly
the same across the whole set. If all points have the same error, they all have the same
weight, so no bias or weighting is actually necessary. However, we all know that the error in
the experiments is a very important factor in developing good scoring functions.

Instead of concentrating on error in each data point, it is important to recognize that the
inherent experimental error limits the maximum value that Pearson R can take (Rmax).2,4

Each protein-ligand complex has a binding affinity, but experimental error is always
introduced2 in measuring the values: ΔGbind(expt)i = ΔGbind(true)i + err(expt)i. The perfect
scoring function would reproduce ΔGbind(true), but even if that were possible, the
experimental error would always give some spread to the data (R2 ≠ 1). The RMSE for the
perfect scoring function would always be equal to σexpt. Obviously, smaller experimental
error would lower the RMSE, improve the agreement between the x and y values, and
increases the possible values for R2.

What may be less obvious, especially at the onset of a project, is that the ratio between the
experimental error and the range of experimental data imposes the greatest limitation. If you
have data distributed over a range that is equal to your experimental error, you will simply
have a random circle of points with R2=0. Larger ranges of experimental data make it
possible to obtain non-zero values for R2. Brown et al.5 estimated that a reliable
experimental assay has an error of ～0.3 pIC50 or a factor of 2 in IC50. They simulated IC50
data with random error in both experimental and computational values, using bootstrapping
to show that at least 50 data points with ≥3 orders of magnitude in affinity were required to
obtain a good fit to experimental data (with σexpt=0.3 pIC50). Obviously, the actual values of
R were dependent on the simulated error in the proposed prediction method; after all, higher
error always leads to smaller R.

Rmax is simply the limit of a perfect scoring function, not an actual value that should be
obtained. If a scoring method fits experimental data with R near or in excess of Rmax, the
model is clearly over-fit. The only other possibility is dumb luck, the kind that wins the
lottery or gets struck by lightning… and lightning won't strike twice when the method is
applied to a new set of data!

Recently, Kramer et al.2 have elegantly derived the analytical form for Pearson Rmax:

(1)

where Rmax is dictated by the distribution of experimental error and the distribution of all
affinity data used in the analysis. The derivation assumes that all err(expt)i are independent
and all are distributed with σexpt. This group also did a careful curation of ChEMBL6 to
identify protein-ligand complexes that had affinity data measured by more than one
independent group. The study involved a heroic effort to identify all unique data (repeated
citations of the same data were eliminated), and they removed all straightforward sources of
disagreements in the data (unit errors, typos, etc). Their examination of the reproducibility
of data allowed them to estimate the inherent experimental uncertainty across multiple data
sources. For their filtered set from ChEMBL, σexpt was 0.54 pKi and Rmax

2 was 0.81 for an
ideal scoring function. (Up to a 3-fold difference in Kd, equal to 0.5 pKd, is considered
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agreement by experimentalists,4 and the agreement of this anecdotal value with the
ChEMBL measurement of σexpt is surprising!)

As is appropriate, the analytical form of Rmax in Eqn 1 is independent of the actual values of
the data (ie, it doesn't matter if the data is for weak binders or tight binders). If σexpt = σdata,
Rmax = 0 as we noted for the example of a random circle of points. The limit Rmax=1 is only
possible when either there is no experimental error or σ expt ≪ σ data. The suggested
guideline of Brown et al.5 translates to an Rmax

2 = 0.89 (σexpt=0.3 and σdata=0.9 for 50
points evenly distributed over 3 pIC50). It should be noted that Kramer et al. have also done
a follow-up analysis of ChEMBL's IC50 data which contains important information on
comparing IC50s and pKi data.7 What is most important is that Rmax is independent of the
number of data points in this analytical form. This is correct because the value of R itself is
not impacted by the number of data points (Figure 2).

Influence of the number of data points
Though the value of R is not influenced by the number of data points, the confidence
interval of R is strictly dictated by the size of the dataset and the level of confidence you
choose. The most common value used is the 95% confidence interval, but there is nothing
magical about that choice. In fact, a 90% confidence interval is probably fine, considering
the experimental error inherent to the protein-ligand binding data that is used to train and
test docking/scoring methods.

It is important to recognize that the converse is true: the size of the dataset needed can be
dictated by R and the level of confidence desired.8 If you want to have a dataset where you
are 95% confident in the statistical significance of two methods differing by at least ΔR=0.1
(ie, R=0.85 vs R=0.75 or R2=0.72 vs R2=0.56), you would need to compile a dataset of at
least 298 complexes (see Table 1). Of course, lowering the statistical confidence lowers the
minimum number of required complexes. The number of complexes increases with
requiring a tighter ΔR (ie, R=0.85 vs R=0.80) or evaluating lower Pearson R values (eg,
R=0.75 vs R=0.65). The notation in ref 8 is a bit different, but it derives that the minimum
number of data points required can be calculated by

(2)

where R is the smaller correlation coefficient in the comparisons above and the value of zα/2
is dictated by the statistics of normal distributions: 1.64 for 90% confidence, 1.96 for 95%,
and 2.58 for 99%. Values for Pearson N are given in Table 1. Note that zα/2=1.0 is 67%
confidence or simply the ±σ that is estimated by experimentalists using measures in
triplicate (only n = 3!).

In our first benchmark exercise for the community, we found that the best scoring methods
estimated binding affinity with a correlation to experiment of R ≈ 0.75.9 Most of the
methods ranged R = 0.55-0.65 and there was no statistical significance in their difference
from one another. The reader can see in Table 1 that many hundreds, if not thousands, of
structures would have been required to accurately differentiate their performance.

To calculate the confidence interval of R, a Fischer transformation must be used as shown in
Eqns 3-6.8 The confidence interval depends upon the number of data points N and the value
of zα/2 that is used.
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(3)

(4)

The minimum and maximum of the confidence interval are determined by z'low = z(R) –
zα/2.and z'high = z(R) + zα/2, respectively. These are translated back to R values by Eqns 5
and 6.

(5)

(6)

It is important to remember that the difference in two 95%-confidence intervals is not the
same as a 95%-confidence in the difference between two values of R. It is most appropriate
to evaluate differences in R through the residuals from the linear regression (see Figure 1).
The difference in the distribution of the residuals can be evaluated using Levene's F-test for
the equality of variance. In essence, very minor overlap in the confidence intervals does not
weaken the statistical significance.

Evaluating methods using non-parametric assessments
There are also the non-parametric measures of correlation which evaluate rank ordering:
Spearman ρ and Kendall τ. These values range from −1 to 1, same as Pearson R. Spearman
ρ and Kendall τ are classified as non-parametric because they just require monotonic
changes in the ranking, but the relationship is not required to be linear like it is for Pearson
R. The difference between ρ and τ is the penalty for misranking. Kendall τ simply notes the
misrank with a penalty of 1, but Spearman ρ penalizes by how badly misranked a data point
is. This makes Spearman ρ more sensitive to misrankings, particularly for systems where a
lot of data may be clustered in subregions of the overall distribution. There are a few flavors
of Spearman ρ that differ slightly on their treatment of ties in the ranking. The numbers of
data points required are dictated by Eqns 7 and 8. Tables 2 and 3 provide the counts of N for
different ρ, τ, and confidence intervals. Counts for Kendall τ tau are less than those for
Pearson R, but Spearman ρ requires more.

(7)

(8)

Conclusion
As scientists, we are taught to use linear regression in our undergraduate courses, but it is
usually presented in a black-box fashion without information about the caveats and
limitations. I believe that our use of “hard” data has created a false sense of security that is
not shared by our colleagues in the “soft” sciences. Social and medical scientists who use
human subjects have relied very heavily on statistics and careful experimental design to try
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to reach the most solid conclusions. I hope that the data provided here can help our
community to take a step back and carefully analyze their assumptions and limitations.

The issues presented here may help to explain the difference in the success rates for QSAR
methods over docking and scoring. Both aim for accuracy over the same affinity ranges
(roughly the same σdata), but QSAR methods are typically trained on congeneric series of
data for one protein system, often from one data source. QSAR approaches are usually
limited in their description of chemical space, but their σexpt is likely low. The distribution
of experimental error is minimized with the QSAR approach, definitely in comparison to
training a scoring method on affinities for many proteins, diverse ligands, and multiple
assays. After all, experimental error bars are underestimates of the true experimental
uncertainty, and this is exacerbated in heterogeneous data. In the end, this makes the QSAR
ratio of σdata / σexpt, and subsequently Rmax, rather large. It is also possible that this success
might come from the larger sets of data used to train QSAR individual models, which leads
to greater statistical significance.
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Figure 1.
Approximately 300 data points are presented for three theoretical methods, pKd (Calculated)
with differing correlations to the experimental binding affinities. The residuals (top) for all
the data points have a normal distribution around zero. The characteristics of the residuals
(bottom) are well defined, including the standard deviation (σres in red). Higher correlations
lead to larger R2 and smaller σres and weaker correlations lead to lower R2 and larger σres,
but the distributions remain Gaussian in shape. When the slope of the fit line is ～1 and the
intercept is ～0, then σres is equal to RMSE, as in the case of the right-most frames.
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Figure 2.
Two sets of predictions are compared. The set on the left has ～300 protein-ligand
complexes, and the set on the right has ～150. The set on the right is simply a random subset
of the larger set on the left. The error in the method (RMSE) is still the same, so the value of
R is still the same. Technically, σexpt and σdata are still the same, so even Rmax would be
unchanged.
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Table 2

The minimum number of data points required to accurately compare models with different Spearman ρ.

ρ Δρ ≥ 0.1 95% confidence N Δρ ≥ 0.1 90% confidence N Δρ ≥ 0.05 95% confidence N Δρ ≥ 0.05 90% confidence N

0.95 NA NA 88 63

0.90 81 58 315 222

0.85 165 116 648 455

0.80 266 188 1055 740

0.75 380 267 1511 1059

0.70 501 352 1994 1397

0.65 624 438 2486 1742

0.60 746 523 2974 2083

0.55 864 606 3446 2414

0.50 976 684 3893 2727

0.45 1080 757 4309 3018
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Table 3

The minimum number of data points required to accurately compare models with different Kendall τ.

τ Δ τ ≥ 0.1 95% confidence N Δ τ ≥ 0.1 90% confidence N Δ τ ≥ 0.05 95% confidence N Δ τ ≥ 0.05 90% confidence N

0.95 NA NA 30 22

0.90 29 21 101 72

0.85 56 41 211 149

0.80 92 65 353 248

0.75 133 94 519 364

0.70 179 127 703 494

0.65 228 161 900 632

0.60 280 197 1105 775

0.55 331 233 1311 919

0.50 382 269 1515 1062

0.45 432 304 1713 1201
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