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Abstract

Quantitative SPECT techniques are important for many applications including internal emitter
therapy dosimetry where accurate estimation of total target activity and activity distribution within
targets are both potentially important for dose-response evaluations. We investigated non-local
means (NLM) post-reconstruction filtering for accurate 1-131 SPECT estimation of both total
target activity and the 3D activity distribution.

We first investigated activity estimation versus number of ordered-subsets expectation-
maximization (OSEM) iterations. We performed simulations using the XCAT phantom with
tumors containing a uniform and a non-uniform activity distribution, and measured the recovery
coefficient (RC) and the root mean squared error (RMSE) to quantify total target activity and
activity distribution, respectively. We observed that using more OSEM iterations is essential for
accurate estimation of RC, but may or may not improve RMSE.

We then investigated various post-reconstruction filtering methods to suppress noise at high
iteration while preserving image details so that both RC and RMSE can be improved. Recently,
NLM filtering methods have shown promising results for noise reduction. Moreover, NLM
methods using high-quality side information can improve image quality further. We investigated
several NLM methods with and without CT side information for 1-131 SPECT imaging and
compared them to conventional Gaussian filtering and to unfiltered methods. We studied four
different ways of incorporating CT information in the NLM methods: two known (NLM CT-B
and NLM CT-M) and two newly considered (NLM CT-S and NLM CT-H). We also evaluated the
robustness of NLM filtering using CT information to erroneous CT.

NLM CT-S and NLM CT-H yielded comparable RC values to unfiltered images while
substantially reducing RMSE. NLM CT-S achieved —2.7 to 2.6% increase of RC compared to no
filtering and NLM CT-H yielded up to 6% decrease in RC while other methods yielded lower RCs
than them: Gaussian filtering (up to 11.8% decrease in RC), NLM method without CT (up to 9.5%
decrease in RC), and NLM CT-M and NLM CT-B (up to 19.4% decrease in RC). NLM CT-S and
NLM CT-H achieved 8.2 to 33.9% and -0.9 to 36% decreased RMSE on tumors compared to no
filtering respectively while other methods yielded less reduced or increased RMSE: Gaussian
filtering (up to 7.9% increase in RMSE), NLM method without CT (up to 18.3% increase in
RMSE), and NLM CT-M and NLM CT-B (up to 31.5% increase in RMSE). NLM CT-S and NLM
CT-H also yielded images with tumor shapes that better-matched the true shapes than other
methods. All NLM methods using CT information were robust to small misregistration between
SPECT and CT, but NLM CT-S and NLM CT-H were more sensitive than NLM CT-M and NLM
CT-B to missing CT information.
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1. Introduction

There is much interest in quantitative SPECT techniques for accurate estimation of both
total target activity and activity distribution within targets. For example in internal emitter
therapy dosimetry, SPECT-derived total target activity is used to determine the mean
radiation absorbed dose to tumor and normal organs while the 3D activity distribution is
used to determine the dose-volume histogram. In dose-response evaluations, the dose
measure of interest is not only the mean absorbed dose to the target, but also other summary
measures from dose-volume histogram analysis (Sgouros et al. 2003, Dewaraja, Schipper,
Roberson, Wilderman, Amro, Regan, Koral, Kaminski & Avram 2010, Cicone et al. 2013)

Statistical image reconstruction such as the unregularized ordered-subset expectation-
maximization (OSEM) (Hudson & Larkin 1994) algorithm has been implemented in many
clinical SPECT scanners. Since unregularized image reconstruction is ///-posed, using many
iterations usually leads to very noisy images. For visually pleasing low-noise images, one
may use early stopping criteria or post-reconstruction filtering. However, these images may
not provide accurate quantification. Early stopping rule may not yield detailed images since
more iteration is required to recover more image detail. Post-reconstruction filtering such as
Gaussian filter may blur images. Thus, filter generally is not recommended for quantifying
total target activity, but may be desirable to suppress noise effects when estimating activity
distributions to calculate 3D dose metrics (Dewaraja et al. 2012).

Non-local (or non-stationary) information has been very useful for image noise reduction.
For example, the image-dependent Metz filter yielded improved quantification for nuclear
medicine imaging (Metz & Pizer 1971, King et al. 1988). Recently, non-local means (NLM)
filtering has been proposed (Buades et al. 2005) and this filter yielded excellent noise
reduction results compared to conventional local filters such as Gaussian filter. NLM filters
also have been used as a regularizer in image reconstruction (Zhang et al. 2010). Moreover,
using these NLM methods with high-quality side information can improve image quality
further (Deledalle et al. 2010, Rousseau 2010, Chan et al. 2010, Vunckx et al. 2012, Nguyen
& Lee 2012). Unlike other SPECT image reconstruction methods using CT side information
(Fessler et al. 1992, Gindi et al. 1993, Dewaraja, Koral & Fessler 2010), these NLM-based
methods using side information do not require CT image segmentation. Multi-modal
imaging systems such as PET-CT, PET-MR, or SPECT-CT can potentially benefit from
these NLM methods to improve PET or SPECT images. SPECT-based dosimetry in non-
Hodgkin lymphoma (NHL) patients undergoing I1-131 radioimmunotherapy (RIT) is another
natural application for these enhanced NLM methods since a high resolution CT image is
available from the SPECT-CT system (Dewaraja, Schipper, Roberson, Wilderman, Amro,
Regan, Koral, Kaminski & Avram 2010).

Our objective is accurate SPECT estimation of bot/ total target activity and the 3D activity
distribution. We performed simulations using the XCAT phantom (Segars et al. 2008) with
uniform and non-uniform tumors, and measured the recovery coefficient (RC) and the root
mean squared error (RMSE) to quantify total target activity and activity distribution,
respectively. We first investigated activity estimation versus iteration of OSEM
reconstruction. We then investigated various post-reconstruction filtering methods to
suppress noise at high iteration while preserving image details. We studied several NLM
methods with and without CT side information for 1-131 SPECT-CT imaging and compared
them to conventional Gaussian filtering and to unfiltered methods. We studied two existing
methods and two new methods for incorporating CT side information in NLM methods. We
also tested the robustness of all NLM methods using CT information by evaluating the
methods when there is misregistration between SPECT and CT and when there is missing
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CT information (e.g., tumors with non-uniform SPECT uptake, but with the non-uniformity
not evident on CT).

2. Method

2.1. Statistical image reconstruction for SPECT

Statistical image reconstruction methods for emission tomography can yield better image
quality than other non-iterative algorithms. The usual form of statistical image
reconstruction is to perform the following constrained optimization with respect to an image
f:
> A .
f =argminL(y|f) (3
>0

where y is a measured sinogram data and L denotes a negative Poisson log-likelihood
function. The negative Poisson log-likelihood is defined as follows:

L(ylH)=2_5:(F) - yilogti(£)

where y;is the th element of the measurement y and

7:(f) £ [Af]+si

where A denotes the system model and s;is a scatter component for the th measurement.
Eq. (1) can be solved efficiently using algorithms such as OSEM algorithm (Hudson &
Larkin 1994).

For SPECT imaging, we incorporated a non-uniform attenuation map and a depth-dependent
point spread function model including penetration tails (Chun, Fessler & Dewaraja 2013) in
the system matrix A. In our simulation, we assumed known s;, but in practice, this scatter
component can be obtained by using a triple energy window (TEW) method or by Monte
Carlo methods (Dewaraja et al. 2006).

Unregularized image reconstruction in Eq. (1) is ///-posed. So, converged maximum
likelihood (ML) images are very noisy. There are usually three approaches to deal with this
noise. First of all, one can stop iteration before convergence. However, more iteration may
be necessary for recovering image details. Secondly, one can use a post-reconstruction filter
(e.g., Gaussian filter) to reduce noise. Lastly, one can add a regularizer to Eq. (1) (e.g.,
quadratic roughness penalty). However, using non-local regularizers for 3D images is
computationally very expensive (Chun, Dewaraja & Fessler 2013). In this paper, we focus
on post-reconstruction filters with and without high-quality CT side information.

2.2. Non-local means filtering

Recently, NLM filters have been proposed that yield better image quality than other
conventional local filters (Buades et al. 2005). Many post-reconstruction filters are
essentially weighted averages of image intensities. For example, the weight of Gaussian
filter is determined by the distance between two voxels based on the assumption that images
are smooth. In this case, the number of voxels that can be averaged with positive weights is
limited and wrong intensities can be averaged around sharp edges. Instead of using the
distance between voxels for weight calculation, NLM filters use the similarity measure
between two “patches” around two voxels. The assumption of NLM filters is that two voxels
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will have the same image intensities if the patches around these two voxels are similar.
Therefore, unlike conventional local filters, NLM filters can average correct image
intensities over many more voxels in principle.

For a given noisy (SPECT) image f from Eq. (1), let us denote N jfﬂthe patch of f centered at
the jth voxel. This patch is a vector of image intensities on voxels around the jth voxel.
Then, the similarity of two patches can be measured using a function /x as follows:

wi(i, j|F) 2 (| N F — NG F|), @

A
]| =

2
where ijﬂ‘ for a vector x. One usual choice for /(%) can be (Buades et al. 2005)

t2
ht (t):exp <— W) 4)
f

where o is a design parameter and A% is the number of voxels in the patch. Another choice
can be

Lt <o /Ny
"f(t)—{ 0150 VN ©

or a polynomial to approximate Eq. (5) with a finite support (Duval et al. 2011). The
parameter o5 can be varying locally (7.e., o5 depends on /7). The similarity metric in Eq. (3)
will be close to 1 if two patches are similar and will be close to 0 if two are very different.

NLM filtering methods use the similarity measure between two patches for weighted
averaging. The NLM filtered image at the th voxel can be defined as follows:

~

n (4,51 F) =
[fNLM]i: wf—’\[f]
j;i S jreawi(i, 3'1F) ©

where Qjis the search neighborhood, /7.e., the set of voxels around the ith voxel. Q;can be an
entire domain.

There are a few factors in Eq. (6) that determine the image quality of f,A\”_M (Duval et al.
2011). Firstly, the size of the patch N f should be large enough to measure the similarity
between two patches in high noise, but patches that are too large could fail to preserve small
details. Secondly, the large number of voxels in Q;can increase the chance to have more
similar patches so that one may reduce noise further, but too large Q; will increase
computation complexity significantly and it may also introduce more error when one uses
Eq. (4) since it still assigns a small but nonzero weight for two very dissimilar patches. This
accumulated small error can not be ignored for large Q;. Lastly, small o preserves details,
but at the same time, it also increases noise. There has been some effort to determine
optimal parameters for Eq. (6) for some limited cases (Buades et al. 2005, Duval et al.
2011). For example, one can determine o for Gaussian noise case. However, for SPECT
reconstructed image, there is no known method to determine all these parameters.
Furthermore, the number of iterations in Eq. (1) for f will also determine the accuracy of Eq.
(3) and the quality of Eq. (6). In this paper, we determine these parameters empirically.
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2.3. Non-local means filtering with side information

It is important to accurately measure the similarity between two patches to improve the
performance of NLM filter in Eq. (6). However, it is challenging to obtain accurate weight
in Eq. (3) from a noisy SPECT image. One may be able to measure robust similarity
between two patches by using large patches, but but they may not preserve image details.

One may improve the accuracy of this similarity measure further for small patches by using
side information that is closely correlated with noisy reconstructed image f. Since in
SPECT-CT imaging, an anatomical CT image denoted by g is available for attenuation
correction and tumor delineation, we can use this additional information to improve image
quality. We can define the weight from CT image similar to Eg. (3). Let us denote M g the
patch of CT image g centered at the j#th voxel. Then, the similarity of two CT patches can be
measured using a function /; as follows:

waliy jlg) £ ha(|Mig — Mig) @

where

t2

where gy is a design parameter and A, is the number of voxels in the patch M g.

There has been some research illustrating that combining the two weights of Eq. (3) and Eq.
(7) can improve image quality of NLM filtered image. One usual form of incorporating
anatomical side information into NLM filtering is (Deledalle et al. 2010)

wf(i>j|f)wa(i’j|g) £
= — fl;
2 i Funtioga) O

I:-fNLM CT—I\I]i

and we call this NLM CT-M (M for multiplication).

A method similar to Eq. (9) was proposed inspired by Bowsher prior (Bowsher et al. 2004)
and it used wa(/, /ig) = 1 when g is inbetween pre-defined two values and wj(/, /1g) = 0
otherwise (Chan et al. 2010). Similarly one can also design Bowsher prior-based NLM
weights for post-reconstruction filtering as follows:

1,first M smallest| M;g — M,g|/for eachi
0,0.w.

wa (4, j|g)= { (10)

By applying Eg. (10), one can rewrite Eq. (9) as follows:

F (4, 3| f) 5
[fNLM CT—B]/L': e —— [ fl.
jegg)zj/%(g)wf(z,f|f> ;e

where A[Q) is the set of the voxels among the first M/smallest IM,g — M gl for the #h voxel.
We call this NLM CT-B (B for Bowsher prior).

The NLM weights Egs. (7) and (10) use CT patch information differently. Eq. (7) preserves
similarity information by using a strictly monotone function, but Eq. (10) does not preserve
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it by using a step function (or thresholding). However, these two weights are used in a
similar way in Egs. (9) and (11) by multiplication.

We consider a different form of incorporating side information, which is to add the two
weights of Eq. (3) and Eq. (7). A new NLM filtering using these two weights can be defined
as follows (Chun et al. 2012):

7 y_ (- 7w (i, | ) +7wais 4l9)
Faim s i — = ——
[ } jEQ; Zj’eQi(l - T)wf(la.]/|f)+7—wa(2a]/|g)

[-ﬂ]‘ (12)

where T is a design parameter to determine how much we want to rely on anatomical
information. For example, we can use T close to 1 if we can trust the anatomical information
more than the emission information (e.g., high correlation between anatomical and emission
information, high noise in emission data). In this paper, we set T to be 0.5 for simplicity,
thereby giving equal weight to the emission and anatomical information. We call Eq. (12)
NLM CT-S (S for summation).

We can also combine Eq. (12) with the concept of Bowsher prior in Eq. (10) as follows:

~

NLM CT—HI; icata) Zj’EAi(g)(l — Twg (i, §'| F)+Twa (3, 5'|g)

[f]; @3

and we call this method NLM CT-H (H for hybrid).

Using accurate weights for the NLM filter in (6) is important to yield high-quality filtered
images. However, these weights can not be accurately calculated from the noisy SPECT
image alone. When the associated CT image has high SNR and is highly correlated with the
noiseless SPECT image, then it should be possible to improve the accuracy of the NLM
weights using CT information. In this case, the weights in Egs. (9) and (11) may be
suboptimal because the weights from CT can be contaminated by the weight from poor-
quality SPECT due to the multiplication operation. In contrast, the weights in Egs. (12) and
(13) can be more suitable than the weight in Egs. (9) and (11) since the weights from CT and
SPECT are combined separately by summing. For an extreme example, suppose that we
have an extremely noisy SPECT image and a CT image that is correlated perfectly with the
noiseless SPECT image. In this case, for two similar patches, the NLM weights between
them are wg~ 0 due to high noise in SPECT and w; =~ 1 due to high SNR of CT. For NLM
CT-M, wgw, = 0 so that we may not benefit from the CT information, but for NLM CT-S,
0.5wg+ 0.5m;~ 0.5 for T = 0.5 so the CT information still has influence even in the midst
of high noise in SPECT.

3. Evaluation and Parameter Selection

We simulated a 3D SPECT-CT system with attenuation map, collimator-detector response,
and scatter fraction. We used the XCAT phantom (Segars et al. 2008) to generate the true
activity map and CT images with five uniform spherical tumors as shown in Figure 1 (a), (b)
and with two non-uniform tumors (non-uniformity in both activity map and CT) as shown in
Figure 1 (c), (d). The uniform tumor sizes were 9, 16, 32, 113, and 177 cc, while the non-
uniform tumor sizes were 113 and 177 cc. The activity concentration ratios for the various
structures were liver 3 : kidney 6 : uniform tumor and outer shell of non-uniform tumor 8 :
inner core of non-uniform tumor 4 : rest of the body 1. These activity concentration ratios
and tumor sizes were chosen to reflect typical imaging data of NHL patients following 1-131
tositumomab RIT for more realistic simulation (Dewaraja et al. 2005, Dewaraja, Schipper,
Roberson, Wilderman, Amro, Regan, Koral, Kaminski & Avram 2010). The dimensions of
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the SPECT and CT images were 128 x 128 x 128, 4.83mm3 voxel size and 256 x 256 x 256,
2.43mm3 voxel size, respectively. We generated SPECT projection data using a system
matrix that incorporates the non-uniform attenuation maps and full collimator-detector
response including penetration tails (Chun, Fessler & Dewaraja 2013). After adjusting the
total number of counts to be similar to the total number of counts in post-therapy SPECT
imaging following 1-131 tositumomab RIT (about 300K counts per slice for primary and
300K counts per slice for scatter), we added Poisson noise.

We evaluated the image quality using the root mean squared error (RMSE) between the true
and the reconstructed image of the whole field of view (FOV) and the RMSE of five
spherical lesions (ROI). RMSE was normalized by the mean value on the FOV and ROlI,
respectively. We also used the recovery coefficient (RC) for ROI defined as follows:

RC 2 Count in ROI(recon)
~ Count in ROI(true)

and we assume that reconstructed counts are proportional to the image activity.

We set the patch size to be 3 x 3 x 3 voxel, which is the smallest patch size we can use to
preserve small details of image. We also set the search neighborhood sizetobe 7 x 7 x 7
voxel since this was the largest size that the memory in our system could handle.

We determined the other filter parameters experimentally as follows. First of all, we only
selected 21 slices of the 3D volume containing three spheres near kidney to reduce
computation complexity. Then, we chose parameters to minimize the following modified
RMSE using a function p

MRMSEéRMSEer(Count in ROI(recon)/Count in ROI(true)) (14)

where the count ratio below 85% and above 115% is discouraged by the following function
Jor

(t —0.85)%,¢<0.85,
p(t)=14 0,0.85 < t<1.15,
(t —1.15)% ¢ > 1.15.

We chose the smallest tumor as ROI and determined filter parameters to minimize Eq. (14)
for all filters. We added the function pto preserve contrast of small spheres since minimum
RMSE of FOV can be sometimes achieved by sacrificing contrast of small tumors.

These are design parameters for each filter: the width of Gaussian kernel (Gaussian filter), of
(NLM filter), of & 0, (NLM CT-M and NLM CT-S filters), the size of the set A{(g) (or M)
(NLM CT-B filter), and 0¢ & 0, & M (NLM CT-H filter).

4. Simulation Results
4.1. Unregularized OSEM

We reconstructed an image with uniform tumors using conventional unregularized OSEM in
Eq. (1) with up to 100 iterations (6 subsets). Then, we calculated the RMSE of FOV, the
RMSE of ROIs (5 tumors), and the RC of ROIs for each iteration. Figure 2 shows the RMSE
of FOV, RMSE of ROIs, and RC of ROIs versus iteration. More iteration in image
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reconstruction is usually required to recover more details, but also causes increased noise
level. Since recovering more details decreases RMSE of FOV and higher noise increases
RMSE, the minimum RMSE of FOV was achieved at 24 iteration in our simulation as
shown in Figure 2 (a). This “trade-off” can be different for different ROIs, so the minimum
RMSE of ROI was achieved at different iteration (usually more than 24 iteration) for each
tumor as shown in Figure 2 (b). Unlike RMSE, RC of ROls is not usually affected by noise,
but by recovered details since the definition of RC contains averaging operation over ROI.
Thus, the RC of ROI is increasing over iteration for each tumor as shown in Figure 2 (c).

Figure 3 shows unregularized OSEM images of XCAT phantoms with five uniform tumors
(a) and with two non-uniform tumors (b) at 24 and 100 iterations. This figure visually shows
the noise-detail trade-off shown in Figure 2. Images at 100 iteration contain more noise than
images at 24 iteration. In Figure 3 (a), we can observe artifacts on large uniform tumor at
100 iteration (ringing artifact). However, it seems that less details are recovered at lower
iteration. For example, we can not observe the inner part of large non-uniform tumor at 24
iteration as shown in Figure 3 (b), but this feature is visible at 100 iterations.

Tables 1, 2, and 3 show the quantification values (RC, RMSE) of unregularized OSEM
images at 24 and 100 iterations for the phantoms with uniform and non-uniform tumors. We
observed that more iteration is essential for accurate estimation of total target activity. Only
61.3% of RC was achieved for the smallest tumor (9 cc) at low iteration (24 iteration, 6
subsets), but 78.2% of RC was achieved at high iteration (100 iteration, 6 subsets).
However, more iteration of OSEM reconstruction may or may not improve activity
distribution estimation since RMSE of ROIs may increase or decrease for each tumor.

4.2. NLM filtering

Unregularized OSEM images usually contain details and noise together. An ideal filter
should suppress noise while preserve details. We applied NLM filter in Eq. (6) and
conventional Gaussian filter to unregularized OSEM images. These filters do not use CT
information.

Figures 4 (a) and 5 (a) show NLM filtered images at 24 iteration. However, Tables 1, 2, and
3 show that NLM filtering did not change RMSE and RC values much at low iteration.
Similar results were observed for Gaussian filtering.

At 100 iteration, Figures 4 (b—c) and 5 (b—c) show that NLM filtering method yields less
noisy images than conventional Gaussian filtering method for both uniform and non-uniform
tumors. One may reduce noise further for Gaussian filtering by adjusting parameters, but in
that case, it may also blur details more. Tables 1 and 3 show that RCs of NLM filtering are
higher than RCs of Gaussian filtering for both uniform and non-uniform tumors. Tables 2
and 3 also show that NLM filtering can achieve better global noise reduction (lower RMSE
of FOV) than Gaussian filtering. However, Gaussian filtering yielded better activity
distribution estimation within targets (lower RMSE of ROI) than NLM filtering for both
uniform and non-uniform tumors.

NLM filtering requires calculating weights in Eq. (3), but NLM filters at 100 iteration obtain
their weights from noisy images as shown in Figures 3. In order to study the importance of
these NLM weights, we calculated the NLM weights from the true image (true weights) and
then performed NLM filtering in Eq. (6) at 100 iteration. Figures 4 (d) and 5 (d) show that
NLM filtering methods with true NLM weights yield superior image quality among all NLM
and Gaussian filtering methods for both uniform and non-uniform tumors. Tables 1 and 3
show that this ideal NLM filtering does not compromise the accuracy of total target activity
estimation. RCs of this NLM filtered image are higher than or comparable to RCs of original
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unregularized OSEM image whereas other NLM and Gaussian filtering methods lowered
RC values. Tables 2 and 3 show that NLM filtering with true weights can achieve minimum
RMSE of FOV as well as minimum RMSE of ROIs for both uniform and non-uniform
tumors among all post-reconstruction filtering methods without CT information for almost
all tumors. This simulation implies that improving the accuracy of NLM weights in Eq. (3)
may lead to improved quantification in SPECT imaging.

4.3. NLM filtering with CT side information

We applied NLM filters using CT side information in Egs. (9), (11), (12), (13) to
unregularized OSEM images at 100 iteration. Figures 6 and 7 show filtered images with
uniform and non-uniform tumors using four different methods. The edges in these images
are sharper than those in NLM filtered images without CT side information or Gaussian
filtered images in Figures 4 and 5. Among four methods using CT information, NLMCT-S
and NLMCT-H yielded better boundary shape than NLM CT-B and NLM CT-M for the
inner core of non-uniform tumors as shown in Figure 7.

Quantification results of NLM CT-S and NLM CT-H show substantial improvement in RC
and RMSE over other methods. Tables 1 and 3 show that NLM CT-S and NLM CT-H
yielded the best RC among all methods and achieved —2.7 to 2.6% and —6 to 3.2% increase
of RC compared to no filtering, respectively. However, other methods experienced
significant decrease of RC: NLM (1.8 to 19.4% decrease in RC), Gaussian (3.6 to 11.8%
decrease in RC), NLM CT-B (2 to 19.4% decrease in RC), and NLM CT-M (1 to 17.4%
decrease in RC). NLM filtering with additive CT information (two new: NLM CT-S and
NLM CT-H) yielded better total target activity than NLM filtering with multiplicative CT
information (two existing: NLM CT-B and NLM CT-M).

Tables 2 and 3 show that NLM filtering with Eq. (10) such as NLM CT-B and NLM C-TH
achieved the best RMSE of FOV among all other post-filtering methods. However, those
tables show that our new NLM methods using additive CT information yielded the best
RMSE of ROIs among all methods. NLM CT-S and NLM CT-H achieved 8.2 to 33.9%
decrease and —0.9 to 36% decrease of RMSE of ROI compared to no filtering while other
methods achieved the following RMSE of ROI: NLM (—18.3 to 14.4% decrease in RMSE of
ROI), Gaussian (-7.9 to 20.8% decrease in RMSE of ROI), NLM CT-B (-31.2 to 28%
decrease in RMSE of ROI), and NLM CT-M (—27.8 to 28.4% decrease in RMSE of ROI).
Thus, NLM filtering with additive CT information (NLMCT-S and NLM CT-H) yielded
better activity distribution estimation within targets than other methods including NLM
filtering with multiplicative CT information (NLM CT-B and NLM CT-M).

4.4. Erroneous side information

Erroneous CT side information can be sometimes used due to missing information in CT
image or misregistration between CT and SPECT. In here, we investigate how robust NLM
filtering methods are for these cases with erroneous side information.

We modified our CT image to have about 3.4 mm and 6.8mm misregistration (in X, y, z
directions) with SPECT image and then performed four NLM filtering methods with this
misregistered CT side information. Tables 1 and 2 show that NLM CT-S and NLM CT-H
are fairly robust to small misregistration (3.4 mm) and achieved better RC and RMSE values
than other existing methods. They also yielded the best RC and RMSE results for large
misregistration (6.8 mm) for all tumors but the smallest tumor (9 cc).

In internal emitter therapy, the volume within which the radionuclide localizes may not be
the same as the anatomical tumor volume because of differences between physiology and
anatomy. Thus, non-uniform SPECT uptake in a tumor may not have a corresponding non-
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uniformity in the CT. We therefore simulated the case of missing information in CT: we
performed the four NLM filtering methods with CT side information for the phantom with
non-uniform tumors using the CT image for uniform tumors (CT of Figure 1 (b) was used
instead of CT of Figure 1 (d)). Figure 8 shows that NLM CT-B and NLM CT-M with
erroneous CT information yielded similar figures compared to those methods with correct
CT image as shown in Figure 7. However, NLM CT-S yielded blurred inner part of non-
uniform tumors. NLM CT-H preserved the inner part of tumors better than NLM CT-S.
Table 3 shows that RC and RMSE for the large lesion (177 cc) were degraded when there is
missing CT information for all methods. In particular, the degradation for NLM CT-S and
NLM CT-H was more severe than that for NLM CT-B and NLM CT-M as indicated in
Figure 8. However, for the small lesion (113 cc), erroneous CT information caused image
degradation on the inner core of the lesion, but yielded better images on the outer rim of the
tumor. The degradation on the inner core for NLM CT-S and NLM CT-H was more severe
than that for NLM CT-B and NLM CT-M when missing CT information was used.
However, the degradation on the outer rim for NLM CT-B and NLM CT-H was more severe
than that for NLM CT-M and NLM CT-S when correct non-uniform CT was used. It is
because for the voxel on the outer rim, one can find more similar patches with small uniform
CT lesion (missing CT information) than with small non-uniform lesion. Therefore, RCs of
all methods did not change much with correct and erroneous CT information since the
changes on the inner core and on the outer rim compensated each other. However, RMSE
for NLM CT-B was worse with correct non-uniform CT information due to severe
degradation on the outer rim. RMSE for NLM CT-S was worse with missing CT
information due to severe degradation on the inner core. RMSEs for NLM CT-M and NLM
CT-H are similar with correct and missing CT information since the changes on the inner
core and on the outer rim compensated each other.

5. Discussion

Conventional early stopping criteria of unregularized OSEM methods for 1-131 SPECT
imaging may yield good RMSE over a FOV, but may not be able to yield good RC of ROIs
(total target activity) and RMSE of ROIs (activity distribution within targets). Post-
reconstruction filtering methods can be potentially useful for improving SPECT
quantification of both total target activity and activity distribution within targets.

We investigated various NLM filtering methods with and without CT side information for
uniform and non-uniform tumors. For NLM methods using CT information, we studied four
different methods: two existing methods with multiplicative CT information and two new
methods with additive CT information. We showed that using CT information for NLM
filtering can achieve substantially better RC and RMSE compared to NLM filtering without
CT. We also showed that our NLM methods using additive CT information (NLM CT-S and
NLM CT-H) usually yielded better RC and RMSE of ROI than those using multiplicative
CT information (NLM CT-B and NLM CT-M). This suggests that the CT weights are
contaminated when multiplied by the lower quality SPECT weights operation in Egs. (9)
and (11), while the CT weights in Egs. (12) and (13) are less contaminated because of its
separate summation operation. Note that using CT information sometimes yielded better
quantification results than using noiseless true SPECT image. Our optimal parameters do not
guarantee the optimal RMSE and RC since they were obtained by optimizing (14), which is
the combination of RMSE and RC. In the present study for our new methods, we gave equal
weight to the emission and anatomical data by setting the design parameter T to 0.5, but in
the future we will investigate adjusting this weight under different conditions such as more
or less noisy emission data.
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We also investigated the noise reduction performance of NLM methods for the case of
erroneous CT information. For misregistration between SPECT and CT, we observed that
RC and RMSE of ROI did not change much for large tumors but were degraded for small
tumors. However, NLM CT-S using misregistered CT image still achieved the best RCs and
RMSEs of ROI for these small tumors among all NLM methods using CT information. For
the missing CT information (non-uniform SPECT uptake in tumor, but with uniform CT),
NLM CT-S and NLM CT-H experienced performance degradation in terms of RC and
RMSE of ROI. However, they still achieved comparable RC and RMSE results compared to
other existing methods.

When evaluating the effects of misregistration in this paper, we assumed that the ‘true’ ROI
segmentation was available for calculating RC and local RMSE. Thus, we are only
evaluating the effects of misregistration on filter performance. However, in practice, ROI
segmentation is obtained from CT and will be erroneous when there is misregistration.
Misregistration between SPECT and CT can severely degrade the quantification results for
small ROIs even when there is no filtering applied to the original image. Therefore, it seems
critical to have well-aligned SPECT and CT images for better quantification regardless of
the filtering. In well aligned cases, NLM CT-S and NLM CT-H had better RC and lower
RMSE than other existing methods.

The missing CT information condition that we tested represents the possible mismatch
between anatomical and physiological information in clinical studies. For example, a tumor
with uniform CT information may have highly non-uniformactivity uptake evident on
SPECT. An extreme case of such non-uniformity is a tumor with a highly metabolic surface
and a necrotic core with no uptake. However, in non-Hodgkin lymphoma this level of non-
uniformity is rare as tumors are generally well perfused with relatively uniform uptake (Du
et al. 2007). When necrosis is evident on SPECT, it is sometimes also evident on CT as a
low attenuation dark region. Thus, we expect that NLM CT-S and NLM CT-H can improve
quantification results in most of our cases in non-Hodgkins lymphoma. For tumor with a
high level of anatomical and physiological mismatch, which can be observed easily before
applying the NLM filter, we can always revert to other existing methods that are more
robust to this mismatch.

In this phantom simulation study, our additive CT information incorporation for NLM
filtering yielded better total target activity estimation and activity distribution estimation
within targets than other NLM methods using CT information. The edge-preserving property
of NLM methods depends on NLM parameters such as patch size and search window size
(Duval et al. 2011). Researchers usually choose NLM parameters so that NLM-based
methods are ‘almost’ edge-preserving. In prior studies, they outperformed other edge-
preserving methods for noise reduction and contrast preservation (Chan et al. 2010, Wang &
Qi 2012).
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SPECT True (kidney) SPECT True (liver) CT True (kidney) CT True (liver)

(a) SPECT (uniform) (b) CT (uniform)

SPECT True (kidney) SPECT True (liver) CT True (kidney) CT True (liver)

(c) SPECT (non-uniform) (d) CT (non-uniform)

Figure 1.

True SPECT and CT images of 3D XCAT phantom (one slice near kidney and one near
liver) with five spherical uniform and two non-uniform tumors (non-uniformity in both
activity map and CT).
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RMSE of FOV, ROI, and RC of ROI (5 uniform tumors) over iterations for unregularized
OSEM images. Minimum RMSE of FOV can be achieved at 24 iteration (6 subsets), but
minimum RMSE of ROI can be achieved at various iteration for each tumor. Maximum RC
of ROI (each tumor) can be achieved at the highest iteration.
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Unregularized OSEM @ 24 iter (kidney) Unregularized OSEM @ 100 iter (kidney) Unregularized OSEM @ 24 iter (liver) Unregularized OSEM @ 100 iter (liver)
(a) OSEM @ 24 & 100 iter (uniform) (b) OSEM @ 24 & 100 iter (non-uniform)
Figure 3.

Unregularized OSEM images of uniform and non-uniform spheres at 24 and 100 iterations
(6 subsets). In (a), we can observe artifacts on large uniform tumor at 100 iteration and in
(b), we can not observe the inner part of large non-uniform tumor at 24 iteration.
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NLM filter @ 24 iter (kidney) NLM filter @ 100 iter (kidney) Gaussian filter @ 100 iter (kidney) NLM filter (true weight) @ 100 iter (kidney)

(a) NLM @ 24 iter (b) NLM @ 100 iter (c) Gaussian @ 100 (d) NLM true wgt @ 100

Figure 4.
NLM filtered images with uniform tumors at 24 (a), 100 (b) iterations, Gaussian filtered

images at 100 iteration (c) and NLM filtered images with weights calculated from the true
image at 100 iteration (d).
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NLM filter @ 24 iter (liver) NLM filter @ 100 iter (liver) Gaussian filter @ 100 iter (liver) NLM filter (true weight) @ 100 iter (liver)

(a) NLM @ 24 iter (b) NLM @ 100 iter (c) Gaussian @ 100 (d) NLM true wgt @ 100

Figureb5.

NLM filtered images with non-uniform tumors at 24 (a), 100 (b) iterations, Gaussian filtered
images at 100 iteration (c) and NLM filtered images with weights calculated from the true
image at 100 iteration (d).
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CT-B (kidney) CT-M (kidney) CT-S (kidney) CT-H (kidney)
(a) NLM CT-B (b) NLM CT-M (c) NLM CT-S (d) NLM CT-H
Figure®6.

NLM filtering using CT side information at 100 iteration for uniform tumors.
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(a) NLM CT-B (b) NLM CT-M (c) NLM CT-S (d) NLM CT-H

Figure?7.
NLM filtering using CT side information at 100 iteration for non-uniform tumors.
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CT-B (kidney) CT-M (kidney) CT-S (kidney) CT-H (kidney)

(a) NLM CT-B (b) NLM CT-M (c) NLM CT-S (d) NLM CT-H

Figure8.
NLM filtering using CT side information at 100 iteration for non-uniform tumors using CT

side information for uniform tumors.
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