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Abstract

Motion-compensated image reconstruction (MCIR) methods incorporate motion models to
improve image quality in the presence of motion. MCIR methods differ in terms of how they use
motion information and they have been well-studied separately. However, there have been less
theoretical comparisions of different MCIR methods. This paper compares the theoretical noise
properties of three popular MCIR methods assuming known nonrigid motion.

We show the relationship among three MCIR methods - motion-compensated temporal
regularization (MTR), the parametric motion model (PMM), and post-reconstruction motion
correction (PMC) - for penalized weighted least square cases. These analyses show that PMM and
MTR are matrix-weighted sums of all registered image frames, while PMC is a scalar-weighted
sum.

We further investigate the noise properties of MCIR methods with Poisson models and quadratic
regularizers by deriving accurate and fast variance prediction formulas using an “analytical
approach”. These theoretical noise analyses show that the variances of PMM and MTR are lower
than or comparable to the variance of PMC due to the statistical weighting. These analyses also
facilitate comparisons of the noise properties of different MCIR methods, including the effects of
different quadratic regularizers, the influence of the motion through its Jacobian determinant, and
the effect of assuming that total activity is preserved. 2D PET simulations demonstrate the
theoretical results.

Index Terms

motion-compensated image reconstruction; noise properties; quadratic regularization; nonrigid
motion

[. Introduction

Motion-compensated image reconstruction (MCIR) methods have been actively studied for
various imaging modalities. MCIR methods can provide high signal-to-noise ratio (SNR)

images (or low radiation dose images) and'reduce motion artifacts [1]-[14]. Gating methods
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implicitly use motion information (7.e., no explicit motion estimation required) for motion
correction, but yield low SNR images due to insufficient measurements (or require longer
acquisition to collect enough measurements) [15], [16]. In contrast, MCIR methods use
explicit motion information (/.e., motion estimation obtained jointly or separately) to correct
for motion artifacts and to produce high SNR images with all collected data.

This paper analyzes three popular MCIR methods that differ in their way of incorporating
motion information: post-reconstruction motion correction (PMC) [1]-[3], motion-
compensated temporal regularization (MTR) [4], [5], and the parametric motion model
(PMM) [6]-[14]. Each MCIR method has been well-studied separately, but there has been
less theoretical research on comparing different MCIR methods. There are some empirical
comparisons between PMC and PMM [17], [18], and between MTR and PMM [19]. Asma
et al. compared PMC and PMM theoretically in terms of their mean and covariance by using
a discrete Fourier transform (DFT) based approximation [20]. However, the analytical
comparison was limited to the unregularized case and the empirical comparison was
performed for the regularized case.

Theoretical noise analyses of MCIR methods can be useful for regularizer design and for
performance comparisons. Noise prediction methods include matrix-based approaches [21],
DFT methods [22], and an “analytical approach” that is much faster [23]. We extend this
analytical approach to MCIR, and investigate the noise properties of PMC, PMM, and MTR
with quadratic regularizers theoretically, assuming known nonrigid motion. This assumption
is applicable to some multi-modal medical imaging systems such as PET-CT [7], [8], [10]
and PET-MR [14]. These analyses provide fast variance prediction for MCIR methods and
may also provide some insight into unknown motion cases. These noise analyses not only
facilitate theoretical comparisons of the performance of different MCIR methods, but also
help one understand the influence of the motion (through its Jacobian determinant) and the
effect of assuming that the total activity is preserved.

This paper is organized as follows. Section Il reviews the basic models and the estimators of
the MCIR methods [24]: PMC, PMM, and MTR. Section 11l shows the similarity and
difference between three MCIR estimators in penalized weighted least square (PWLS)
cases. It shows that MTR and PMM are essentially the Fisher information-based matrix-
weighted sum of all registered image frames, while PMC is the scalar-weighted sum.
Section 1V derives fast variance prediction formulas for PMC and PMM with Poisson
likelihoods and general quadratic regularizers. Section VV compares the theoretical noise
properties of MCIR methods. Section VI illustrates the theories by 2D PET simulations with
digital phantoms for given affine and nonrigid motions.

[I. MCIR Models and Methods

This section reviews MCIR models that were also described in [24] and derives the PWLS
estimator for each model. Although we focus on PWLS for simplicity, the general
conclusions are also applicable to penalized-likelihood estimation based on Poisson models
[25]. We consider three MCIR methods: PMC [1]-[3], PMM [6]-[12], [26], [27], and MTR
[4], [5], [19], [28]. We treat the nonrigid motion information as predetermined (known) and
focus on how the motion models affect noise propagation from the measurements into the
reconstructed image. In practice, errors in the motion models lead to further variability in the
image.

A. Review of basic MCIR models

1) Measurement model—MCIR methods are needed when the time-varying object fx, 9
has non-negligible motion during an acquisition interval where x~ R denotes spatial
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coordinate and #denotes time. Often one can use gating or temporal binning to group the
measurements into M sets, called “frames” here. Let y,;, denote the vector of measurements
associated with the /th frame. We assume the time varying object f{x,7) is approximately
motionless during the acquisition of each y,,. Let £, denote the time associated with the mth
frame, and let f,,, = (X1, ty), ..., {xn, L)) denote a spatial discretization of the object A,
tm) Where x;denotes the center of the jth voxel for j=1, ..., N, and NV denotes the number of
voxels. We assume that the measurements are related to the object linearly as follows:

yTIL:ATrLfIrL+€7IL’ mzl? s ’]\'[a (1)

where A, denotes the system model for the mth frame, €, denotes noise, and M is the
number of gates or frames. We allow the system model A, to possibly differ for each frame.

2) Warp model—For a given spatial transformation 75, ,: RY - RY define a warp
operator 7y,  as follows:

f(?* tm):(e?om,nf) (?7 t’n) = |anL,n(?)|pf(Tm7n(?)a tn)a (2)

where the total activity is preserved when p= 1. We discretize the warp {j‘,,,,,,to define a N/ x
N matrix relating the image f, to the image f,; as follows:

o
fm:Tm,nfn; n,m=1,--- , M. (3)

For applications with periodic motion, we can additionally define f . £f,and T;\,,,LJ,Mé
Tz pm. The matrix T, , can be implemented with any interpolation method; we used a B-
spline based image warp [29]. Let | Tim,AX)T denote the determinant of the Jacobian matrix
of a transform 7, ,(x) for awarp T ;;, ,. Throughout we assume the warps T ,, , (or
equivalently 75, ,or 7, ) are known. We also assume that invertibility, symmetry, and
transitivity properties hold for T, , [24].

B. Single gated reconstruction (SGR)

Often one can reconstruct each image f:n from the corresponding measurement y,,, based on
the model (1) and some prior knowledge (e.g., a smoothness prior). A single gated (frame)
reconstruction (SGR) can be obtained as follows:

~

fm  argmin Lo (Yms Am ) 1R (Fm) (4

where m=1, ..., M, L, is a negative likelihood function derived from (1), R, is a spatial
regularizer, and n is a spatial regularization parameter.

For the PWLS case, £.e., Ly(ym Apfm) 2 1Ym — Ammei,m/2 where W, is a weight
matrix that usually approximates the inverse of the covariance of y,, one can obtain a closed
form estimator f,, as follows:

fm:[Fm+nRﬂn]71A;nmem (5)

where the Fisher information matrix for the /7th frame is F,,, =+ A W, A,,,, *"” denotes
matrix transpose, and R is the Hessian matrix of a quadratic regularizer R,
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C. Post-reconstruction motion correction (PMC)

Once the frames f7, ..., f5/are reconstructed individually from (4), one can improve SNR by
averaging all reconstructed images. Using the motion information to map each image f,;to a
single image’s coordinates can reduce motion artifacts. Without loss of generality, we chose
f1 as our reference image. Using (3) and (4), a natural definition for the (scalar-weighted)
PMC estimator is the following motion-compensated average:

M
fPMC & Z amTl,m-fm (6)

m=1

M
where Zmzlamzl One choice is a,; = 1/Mfor all m (unweighted PMC). Anather option

M
is amZTm/Zm/:le' where T, is the acquisition time (or the number of counts) for the
mth frame (scalar-weighted PMC). For the PWLS case, there is an explicit form for fppc
using (3), (5), and (6):

~ M o o -1’ ,
Fome= Z | Fr 1 Rom) T A Wnlm (1)

m=1

/ ’
o
A A

where Fy, = T, 1 ¥y Tim 1 and Ry, = T, 1 BTy, 1 are essentially Hessian matrices for
the mth frame in the coordinates of the first (reference) frame.

D. Parametric motion model (PMM)

Without loss of generality, we assume that fq is our reference image frame for the PMM
approach. Combining the measurement model (1) with the warp (3) yields a new
measurement model that depends only on the image f; instead of the all images fq, ..., fas
(r.e., parameterizing all images with f1):

Ym=AnTm1f1+em, m=1,...,M.

Stacking up these models yields the overall model
y=AaTcfrtec, ©

where the components are each stacked accordingly:

’

Ye = [y/la ’yM]’ (9)

Ag £ diag{Ay,--- A},

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.
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The PMM estimator for the measurement model (8) with a spatial regularizer is

fPMM £ argmin L(yc, AqaTc f1)+1Rpyn (F1) (10)

f1

where L is a negative likelihood function and Rpp is @ spatial regularizer.

o 2
For the PWLS data fidelity function L(ye,Aq Tefy) 2 1¥e — Achf1||Wd /2 where Wy 2 diag
{Ws4, ..., Wy} is a diagonal matrix, the PMM estimator is

-1

ﬁth:[TchTc+77RPMM] TCAZdeyc (11)

where Fy £ A;WdAdzdiag {F,---,F, }is ablock-diagonal matrix, and Rppy is the

o o M o
Hessian matrix of a quadratic regularizer Rppm. Since TchTc=Zm:1Fm, we can rewrite
the PMM estimator in (11) as

M 1y
Forna= |: Z Fm+77RPMM:| Z Tm,lAmeym~ (12)
m=1 m=1

E. Motion-compensated temporal regularization (MTR)

The MTR method incorporates the motion information that matches two adjacent images
into a temporal regularization term [4], [5]:

1 o 2
EHferl - Tm+1,m.fm||2- (13)

form=1, ..., M- 1. This penalty is added to the cost function in (4) for all mto define the
MTR cost function.

Equations (4) for all mand (13) can be represented in a simpler vector-matrix notation. First,
stack up (1) for all mas follows:

Yo=Aqfctee, (14)

where fe= [fiv s fgl] and Ay, & are defined in (9). Then, the MTR estimator based on
(13), (14), and a spatial regularizer is

j/::: £ argminL(ymA(lfc)+77R(fc)+g||ﬂime.fc||% (15)

c

where L is a negative likelihood function from the noise model of (14), R is a spatial
regularizer, { is a temporal regularization parameter, and the temporal differencing matrix is

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.
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We may also modify Ttime for periodic (or pseudo-periodic) image sequences by adding a
row corresponding to the term f; — Ty s/ 1. Note that unlike the PMM method that estimates
one frame f{, MTR estimates all image frames f.. The MTR estimate of f; (reference image)
is

£\4TR, = [I o - O]ﬁ: (17)

For the PWLS case, the solution to (15) is

.ﬁ:: [ Fd+77Rd +CRtime] 71Ad Wdyw (18)

’

Where Rd £ dlag {Rlv T RM} and Rtirne = CT;:ime'

time

lll. RELATIONSHIP BETWEEN MCIR ESTIMATORS

In this section, we investigate the relationship among PWLS MCIR estimators in (5), (7),
(12), and (18). Considering PWLS estimators helps show the similarity and differences
among MCIR methods more clearly than estimators for Poisson likelihoods. Although the
observations in this section focus on PWLS estimators, similar results can be obtained for
the mean and variance of MCIR estimators with Poisson likelihood models [25]. The next
section analyzes the variance of these MCIR methods.

A. Properties of MTR estimator for { — 0and { — o

The temporal regularization term (13) in (15) will increase the correlation between the
estimators f,;and f;for 7# jas (is increased. Even though (18) provides the exact
relationship between the PWLS MTR estimator and ¢, this form itself may not be
informative in terms of comparing it with other MCIR methods. So, we investigate the
limiting behavior of the PWLS MTR estimator as { — 0 and as { — o . This provides
insights for comparisons with PMM and PMC.

It is straightforward to determine the limit of fg in (18) as { — 0 because
E1+77R(1+§Rtime - El_’_T}Rd £ GMTR (19)

where GyTr is a block-diagonal matrix, Ze., GMTR:diag{(ijLan)}%:l. Therefore, as ¢
- 0, the PWLS MTR estimator f; approaches

i

fi -G} A;Wdycz[f{ fM] 20)

MTR

where f,, are defined in (5). Thus, by (17), fmtr — f1as { — 0. In other words, as Z — 0,
the PWLS MTR estimator for each frame approaches the PWLS SGR estimator (5).

As( - oo, fE has more interesting limiting behavior. The following theorem is proven in
Appendix A.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.
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Theorem 1:As { — o, the MTR estimator f; becomes

’
(o] 710

fo = T FetnR] T AWay. @

o [ M 1M )
=T |:Z F’”L—'—T/R'"L:| Z Tm,lAmeym

m=1 m=1

where Ty1= Ty e ... To1, Teis defined in (9), F 2 To Fg Te, and Ry 2 TRy Te.

B. Equivalence of MTR and PMM estimators

Equation (21) in Theorem 1 and (12) show that the PWLS estimators of PMM and MTR ({
— oo ) are remarkably similar. In particular, if we choose a PMM regularizer with

M
o
R, .= Z Ry, (22

m=1
then the analysis leading to (21) with (17) shows that

Furr = Foum 88 ¢ — 00, (23)

In other words, f; - T; fBMM as { — oo . Therefore, assuming some mild conditions on
motion and spatial regularizers, the PWLS estimators of PMM and MTR with sufficiently
large ¢ will be approximately the same, and thus so will the mean and covariance. For the
Poisson likelihood, one can show that the mean and covariance of the MTR estimator will
approach the mean and covariance of the PMM estimator as  increases. We will show the
covariance case for the Poisson likelihood in the next section. The mean case with the
Poisson likelihood can be shown by consulting [24] and using Appendix A.

C. Difference between PMC and PMM estimators
Using (5), (7), and (22), we rewrite the PWLS PMM estimator (12) as follows:
M

~ o o -1’ f
Fonn= Z Ly (FrtnRm) Ty Ay WinYm

m=1

M

o ~
= Z F,,LTl,rrL .frm (24)

m=1

where the weighting matrices are given by

-1

M
r, = {E(szLan)} (Fm+nRm). (25
=1

Comparing the PWLS PMM estimator (24) and the PWLS PMC estimator (6), we see that
the PWLS PMC estimator is a scalar-weighted average of the motion corrected PWLS SGR

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.
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estimators of all frames whereas the PWLS PMM estimator is a matrix-weighted average of
the motion corrected PWLS estimators. The PWLS MTR estimator (with proper motion and
regularizers) approaches the same matrix-weighted average of the motion corrected
estimators (24) as { — oo .

The weights I ,,, in (25) are calculated using the Fisher information matrices F;n. This
implies that the PWLS PMM estimator (and the PWLS MTR estimator with { — o)
automatically assigns different weights to the estimate f;, depending on factors such as noise
(Fisher information matrix F ;) and motion T 4, 4. For the Poisson likelihood case, the next
section shows the benefit of this matrix-weighted average (24) by investigating the noise
properties of MCIR methods using an “analytical approach” extended from [24] and [23].

IV. Noise Properties of MCIR

This section analyzes the noise properties of different MCIR methods. The analysis applies
both to PWLS estimators and to maximum a posteriori (MAP) estimators based on Poisson
likelihoods. Since the analysis is based on a first-order approximation of the gradient of the
likelihood, the accuracy of the analysis for Poisson likelihoods will decrease as the number
of counts per frame decreases as shown in [25]. For simplicity, we focus on 2D PET with a
few assumptions. We consider an ideal tomography system, /.e., we ignore detector blur. We
also assume that A,; = D ,,Aq for all m. The (unitless) elements of Aq describe the probability
that an emission from the jh pixel is recorded by the ih detector in the absence of
attenuation or scatter and for an ideal detector. The /th element of the diagonal matrix D
has units of time and includes the detector efficiency, the patient-dependent attenuation
along the #h ray, and the acquisition time T, for the /mth frame.

We assume known attenuation map (Ze., D p, is given), which is the usual assumption for
PET-CT [30] or PET-MR [31]. We still allow the warp T, to differ for each /m. We
assume that the given nonrigid motion is locally affine [24]. We also assume that the
measurements y,, for all mare independent, 7.¢e., Cov{f,, f,} = 0 for all m#% n.

We use an “analytical approach” to derive approximate variances for SGR and MCIR
methods. This appproach provides fast variance prediction methods [23] compared to the
DFT-based variance approximations or numerical simulations.

A. Single gated reconstruction (SGR)

If L in (4) is a negative Poisson log-likelihood function (ze., L(y,u) = > i — yi log wi),
then one can approximate the covariance of the SGR estimator f, of (4) by [25]:

Cov{fm} ~ [Fm+77Rm]71Fm[Fm+77Rm]71 (26)

where F,,, AEJD;nWmDmAU, W, £ D (Ugfm]) is a diagonal matrix, 7, is the
mean of y,,, the Hessian of the regularizer is R, 2 2R(f ), and f, 2 f,{7AF ).

To study (26) using the “analytical approach” of [23], we focus on a first-order difference
quadratic regularizer:

L .
FoBonfm 2 D50 (e fn) [75])% (20)

j =1

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.
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where ** denotes 2D convolution, Tl],m is a non-negative regularization weight (e.g.,
regularization designs for uniform and/or isotropic spatial resolution [24], [32]), 7]
denotes the 2D array corresponding to the lexicographically ordered vector f,, fis the
lexicographic index of the pixel at 2D coordinates 77; and

=—=—(5[7;] — 6[7; — 1)), (28)
7 zllz

where {/m} denote the spatial offsets of the jth pixel’s neighbors and 3,[/7] denotes the 2D
Kronecker impulse. We used the usual 8-pixel 2D neighborhood with L = 4 and

{m} i ={(1,0),(0,1), (1,1), (1,-1)}.

For a polar coordinate (p, @) in the frequency domain, we can represent the variance of (26)
at the jth voxel in an analytical form as follows [23]:

Var;{fm} =~ [0 [6PL, (p,¢)pdpde  (29)

where pmax = 1/2/4, A is the pixel spatial sampling distance, and the local power spectrum
PI_ (p,p)atthe Jth pixel, which is the Fourier transform of the jth column of the

SGR

covariance in (26) (see also p. 220 of [33]), is

N DT 5)/p/A 2
(@ (57 5) o/ Btn(27) Q)

where the angular component of the local frequency response of the regularizer (27) is

L

(@) & r] cos’ (0 — @) (3
=1

and ;= my For a standard quadratic regularizer, Q7. (¢)=wo Where 1y is a constant. The

analytical forms of F ;and Ry, at the jth voxel are w;{@; x)7p and (27p)>Q?, (¢) (see [23],
[32]) where

2
0
N ZZE/W ij myi

_ —
[ISEZ

a;;

Jg is the set of rays at the angle @, ;= [Aolj Wi = [D WD mlii AL AZA,Aq,, Asisa
detector sampling interval, and A is an angular sampling interval. For fast computation, one
can approximate Wy {@; X)) ~ W (X (Cos @, sin @), @) where wp(rj, @) = Wp, ;. One can
further simplify the local variance Var {f ;,} in (29) by calculating the intergral (29) with
respect to p as follows [23]:

2/3
Var (£} ~ e /

de
z ]> (33)
Zoi 042 Q)

where P/ (p,o+m)=P._ (p, ). The variance of the SGR estimator for the Poisson
likelihood depends on the measurement statistics w;,, the sampling distances A, A, A, and
the regularization parameter ). One can also obtain the local autocovariance of the SGR

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.
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estimator at the Jth pixel by taking an inverse Fourier transform (FT) of the local power
spectrum PZ_. (p, ) in (30).

B. Post-reconstruction motion correction (PMC)

Assuming that the measurements y,,, for each frame are statistically independent and the
reconstruction algorithm uses the Poisson likelihood, the covariance of the PMC estimator
(6) is approximately

M
COV{fPMC} Z a Tl mCOV{fm}Tl m  (34)
m=1
M o, .0 o —lo -1
~ Z am[FrrL+7]R7rL] FT!L[FTH—'—T]RTH]

We can derive the analytical forms of F;nand R;n (the quadratic regularizer (27)) in the
frequency domain as follows (see Appendix B in [24]):

1% Wiy (‘Pv r k) | vTm 1 |2p !

PV T (T) (cos ¢, SHHP) ll2

(35

10%m2(27rp)2||VTm71(?j),(cos(,9, sincp)/Hg (36)
VT (75) P20k, (0)

where x41s the closest pixel to 7, 1( Z)and@ 2 AT, 1()(/7' (cos @, sin @)'. Therefore, by
using analytical forms, we approximate the variance of fppc at the jth voxel:

Varj { fonc} & o7 [6m=PI  (p,¢)pdpde  (37)

where the local power spectrum, P2, . (p, ¢), at the jth pixel is given by

i 2T &T . (9)/p/B
721 (B (31 1), (0)/ 0/ Bt n(2mp) QD) (2)

where the following factors arise from the Fisher information matrix F ,, and the Hessian of
the regularizer R, respectively due to motion compensation

|VTm1 |2P 1
VT () (COS @.sin ) |2

1>

tl (#) (38)

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.
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IVT1(F ) (cos i, sin ) |3V T (7).

&+
o <.
B
—~~
S
~

1>

For rigid motion, tim (<p):t§;m (»)=1whereas for nonrigid motion such as (isotropic or

anisotropic) scaling, ¢/, () and t/(y) usually differ from 1. By integrating, we simplify
the local variance Var {fppmc} in (37) further as follows:

M 2
. 202, /3
Jo Z TG TR, () R 42 (a9)
m=1 + 7747T Q7,L(99)t1‘(,,, ((10)

Apfax
Note that the variance of the PMC estimator depends on the motion through
t‘j (¢) and tj () terms. One can aIso obtain the local autocovariance of the PMC
estimator by taklng an inverse FT of P/ _(p, ).

C. Parametric motion model

For the PMM estimator (10) with the Poisson likelihood, the covariance of the PMM
estimator, Cov{fppm}, can be approximated using the matrix-based methods of [25] as

Mo -1 5 -1
[ZFWLURPMM] ZFm[ZFm+77R ] . (40)

m=1

Using the analytical forms in (35) and (36), the variance of the PMM estimator at the j#th
pixel is approximately

Va'rj {j/i:’MM } % fpmax PgMM ( )pdpd(fo7 (41)

where the local power spectrum, P2, . (p, ¢), at the jth pixel for (40) is defined as follows:

M

Zm 1wm((’9’$’f)ﬁ (‘P)/P/A
(ZM Wi (B; T )EL, (e )/ p/A+n(2mp)* QL (¢ ))

m=1

where @7 MM(@) Zl 17“1 cos” (p=¢1). Integrating PI  (p.)over p simplifies the local
variance Var/{prM} in (41) to

- 2/3
0 M —

Wi ((P, T k) (90)
771/2::]_ Apma.x

dep.
(42)

+n4rQ’

PMM ( )

Like the PMC case, the noise depends on the given motion. The local covariance of the
PMM estimator can be approximated with an inverse FT of P2 (p, ®).

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.
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The covariance of the PMM estimator with the regularizer (22) will be approximately
-1

1 Mo .
ZFW[ZFWMRW] (43)
m=1

m=1

M o o
[ > Fun+nRm

m=1

and with the same procedure as above, the variance of the PMM estimator at the jth pixel for
(43) is approximately

. 2/3

Joar Wy, (P 1)t (@g 4 (44)
> el ), ()
m=1 max

One can evaluate (33), (39), (42), and (44) using a simple back projection (/.e., approximate
integral by sum over projection angle @) to predict variance for every image pixel.

D. Motion-compensated temporal regularization

From (15) with the Poisson likelihood, the covariance matrix of the MTR estimator f is
approximately

Cov {fc} ~ [ Gy ¢ Rbime] 71Fd [Gyrr ¢ Rime] - (45)

where Gypr £ Fg + nNRy. Section 111 showed that the PWLS MTR estimator converges to
the PWLS SGR and PMM estimators as { — 0 and { — oo, respectively. For the estimators
with the Poisson likelihood, one can show that the covariance of the MTR estimator (45)
“approximately” converges to the covariance of the SGR estimator and the PMM estimator
as{ - 0and { - oo, respectively, using (64) in Appendix A. Therefore, the local variance
of the MTR estimator at the jth pixel will approach the SGR result (33) approximately as ¢
- 0 and will approach the PMM result (44) approximately as { — oo .

Obtaining an analytical form for the variance of MTR with any { seems challenging due to
the complicated structure of Tijme matrix. However, from (45) one can show that the
covariance of the MTR decreases as  increases. We can also intuitively expect that high ¢
value will increase the correlation between estimated image frames, which will reduce the
variance of MTR. We evaluate this intuition empirically in Section V1.

V. Performance Comparisons in MCIR

This section presents theoretical comparisons of the noise properties of SGR and MCIR
methods with the Poisson likelihood.

A. Comparing noise properties between PMC and PMM

As discussed in Section 111-C, the PMC estimator is a scalar-weighted average of the motion
corrected estimators of all frames, whereas the PMM estimator is a matrix-weighted average
using the weight in (25). This difference led to the different variances of the PMC estimator
(39) and of PMM (44) (and the variance of MTR for { — o ). By matching the spatial
resolutions of PMM and PMC using the regularizer (22) for PMM (see [24]), we can also
compare the variance of PMC and PMM theoretically.

For v? (¢) > 0, one can show that
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- - - A[
using the Cauchy-Schwarz inequality [20] and Zmzlamzl-

If we set

Ul (P) 2 T (BT 0L (9)/ D) P 14T, (0) Q0 (B),

then (39), (44), and (46) show that
Varj {ﬁMM} < Varj {ﬁ’MC} (47)

for the regularized PMC and PMM. Equality holds when all v, are the same for all m. This
inequality is consistent with the empirical observations in [20]. Therefore, PMM (and MTR
with sufficiently large ¢) is preferable over PMC in terms of noise variance.

B. Comparing noise properties of SGR for three regularizers

Because of the interactions between the likelihood and regularizer, spatial resolution will be

anisotropic and non-uniform if one uses a standard regularizer [21], i.e., Q7 (p)=wy in (30),
which we call SGR-S. There has been some research on regularizers that provide
approximately uniform and/or isotropic spatial resolution [21], [32], [34]. This section
analyzes the effect of such regularizers on the noise properties of SGR.

The certainty-based quadratic regularizer proposed in [21] can provide approximately

uniform (but still anisotropic) spatial resolution. In this case, rlj,m in (27) is designed to
approximately satisfy

!

. 1 )
Q. (p) = ;fo@m(@ 7 )de,  (48)

and we call the estimation SGR-C. Alternatively, one can design {sz,m} to approximately
satisfy
Q@) = Tm(pT5)  (49)

so that the spatial resolution will be approximately uniform and isotropic [32], [35], which
we call SGR-P. From (33), one can show the relationship between the variances of SGR-S
and SGR-C as follows:

m

Var, {fSGR—S} < Var; {f";SnGRfC} wo > QI ()
Var; {fSGR*S} >Var; {f;SnGR*C} 0. (50)

m

The same relationship holds between SGR-S and SGR-P. The variance of SGR-S can be
larger or smaller than the variance of SGR-C and SGR-P for each location (jth pixel).
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There is a more interesting relationship between the variances of SGR-C and SGR-P. In both

(48) and (49), Wy, (¢; 7 ;) =~ Q7. (¢) [21], [32], and substituting this further approximation
into (33) yields the following simplified variance approximation:

~ 2/3 1
Vari{fm} ~ — f— dep.
it m} (1/A/pﬁmx+n4772>fo )

This approximation becomes increasingly accurate as pmax and/or ) increase. In our
simulations, using (49) in (51) significantly reduced the accuracy of (51) because small
differences in (49) became large differences in (51) due to their reciprocal relationship.
Using (48) and (49) to achieve approximately uniform and/or isotropic spatial resolution
will increase the effect of the measurement statistics w,, on the estimator variance (51)
compared to (33). This tendency was empirically observed in [21]. Using the Cauchy-
Schwarz inequality, one can show that the variance approximation in (51) satisfies

Var; {fSLGR_C} < Var; {]?SLGR_P}- (52)

This inequality is verified empirically in Section VI-B. Evidently, imposing more properties
on the spatial resolution such as isotropy requires sacrificing the noise performance, which
shows the spatial resolution-noise trade-off.

C. Comparing noise properties between SGR and MCIR

If there is no motion between image frames and w;, = w1 for all m, then (33), (39), and (44)
yield Var{fpmc} = Var {fpmm} = Var{f .}/ M, as expected since PMC and PMM used M
times more counts than SGR. The MTR variance Var{fytr} with very high  also yields
approximately the same variance as PMM and PMC in this case.

However, this 1/ M relationship between MCIR and SGR variances may not hold exactly
when there is motion between image frames. For example, if there is locally isotropic
scaling motion between frames as follows:

0
VTm,l(?j):[ S 3] (53)

where s> 0, then t._(p)=s"""" and t/ (¢)=s"in (38). For PMC, if we design the

n

regularizer to achieve isotropic resolution by using
th () (@) = T (BT R)E (#), (59)

and if pmax and/or ) are relatively large, then the variance of the PMC estimator at the jh
pixel in (39) approximately reduces to

2/3/M? ) Moo 1
—_— Jo——=de 9
(1/ A/ paxtmiT? Z:l * th,. (P)Qh(9)

Comparing with (51), the variance of PMC (55) will be approximately 1/ M/s*? times the
variance of SGR for M 1. The variance of PMM (44) will have a similar relationship
with the variance of SGR. If the total activity is preserved (i.e., p= 1), then local expansion
(s< 1) will increase the variance and local shrinkage (s> 1) will decrease the variance.
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Intuitively, if the same amount of total activity produces the same number of Poisson counts,
the expanded area that contains the same total activity will have larger image area to
estimate, /.e., effectively more parameters. Thus, the expanded area will lead to higher
estimator variance. For regularizers other than (54), the variance of PMC will also be

affected by motion through t/. (¢) and () terms.

D. Total activity preserving condition for MCIR

The total activity preserving condition (2) is important for accurate motion modeling and it
also affects the spatial resolution [24] and noise properties of MCIR. Using the example in
Section V-C, we analyze the influence of motion on the noise, focusing on PMC and PMM.
(MTR with sufficiently large { will have approximately the same noise properties as PMM.)

If one uses standard quadratic regularizers for PMC and PMM (e.g.,

Q. (p)=wp and Q7 ()=Muwy in (31)), then the variance of the PMC estimator in (39)
reduces to

M 2
s 2a'rn/3
D>

m=1 Wi, (¢;?k)34p73/i/p?nax +7747T2w054p

de  (s6)

since t, (p)=s""" and ¢/ (p)=s"" when (53) holds. The variance of the PMM estimator
in (42) reduces to

. 2/3
fO M d(p
S @ (BT 1) 3D 8 i ug) O
m=1

When s=1 (e.g., rigid motion), the variance is not affected by motion. However, when s#
1, the variance of PMC will be always affected by motion, whether the total activity is
preserved or not, due to the $**=3 and $*” terms in (56). However, when pyay and/or n are
relatively large, the variance of PMM may be less affected by motion when p= 1 than when
p=0since (57) only contains s, which is relatively closer to 1 than s* or s73. Since the

regularizer in PMM does not involve the motion warp, there is no ¢, (¢) term in the
variance (42) of PMM. Thus, when we use the total activity preserving condition p= 1 with
the standard regularizers, the variance of PMM may be less affected by motion than the
variance of PMC.

When one designs the spatial regularizers (/.e., determine rim in (27)) to achieve
approximately uniform and/or isotropic spatial resolution for the MCIR methods [24], as
shown in Section V-C, the variances of PMC and PMM will be affected by motion with the
factor of $*773. Thus, the variance of PMC and PMM will be less affected by motion when p
=1 than when p= 0. Note that the analyses above assumed that both measurement model
and reconstruction model follow the same condition. One could generalize these analyses to
consider the effects of motion model mismatch.

VI. SIMULATION RESULTS

The analyses in this paper apply to nonrigid motions that are approximately locally affine
[24]. We performed PET simulations with two digital phantoms: one is a simple phantom
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with global affine motion between frames and the other is the XCAT phantom [36] with
non-affine nonrigid motion that we modeled using B-splines [37].

A. Simulation setting

Two digital phantoms were used, each with four frames of 160x160 pixels with 3.4 mm
pixel width. Sinograms were generated using a PET scanner geometry with 400 detector
samples, 1.9 mm spacing, 220 angular views, and 1.9 mm strip width. We used 300K, 500K,
200K, 200K mean true coincidences for each frame (1.2M total) with 10% random
coincidences. Simple uniform attenuation maps were used for the first simulation and no
attenuation was used for the second.

We investigated SGR, PMC, and PMM by comparing analytical standard deviation (SD)
with empirical SD from 500 Poisson noise realizations. We used spatial regularizers (with
regularization parameter n = 10%) that provide approximately uniform (SGR-C, PMC-C,
PMM-C) and uniform/isotropic (SGR-P, PMC-P, PMM-P) spatial resolutions, respectively
[20], [21], [24], [32]. We also studied the noise properties of MTR empirically with various
C values. The spatial resolutions of SGR, PMC, PMM and MTR were all matched to each
other using the regularization designs in [24]. All images were reconstructed using a L-
BFGS-B (quasi-Newton) algorithm with non-negativity constraints [38], [39].

B. Simple phantom with affine motion

We used a simple digital phantom with known affine motion (anisotropic scaling between
frame 1 and 2, rotation between frame 2 and 3, and translation between frame 3 and 4) as
shown in Fig. 1. The total activity is preserved between frames.

Fig. 2 displays profiles through the variance image and shows that our analytical equation
for SGR in (33) (and (51)) provides accurate noise predictions. (The location of the profile is
indicated in Fig. 1 as a horizontal line). The analytical SD of SGR with quadratic
regularizers (A-SGR-C and A-SGR-P) matches well with the empirical SD of SGR from
500 noise realizations (E-SGR-C and E-SGR-P). Fig. 2 also shows that the variance of SGR-
C is lower than the variance of SGR-P as shown in (52) (in this case, n was fairly large).
This analytical and empirical agreement of SGR does not hold well near the boundary of and
outside the object because of the non-negativity constraint and because the “locally shift
invariant” approximation is less accurate there. We observed similar results for a constant
quadratic regularizer (not shown).

Fig. 3 shows that our analytical variance prediction for PMC (A-PMC-C and A-PMC-P) in
(39) agrees with the empirical variance of PMC (E-PMC-C and E-PMC-P). Fig. 4 also
shows that the analytical variance formula for PMM in (44) predicts the empirical variance
of PMM well.

Fig. 5 confirms the theoretical noise comparison between PMC and PMM shown in (47). As
shown in Fig. 5, the SD of unweighted PMC was generally lower than the SD of PMM.
However, the difference between the SD of PMM and the SD of scalar-weighted PMC
(using weights that account for the number of counts per frame) was very small. Using the
spatial regularizer for PMM as proposed in (22) that matches to PMC, the full-width-half-
maximum (FWHM) of PMC (2.30 + 0.13 pixels) was slightly larger than the FWHM of
PMM (2.19 £ 0.05 pixels). Our target FWHM was 2.19 + 0.01 pixels. This small
discrepancy was because our analysis assumed perfect interpolations for warps, whereas the
actual interpolations induce slight blurring. For PMC, the warp is applied afterthe
reconstruction, thus the FWHM was slightly larger than the target FWHM. We observed that
the SD of scalar-weighted PMC was s/ightly lower than the SD of PMM empirically, due to
it being slightly blurred more.
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Section V-C showed that if we combine A image frames with the motion (53), then the
variance of MCIR would not be 1/M of the variance of SGR due to motion effects. In other
words, as shown in Fig. 6, the SD of PMC will not be 1/2 of the SD of SGR (4 frames), but
will be approximately 1/2/|J| of the SD of SGR where J & 7,1 and m# 1. This example
confirms that the variance of MCIR methods depend on the Jacobian determinant of the
transformation 7.

Fig. 7 shows that the empirical variance of MTR approaches the analytical variance of SGR
if { - 0 and to the analytical variance of PMM if { - o as shown in Section 1V-D.

We also repeated the reconstructions and noise predictions using motion parameters that
were translated by 1 pixel (3.4 mm) away from their true values. We examined the empirical
and predicted noise standard deviations for all pixels within two pixels of the outer boundary
of the object. For PMC-C the maximum (mean) percent error between the predicted and
empirical SD increased from 16.5% (3.2%) without motion error to 17.0% (3.3%) with
motion error. For PMM-C the maximum (mean) percent errors were 16.0% (3.7%) and
15.0% (3.8%) without and with motion error, respectively.

C. XCAT phantom with nonrigid motion

We used the XCAT digital phantom [36] to generate 4 volumes with respiratory and cardiac
motion and selected one slice per each volume (same location) for a 2D simulation. After
estimating transformations between frames for all MCIR methods consistently (see [24] for
details), we used them as the true motion, leading to the true images shown in Fig. 8. Thus,
there is no motion model mismatch in this experiment.

As shown in the previous simulation with affine motion, our fast variance predictions for
PMC and PMM, which correspond to (39) and (44), work well for the case of nonrigid, non-
affine motion as shown in Figs. 9 and 10. There are some areas that match less well than
other areas (and compared to the case of affine motion) since there are areas that contain
abrupt change of motion so that the local affine approximation does not hold well. Fig. 11
also shows that the empirical SD of MTR approached to the analytical SD of SGR and
PMMas{ — 0and { — oo, respectively.

VII. Discussion

We analyzed the noise properties of three different PWLS MCIR methods for the case of
known nonrigid motion. We showed that the PMC is a scalar-weighted sum of the motion
corrected estimated image frames, whereas the PMM and the MTR with { - o are matrix-
weighted sum with weights that depend on the Fisher information matrix of each frame. We
further investigated the noise properties of three different MCIR methods with Poisson
likelihood. We derived approximate variance prediction equations for PMC and PMM and
also studied the limiting behavior of the MTR variance as { — o and { — 0. These
predictions worked well for digital phantoms with affine motion and non-affine nonrigid
motion. Furthermore, as in [23], the variance predictions (33), (39), and (42) require
computation time comparable to a back-projection, which is much faster than DFT-based
variance prediction methods [20]. However, as the number of counts per frame decreases
(due to less total counts or more number of frames), the accuracy of the variance predictions
will also decrease since our variance approximations are based on a first-order
approximation of the gradient of the likelihood function. [25]. More accurate variance
predictions based on higher-order approximations will be challenging.

These analytical variance formulas showed a few interesting relationship between MCIR
methods. The variance of SGR-C (using spatial regularizer that approximately provides
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uniform spatial resolution) is lower than the variance of SGR-P (using spatial regularizer
that approximately provides uniform and isotropic spatial resolution). We observed this
trend in PMC and PMM as well. The variance of PMM is less than or comparable to the
variance of PMC and the gap between them will be larger when the frames have
significantly different counts and PMC uses equal scalar weighted sum. When PMC uses
proper weights (e.g., normalized scan durations), PMC and PMM empirically had similar
variances in our simple phantom simulation with affine motions. The variance of PMM is
also less affected by motion than the variance of PMC when the total activity preserving
condition is used. The variance of MCIR with A/ frames may not provide 1/Mtimes lower
variance than the variance of SGR due to motion. This suggests that one can choose the
reference frame to minimize the variance of MCIR methods based on this intuition. Lastly,
MTR with very large ¢ usually yields images as good as PMM. However, too large ¢ can
slow convergence of the reconstruction algorithm. When the motion is given, PMM seems
to be preferable to PMC and MTR.

This paper has focused on the case of known true motion. In practice motion is never known
perfectly and motion errors may introduce further bias and/or variability into MCIR results
and motion errors may also degrade the accuracy of noise predictions. Our anecdotal results
with motion errors in Section VI-B suggest that the noise predictions are not highly sensitive
to small motion errors; in fact the noise predictions seem to be less sensitive to motion errors
than were the regularizer designs for MCIR described in [24]. Methods for reducing motion
errors will of course improve MCIR results, regularizer designs, and noise prediction
accuracy.

This analysis can serve as a starting point for understanding joint estimation of image and
motion [12]. Since the Jacobian determinant of estimated deformations affects the noise
properties, it is important to enforce correct prior knowledge for local volume changes.
Extending this analysis for unknown nonrigid motion will be interesting future work [40].
Our work has been focused on spatial resolution [24] and noise analyses of MCIR methods;
it would also be interesting to extend the work to analyze detection performance [41], [42].
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Appendix A

Proof of Theorem 1

To prove this theorem, we need to treat the null space of Ryjme carefully. Since the matrix
Riime in (18) is symmetric nonnegative definite (7.e., positive semidefinite), it has an
orthonormal eigen-decomposition of the form

¥, 0

Rijme :[Uon]{ 0 0

] [U1U(ﬂ/ (58)

where the columns of the matrices U, Ug are orthonormal and 2; > 0, 7.¢e., 24 is positive
definite. The columns of Ug span the null space of Rijme. From the definition of Tjme in
(16), it is clear that the null space of Ryiime consists of images that satisfy the following
conditions:
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fo =T21f1

f3 =T32T21f1
) (59)

(o)

o
fM :TM,M—l e 'T2,1f17

for any image f; R, In other words, the MN x MN matrix Ryjme has a null space of
dimension A. (In contrast, the spatial regularizer Cy usually has a null space only of
dimension 1, which is usually formed of constant images.) We rewrite the system of
equations (59) as

fc:fcflv (60)
where TC is defined in (9) and T,,,l = T,,, m-1 - Tz 1. Even if we add a periodic condition f;
= T1 M 10 (16), then Ryime still has a null space of dimension N provided the transitivity

property of the motion model holds. Using (60) we can construct Ug in (58) as follows:

Uy=T.S, (61)

’
o

L\l
S2|(T.T. . ol o
where so that Ug is orthonormal. Note that 7°.T'. > 0 because
o/ [e] M o/ o i m o . i
TcTc:I+Zm:2Tm,1Tm,1 and | is positive definite. So, Sis invertible.

Under the usual assumption that Fy and R4 have disjoint null spaces, one can verify that

B £ UyG,. Uo = 0. (62)
To proceed, we express GyTr in (19) as follows:
/ N M
[UlUO] GMTR [UlUO] = |: M B :| :

Thus,

/ —1
_ N+(Y¥, M /
[G1\4TR+CRHH10] '=U i :| v

M B

where U £ [U; Ug]. By Schur complement [43], we have

A —~AM' B!

1 ’
[GMTR_'_CRtiIHG} =U B 1MA B*l_i_BflMAM’Bfl :| U (63)

where A 2 [N + {Z; - M'B~IM]™L. Since Z; is positive definite, A - 0as{ — o . Thus, by
(62)
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/

' —1
[GMTR +CR'timc] B IJUB*1 U(;:Tc |:TCGMTRTC:| T.. (64

Therefore, as { — o«

’

, —1
~ o o o o ’
fe—T. {TCGMTRTC} T AWayc. (65)
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Four frames with affine motion
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Fig. 1.
Four true images with anisotropic scaling, rotation and translation. Total activity is
preserved.
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Fig. 2.

Analytical SD of SGR (A-SGR-P, A-SGR-C) matches well with empirical SD of SGR (E-
SGR-P, E-SGR-C), respectively. SD of SGR-P (with regularizer that approximately uniform
and isotropic spatial resolution) is higher than SD of SGR-C (with regularizer that
approximately uniform spatial resolution), which is consistent with theoretical comparison.
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Analytical SD of PMC (A-PMC-P, A-PMC-C) matches well with empirical SD of PMC (E-
PMC-P, E-PMC-C), respectively.

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 01.

140



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Chun and Fessler

0.35
0.3

Ion

0.25

o
N

0.15

o
—

Standard Deviat

0.05

O E-PMM-C

0 40 60 80 100

Pixel

Fig. 4.

120

Analytical SD of PMM (A-PMM-P, A-PMM-C) matches well with empirical SD of PMM

(E-PMM-P, E-PMM-C), respectively.
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Fig. 5.
If the spatial resolutions are matched, the SD of PMC is higher than or comparable to the SD
of PMM, depending on the choice of weights a ;.
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Empirical SD of SGR vs. empirical SD of PMC (MCIR) with 4 frames (M= 4). The SD of
PMC will be affected by both the number of frames and the motion (Jacobian determinant of
transformation |J|).
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Fig. 7.
Empirical SD of MTR with different {. As { - 0, the SD of MTR approaches the analytical
SD of SGR. As { — « , the SD of MTR approaches the analytical SD of PMM.
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Four frames with nonrigid motion
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Fig. 8.
Four true images with nonrigid motion. Total activity is preserved.
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Fig. 9.
Analytical SD of PMC (A-PMC-P, A-PMC-C) matches well with empirical SD of PMC (E-
PMC-P, E-PMC-C), respectively.
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Fig. 10.
Analytical SD of PMM (A-PMM-P, A-PMM-C) matches well with empirical SD of PMM
(E-PMM-P, E-PMM-C), respectively.
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Fig. 11.
Empirical SD of MTR with different {. As { — 0, the SD of MTR approaches to the
analytical SD of SGR. As { - o , the SD of MTR approaches to the analytical SD of PMM.
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