
New developments in the Induction and Antiviral Effectors of
Type I Interferon

Su-Yang Liu, David Jesse Sanchez, and Genhong Cheng
Department of Microbiology, Immunology & Molecular Genetics, University of California, Los
Angeles, Los Angeles, CA 90095, USA

Abstract
Type I Interferons are cytokines of the innate immune system that induce antiviral protein
expression in response to viral infection. Various proteins and pathways have been shown to
recognize nucleic acids ligands especially from RNA viruses. Here, we will review recent
developments including transcription of DNA virus genomes into RNA ligands, and the
recognition of viruses by TLR2 for interferon induction. The induced IFNs activate many
interferon stimulated genes (ISGs) that have direct anti-viral effects. Recent studies have identified
IFITM proteins as the first ISG to inhibit viral entry processes and revealed mechanistic
understanding of known anti-viral ISGs such as ISG15 and Viperin.

Introduction
Type I Interferon (IFN) is a key innate immune cytokine produced by cells to combat viral
infections. Intricate sensory mechanisms detect invading viruses and rapidly trigger
interferon production. Recognition of distinctive viral nucleic acids as a pathogen associated
molecular patterns (PAMPs) by cellular pattern recognition receptors (PRRs) will lead to
IFN induction. While RNA virus recognition is well understood, new pathways are
constantly being elucidated and the receptor for DNA viruses is a subject of intense
research. The first part of this review will discuss recent advances in understanding how
virus infection leads to IFN production.

Release of interferon after viral recognition signals to cells to induce the expression of a set
of Interferon stimulated genes (ISGs) that activate anti-viral processes including
amplification of interferon signaling, production of cytokines that activate adaptive
immunity, and many factors that directly inhibit viruses. ISGs with direct anti-viral
functions remain poorly understood, largely because they are virus-specific and can have
multiple mechanisms. The second part of this review will cover well-known and novel ISGs
focusing on recent developments in understanding their anti-viral function.

Old and New Paths to IFN Induction
The mechanism involved in how cells exposed to viruses or virion components “know” to
release IFN has not been well understood until recently. The discovery of the Toll like
receptors (TLRs) as receptors for extracellular or endocytosed viral components was a major
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advance in understanding viral recognition in the IFN process1. Likewise, the recent
discovery of the RIG-I-like RNA Helicases as RNA virus sensors has elucidated how a cell
detects an active intracellular virus infection2. Signaling downstream of these receptors has
been well studied and although some questions on the biochemical level remain, the
signaling pathways generally converge on the activation of TANK-Binding Kinase 1
(TBK1) that phosphorylates and activates the Interferon Regulatory Factors (IRF 3 and/or 7)
(Figure 1).

In addition, to TBK1 in this pathway, IFN induction through a LRRFIP1 mediated pathway
was demonstrated in mouse peritoneal macrophages exposed to intracellular DNA or RNA.
LRRFIP1 is a leucine rich repeat domain containing protein similar to the TLRs but
cytoplasmic in localization3. Intriguingly, induction of IFN-β by LRRFIP1 recognition of
free nucleic acids is dependent on β-catenin, a well-known coactivator of transcription4.
LRRFIP1 recognition of bacterial DNA or Vesicular Stomatitis Virus (VSV) infection
recruits β-catenin to the nucleus in an IRF-3 dependent manner (Figure 1). Nuclear β-catenin
can function to activate CBP/p300 that enhances acetylation and activation of the IFN- β
promoter. These findings show a novel IFN induction pathway that works with the canonical
TBK1/IRF pathways. In fact, most of the recent advancements in understanding IFN
induction underscore the need for critical examination of structured paradigms of innate
immunity.

New Players in Recognition of DNA Virus Infection
A search for the primary DNA virus receptor has fueled much research over the past years.
From the discovery of DAI, a protein that seemed critical for DNA induced IFN to the in
vivo finding that DAI may be redundant, many groups have searched for the “key” DNA
receptor or sought to understand how DNA recognition occurs5,6. A major development is
the discovery that the protein STING is necessary for IFN induction by exposure to B-DNA
and the DNA virus HSV-17,8. STING is an ER-localized, multi-transmembrane domain
protein that interacts with IRF-3, TBK1, CARDIF and RIG-I, and seems to coordinate the
signaling of IFN induction. Though, this protein is not a DNA receptor, STING deficient
mice represents one of the first knockouts that are compromised in IFN induction capacity
by all exogenous DNA or DNA viruses.

In the past year, the hypothesis that the DNA receptor directly binds to DNA was found to
be insufficient. Two reports show that rather than DNA recognition, RNA transcribed from
cytoplasmic DNA can function as a ligand for RIG-I induced IFN9. Here abundant
cytoplasmic DNA containing AT-rich regions can be transcribed by RNA Polymerase III
(RNAP3) and the RNA transcripts are recognized by the RIG-I pathway, in effect turning
viral DNA into RNA PAMPs. RNAP3 is important in cells transfected with B-DNA or
infected at high MOI with HSV-19. Epstein-Barr Virus (EBV) also transcribes small RNAs
via RNAP3 from viral DNA into RIG-I ligands. Whether RNAP3 transcription of viral DNA
is physiologically relevant remains an central question.

TLR2 as a Virus Receptor for Interferon Induction
The endosomal Toll-like Receptors (TLR) 3, 7, 8 recognize extracellular viral RNA PAMPs,
while TLR9 recognizes CpG DNA and can lead to IFN production upon activation. Other
TLRs were thought to primarily be inducers of inflammatory cytokines, none more so than
TLR2.

However, in inflammatory monocytes, a small distinct fraction of bone marrow, TLR2 was
found to be required for vaccinia virus induced IFN induction10. Ablation of this cell type,
which is not present in standard bone marrow derived macrophages or DCs, leads to
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increased susceptibility to vaccinia virus infection in vivo. TLR2 localizes to endosomal
compartments in this cell type where it can induce IFN. This observation suggests that
cellular localization of TLR2 can alter its downstream signaling potential. Classical bacterial
ligands at the cell surface ligate to TLR2 where a distinct array of signaling adaptors induce
inflammatory genes. However, signaling proteins localized to the endosome may be
specialized to signal from TLR2 to induce IFN. As most of the nucleic acid sensing TLRs
(3/7/8/9) are localized to the endosome, this model is consistent with the paradigm that the
endosomal system represents a major hub of virus recognition and signaling.

Interferon Stimulated Genes
Viral recognition induces the release of IFN that signals to surrounding cells creating the
“antiviral state” that was described as far back as the original IFN studies. Expression array
studies have shown that hundreds of genes are induced by IFN. While some ISGs such as
Protein Kinase R (PKR), 2′5-oligoadenylate synethetase, and Mx GTPases have well
described anti-viral functions and mechanisms11-13, functions of most ISGs are poorly
characterized with little or no mechanistic understanding. Table 1 summarizes most of the
known anti-viral ISGs. Here, we review recent developments in ISG function.

IFITM3
The interferon induced transmembrane proteins (IFITM) 1, 2, and 3 were identified as the
first host factors that restrict viral entry14. Brass et al., showed that overexpression of IFITM
2 and 3 significantly inhibited influenza, VSV, West Nile, and Dengue virus14. Conversely,
knockdown of IFITM3 or deletion of the Ifitm locus in murine embryonal fibroblast (MEFs)
increased susceptibility of the cells to viral infections. IFITM3 inhibited influenza
pseudoviruses but not Machupo pseudoviruses, suggesting that IFITM3 inhibits viral entry
processes because these pseudoviruses differ only in their envelopes. Ifitm deficient mice
are viable, yet their susceptibility to viral infection is not known. Recently, IFITM3 was
shown to be modified by S-palmitoylation, a post-translational modification that can
regulate localization and function of membrane associated proteins. Interestingly, deletion of
the palmitoylation site on IFITM3 abrogates its anti-viral effect on influenza suggesting
localization specific function15.

The precise mechanism of the antiviral activity of IFITM3 awaits further studies.
Overexpression and knockdown studies suggest that IFITM1, 2, and 3 may have non-
redundant functions, but their effects on different viruses need to be further delineated. How
IFITM3 affects entry steps, such as binding and fusion, is still unknown. Does it physically
interact with influenza virions or does it recruits complexes to affect viral entry? IFITM3
may also have additional anti-viral effects on assembly and budding.

ISG15
ISG15 is a 17kD ubiquitin-like protein that has been shown to inhibit replication of several
viruses including influenza, sindbis, herpes, HIV, HPV, and Ebola. ISG15 modification,
called ISGylation, occurs on over 100 cellular proteins and is catalyzed by the sequential
action of the interferon-inducible E1, E2, and E3 ubiquitin ligases called UBE1L, UbcH8/
Ube2L6, and Herc5, respectively12,16. Unlike canonical ubiquitination that targets proteins
for degradation, ISGylation can have diverse effects. For example, ISGylation of IRF-3
inhibits its degradation and causes increase in its transcriptional activity17. ISGylation
inhibits Ebola by blocking ubiquitin ligase Nedd4, which is required viral budding18.

One of the recent novel discoveries of the anti-viral mechanism of ISG15 is the ISGylation
of viral proteins. ISGylation of the influenza protein NS1 nuclear localization domain
prevents its association with importin-alpha. Mutation of the ISGylation site conferred
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increased resistance of influenza virus in the presence of interferon19,20. Other ISGylation
sites have been found yet their functional significance is unclear. Interestingly, the amount
of ISGylation of NS1 changes across different strains of influenza, which opens the question
whether the propensity for ISGylation correlates with virulence21. While many proteins can
be modified by ISG15, ISGylation seems to specifically modify newly synthesized host and
viral proteins16. This mechanism may help confer specific anti-viral effects without causing
global protein modifications in the cell.

Viperin
Viperin is an ER-associated ISG that inhibits HCV, HCMV, influenza, and HIV-1 through
several mechanisms. Wang et al. showed that Viperin disrupts cell plasma membrane and
lipid raft integrity and inhibits influenza virion budding22. Overexpression of farnesyl
diphosphate synthase (FPPS), an enzyme required for isoprenoid synthesis and lipid
metabolism, reversed this anti-viral effect, suggesting that Viperin prevents viral budding
through inhibition of FPPS22.

Viperin may inhibit HCV replication through a different mechanism. HCV core and
nonstructural (NS) proteins associate with lipid droplets, ER-associated organelles important
for cellular protein and lipid trafficking that are thought to be a site of HCV replication in
the cell23. Both Viperin and NS protein have an N-terminal amphipathic, alpha-helical
domain required for localization to lipid droplets. More importantly, the N-terminal domain
of Viperin is required for inhibition of HCV24. Although these data suggest that Viperin can
inhibit HCV in lipid droplets, it remains unclear whether there is direct association of
Viperin with HCV proteins or whether the amphipathic sequence is necessary for its
inhibitory activity.

Recent structural and biochemical studies identified Viperin is an S-adenosyl-L-methionine
(SAM) enzyme that binds Fe-S clusters and catalyzes SAM to form 5′-deoxyadenosyl
radicals25. The significance of this C-terminal catalytic domain is unknown and may be
required for other cellular anti-viral processes.

Interferon inducible GTPases
Both type I and type II interferon significantly induce expression of the Mx, p47, and p65
families of GTPases, which hydrolyze GTP and are well-known to confer resistance against
a wide range of pathogens. The Mx proteins inhibits replication of orthomyxoviruses,
Thogoto virus, bunyaviruses and rhabdoviruses11,26. The family of p47 GTPases, which
consists of Iigp, Lrg47, Irg47, Tgtp, Iigp, and Gtpi, predominantly inhibits bacteria and
protozoa growth27. Only Tgtp and Igtp overexpression in vitro have been shown to inhibit
VSV28 and Coxackie viral replication29, respectively. The family of p65 GTPases, also
known as the Guanylate-Binding Proteins (GBPs), is induced by all interferons, with more
robust induction by interferon gamma. Overexpression of GBP-1 and GBP-2 inhibited VSV
and encephalomyocarditis virus (EMCV) replication30. GBP-1 also reduces HCV
replication, but replication competent HCV expresses NS5B that inhibit GBP-1 GTPase
activity31. The functions of GBPs are largely unknown. GBP-2 can target to intracellular
vesicles32 and GBP-1 can form oligomers like Mx proteins33, which may provide clues to
their anti-viral function. There may be more than one anti-viral mechanism as exemplified
by the fact that GTP binding activity is required for inhibition of EMCV but not VSV34.

Concluding Remarks
The complex host-virus interactions involved in mounting and executing an effective
response to viral infections represents one of the major directions in innate immunity
research. While the general scheme for viral detection has been unraveled, much in terms of
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the actual ligands during an infection as well as the relative contribution of specific receptor
signaling remains to be determined. One particularly important point will be defining the
definitive detection pathway(s) for DNA viruses and testing whether detection through
RNAP3 holds up in in vivo infections. While viral recognition remains an important subject
of research, the elusive anti-viral functions of ISGs against specific viruses are getting
increased attention. Many studies have shown sufficiency of anti-viral activity of ISGs, such
as GBP-1, in vitro, but not necessity. The next level of studies will be to define
physiological roles of such ISGs as is the case for IFITM3. Understanding of the interactions
between ISGs and particular viral lifecycle processes will be particularly informative but not
trivial. Nearly all the ISGs described here can inhibit viruses in more than one way and
many of them may have redundant functions. In addition, how viruses have evolved ways to
escape anti-viral detection and effectors is equally important and lends another level of
complexity to host-pathogen interactions. Elucidation of ISG and viral interaction may allow
for identification of susceptibility mutations and provide new approaches for viral therapy.
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Figure 1. Old and New Players in the Induction of IFN
TANK-binding kinase-1 (TBK1) is the primary IRF3 activating kinase. IRF3 is activated by
phosphorylation, after which is translocates to the nucleus and induce Interferon gene
transcription. DNA induction of this pathway may occur by RNA Polymerase III (RNAP3)
transcription of abundant DNA into RNA, which can then function as a RIG-I substrate.
RIG-I is well known in RNA induction pathways to signal through CARDIF, a
mitochondrial adaptor to TRAF3 and downstream to TBK1. In addition, DAI has been
found to recognize DNA and induce signals downstream to TBK1. Further studies may
reveal new receptors that are either parallel or a more primary receptor for DNA that either
DAI or RNAP3. However, STING has recently been found to be an ER associated multi-
membrane protein that is required for signaling by these nucleic acid receptors, potentially
by serving as a signaling docking and coordination center. In addition, TLR2 has recently
been found to induce IRF3 activation in inflammatory monocytes by signaling from
endosomal compartments. Finally, LRRFIP1 has recently been found to respond to
cytoplasmic nucleic acids and signal to induce β-catenin phosphorylation. Phosphorylated β-
catenin translocate to the nucleus and is recruited to interferon promoters to activate CBP/
p300 that then induce acetylation and activation of the interferon promoter in a mechanism
whose importance is still being dissected.
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Figure 2. General Anti-viral Mechanisms of Interferon Stimulated Genes
The general lifecycle stages of an enveloped virus are depicted here (light blue letters). The
virus binds to specific receptors on the cell surface and often enters the cell through
endocytosis. Viral genetic material is released into the cytoplasm through pH-dependent or -
independent fusion and may be subsequently transported to the nucleus. Replication of viral
genetic material ensues along with mRNA transcription followed by transport to the ER for
protein translation. Envelope proteins are transported to the cell surface while core viral
proteins assemble with the viral genetic material. New virion particles are enveloped as they
bud out of the plasma membrane. ISGs (in capital black bold letters) can inhibit viruses
differently and at one or more stages of the viral lifecycle, see Table 1.
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Table 1
Summary of known anti-viral functions of ISGs

Interferon Stimulated Gene Viruses inhibited and Method of Study Anti-viral mechanism

Protein Kinase R Overexpression of wild-type but not mutant
PKR inhibits ECMV, vaccinia, HIV-135-37

PKR deficient mice deleted are susceptible to
VSV and influenza infections and increased
HSV-1 susceptibility in neurons38,39.

Translation Inhibition
Binds to dsRNA and ssRNA and phosphorylate EIF2a,
which prevents its guanine nucleotide exchange activity that
is required for translational activity12.

2′5-OAS and RNaseL ssRNA viruses Picornaviridae, Reoviridae,
Togaviridae, Paramyxoviridae,
Orthomyxoviridae, Flaviviridae and
Retroviridae13,40,41

RNA Degradation
Form short oligoadenylates from ATP, which activates
RNaseL to degrade viral RNA12.

TRIM5a Stable expression of TRIM5a from Rhesus
monkey in HeLa cells inhibits HIV-1 and
SIV42

Inhibition of viral cDNA synthesis and nuclear import43

Viral Protein Degradation
Target HIV capsids and RT products proteosomal
degradation44.

APOBEC3G and APOBEC3F Inhibits HIV-1; APOBEC3G and
APOBEC3F deficient cell supports Vif-
deficient HIV-145

Expression inhibits parvoviruses and
retrotransposons that is deaminase
independent45,46

Mutation of HIV DNA
A cytidine deaminase that converts cytidine to uracil in the
viral RNA, which subsequently leads to T/A hypermutation
in the viral DNA after reverse transcription47,48. Catalytic
activity not required for antiviral function49.
Inhibition of HIV-1 provirus formation
A3G inhibits minus-strand to plus-strand step in reverse
transcription50. A3F inhibits viral 3′ DNA processing51.
Inhibition of viral assembly
A3G interacts with HIV RNA and Gag and packaged into
viral particles52.

ISG15 Influenza, Sinbis, HSV1, MHV6853,54. Modifying ubiquitination on many cellular and viral
targets
ISGylation by ISG15 prevents IRF3 degradation17.
Indirectly Prevents Virion release.
Inhibits ubiquitination of HIV Gag and Tsg101 and prevents
virion release53.

ISG20 Overexpression inhibits VSV, EMCV,
influenza, HIV55,56

A 3-5 exonuclease; mechanism is unclear12.

IFITM1,2,3 Overexpression Inhibits influenza, Dengue,
West Niles virus, and VSV. Knockdown of
IFITM3 increased susceptibility to influenza,
WNV, and Dengue infection in vitro14.

Inhibition of Viral Entry14

Transmembrane protein. Antiviral mechanism unknown.

Mx GTPases orthomyxoviruses, paramyxoviruses,
rhabdoviruses, togaviruses, bunyaviruses
including HBV, influenza, coxackie
virus11,26

Inhibition of vRNP trafficking
Human MxA targets viral necleocapsid structures and traps
viral components11,26

Inhibition of viral transcription
MxA associates with influenza PB2 and prevents
transcription of viral genome11,26.

Viperin (Cig5) Overexpression of Viperin inhibits hCMV57

and HCV replication24,58

Induction of Viperin in HeLa cells inhibits
influenza budding22.
Viperin knockdown reduces TLR3 mediated
inhibition of HIV-1 in astrocytes59.

Inhibition of Budding
Disrupts lipid rafts22
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