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Abstract
Initiation and propagation of cell signaling depends on productive interactions between signaling
proteins at the plasma membrane. These diffusion-limited interactions can be influenced by
features of the membrane that introduce barriers, such as cytoskeletal corrals, or microdomains
that transiently confine both transmembrane receptors and membrane-tethered peripheral proteins.
Membrane topographical features can lead to clustering of receptors and other membrane
components, even under very dynamic conditions. This review considers the experimental and
mathematical evidence that protein clustering impacts cell signaling in complex ways. Simulation
approaches used to consider these stochastic processes are discussed.
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I. Introduction
Cell signaling, used for both intracellular and intercellular communication, is essential for
the healthy physiological functioning of multi-cellular organisms. Ligand binding to a
transmembrane receptor triggers an intracellular signaling cascade that results in altered cell
behavior. The proper integration of different environmental signals is critically important to
many biological processes, including cell survival, differentiation, proliferation and
migration.[1–6] Aberrations in signal transduction have been implicated in numerous
pathologies, from allergy and asthma to many different cancers.[1, 2, 4, 6–11] Signal
transduction pathways have therefore been studied extensively, and many drugs developed
to target them.[1, 4, 8, 10–12]

Knowledge of the structure of the plasma membrane and of signaling processes continues to
improve, due to advances in experimental techniques and imaging technologies.[13–15]
There is considerable evidence for the concept that the cell membrane is compartmentalized
into microdomains, such as protein islands[16] and lipid rafts.[17] Receptor clustering in
small or large aggregates (illustrated schematically in Figure 1) at discrete locations has
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been noted in many cell types,[2, 6, 18–22] prompting intense interest in roles for membrane
microdomains in signal propagation and preliminary mathematical studies to understand
both formation of clusters and their role in cell signaling.[23–32] There is general agreement
that the composition of these microdomains is quite heterogeneous and, further, that their
stability is influenced by the dynamic interactions of the cortical cytoskeleton with
membrane proteins and lipids. The cytoskeleton also limits diffusion of membrane
constituents by forming “picket fences” and “corrals”.[33, 34] The role of these membrane
features in promoting or limiting protein-protein interactions remains controversial, since
there is strong potential to both enhance and inhibit signaling.[24, 35–37] To help resolve
these issues, several groups are developing spatially realistic mathematical simulations of
receptor motion, aggregation/clustering and activation in the cell membrane.

It is important to note that parameters for these mathematical models rely on powerful new
experimental techniques. High resolution microscopy techniques, such as Transmission
Electron Microscopy (TEM) and photoactivation Light Microcrosopy (PALM), have been
applied to map the spatial distribution of signaling molecules in fixed cells.[16, 38] These
snapshot images of protein distributions can be supplemented with powerful new live cell
imaging approaches, including fluorescence resonance energy transfer (FRET), fluorescence
lifetime correlation spectroscopy (FLCS) and single particle tracking (SPT) experiments.
[13] These techniques can generate key information regarding the kinetics of protein-protein
interactions, including rates of dimerization, size of receptor aggregates and changes in
diffusion properties.[39] These rich data sets support the development of more accurate and
detailed mathematical models, that in turn improve understanding of biological results.

Ia. Key concepts and definitions relevant to the consideration of protein clustering in the
plasma membrane

In this brief review, we focus attention on the mathematical simulation of protein clustering
in the plasma membrane, an initial step in many signaling pathways. The protein species
considered may be a surface receptor, that is triggered by binding to an extracellular ligand,
or could be an intracellular signaling partner, such as an adaptor protein or enzyme that
propagates signaling through the cell interior. We define clustering as the non-random
spatial distribution of a membrane species, which can be observed and experimentally
validated through modern technologies. “Snap-shot” images of membrane proteins often
capture some level of clustering even before the onset of ligand binding to receptors or
active signaling.6 We hypothesize that these basal levels of clustering arise from brief, non-
productive interactions among proteins as they encounter one another while diffusing in the
plasma membrane or when proteins are transiently co-confined in a raft, island or corral
(Figure 1). Thus clustering in this sense is not synonymous with oligomerization, which
reflects the direct and measurable interaction between membrane components. It is
important to point out that stable oligomers cannot be distinquished from unstable clusters in
imaging techniques using fixed cells, such as TEM and PALM. However, new imaging
protocols can now accurately measure the dynamics of protein-protein interactions at the
molecular scale.[13] A recent example from our Center is the simultaneous single particle
tracking (SPT) of pairs of EGFR molecules, each labeled by virtue of binding to EGF
conjugated to different colors of quantum dot probes; only when two EGF-QD-bound
receptors were both coincident and exhibited correlated motion, could they pass the stringent
criteria for oligomerization.[39] The concept of clustering becomes particularly important as
we consider the data suggesting that the spatial proximity of proteins can promote protein-
protein interactions, including oligomerization, by increasing the likelihood of productive
collisions.
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Ib. Choosing the right modeling approach
Mathematical models constructed to date to study signal transduction pathways are of varied
complexity. They can be classified conveniently as deterministic methods, in which inherent
temporal and spatial fluctuations in diffusion and reaction rates are ignored, and stochastic
methods, which attempt to capture these fluctuations (Figure 2). The simplest modeling
approach is to assume that the system of interest is well mixed, without any spatial
concentration gradients, and describe the reactions by a system of ordinary differential
equations (ODEs). The utility of ODE modeling is enhanced by systematic sensitivity
analysis, which examines automatically changes in model behavior due to parameter
variation.[40, 41] Such a deterministic, well-mixed approach continues to be widely used,
[32] and has produced useful results.[41, 42] However, these approaches do not take into
account either spatial inhomogeneities or stochastic fluctuations, which can be significant
when the number of molecules in the region of interest is small. At a slightly higher level of
complexity, some spatial description is provided by dividing the region of interest into
separate well-mixed compartments. Additional ODEs are needed to describe inter-
compartmental species translocation reactions, thus mimicking spatial movement.

These well-mixed, ODE-based continuum pathway models[43] were expanded to include
spatial inhomogeneity[44, 45] by solving partial differential equations (PDEs) that include
molecular diffusion effects. Stochastic methods that assume spatially well mixed systems
have also been developed to account for temporal fluctuations.[46, 47] Stochastic PDEs
include both spatial information and temporal fluctuations. The most detailed, and thus most
complex, models are fully spatial, stochastic methods that track the movement of individual
molecules.[24, 25, 27, 28, 30, 48–51] However, the computational burden increases rapidly
with increasing complexity of the modeling approach. Figure 2 summarizes the various
modeling approaches and their range of applicability.

Mathematical simulation of events in the plasma membrane faces unique challenges.
Membrane proteins are constantly undergoing random motion in the plane of the membrane,
where the diffusion rate is influenced by the environment, such as hindrance by
microdomains, and thus varies both spatially and temporally. Optimally, the spatial location
of every protein needs to be predicted, in order to capture clustering imposed by membrane
topography and to predict the outcomes of both transient and prolonged protein-protein
binding events. Fully spatial, stochastic methods offer capabilities that can capture
accurately the dynamics of these events, but can be associated with prohibitively high
computation cost. Novel hybrid approaches show promise for solving some of these
computational challenges.

Finally, this section would not be complete without introducing the unique power of rules-
based approaches.[52, 53] Here, molecular interactions in signaling networks are treated as
systems of encoded rules. Molecules are represented as structural objects that have modular
domains and associated states representing conformations or covalent modifications of these
domains. Importantly the input files and model specification blocks are compatible with
multiple types of computational approaches, including coupled ODEs that result in
deterministic solutions of reaction kinetics as well as stochastic methods.

II. Applications in specific signaling pathways
Sections below briefly summarize mathematical models that have been developed to study
signal transduction pathways, with emphasis on methods developed by our group and others
to capture the influence of clustering and other spatial aspects. We focus on three
representative signal transduction pathways (EGFR, Ras/MAPK and GPCR) where protein
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clustering has been implicated, and on the modeling approaches used to approach this
unique set of challenges.

IIa. Our group’s focus: spatial aspects of signaling through the epidermal growth factor
receptor

A member of the ErbB family of plasma membrane receptors, EGFR is critically important
to many biological processes, including embryonic development and carcinogenesis.[1, 2, 6]
Upon binding any one of several ligands, including EGF, the ErbB receptors homo- or
hetero-dimerize. Dimerization is followed by transphosphorylation of tyrosine residues in
receptor cytoplasmic tails, which enables recruitment of cytosolic signaling proteins. The
reader is referred to Figures 2,3 in the article by Telasco & Radhakrishnan within this same
issue, for diagrams of EGFR/ErbB1 dimerization, phosphorylation and adaptor protein
recruitment.[54] Subsequently, these complexes activate many different signaling cascades,
including the Ras-MAPK pathway discussed in the next section.

There exists considerable experimental evidence for preexisting clusters of resting EGFR
(Figure 3) and for dynamical changes after addition of ligand.[2, 6, 18, 19, 21, 22] We have
built simulation platforms at different levels of complexity, in order to evaluate the impact
of EGFR clustering in the plasma membrane.

IIa.1 Approaches and methodology—Our first attempt to develop a spatial model of
the EGFR pathway was a simple compartmental model that accounted for receptor density
differences observed in the plasma membrane, with some regions having high-receptor
density and others displaying low-receptor density.[55] The focus of this study was to
explore whether the added computational complexity associated with spatial modeling was
justified. Our initial goal was to determine if the non-uniform receptor distribution in the cell
membrane could account for the experimentally observed, concave-up Scatchard plot for
binding of EGF ligand to its receptor. We simply optimized the distribution of receptors into
high- and low-density regions, and were able to determine the parameter space that allowed
for a concave-up Scatchard plot. This first attempt at compartmentalized spatial modeling
showed that accounting for the spatial organization of receptors was highly valuable, and
should be pursued, to enable both qualitative and quantitative understanding of cell signaling
involving (at least) the EGFR.

This study convinced us of the utility of spatial modeling of membrane-bound receptors and
of its importance in understanding cell signaling. We have now accumulated extensive
experience in developing spatially realistic simulations of the cell membrane and also
addressed the initiation of signaling.[24, 25, 27, 28, 55–59] Next, we summarize our
development of lattice-based and lattice-free (or off-lattice) methods, as well as our use of
hybrid approaches.

IIa.2 Lattice-based Monte Carlo (MC) approaches—In lattice-based models,
molecules are located at discrete grid points in the spatial domain and diffusion is restricted
to movement to an unoccupied neighboring point. Lattice-based MC simulations have
become very popular in the physics, chemistry, materials and engineering communities, as
they provide spatio-temporal information at significantly reduced computational cost,
compared to off-lattice simulations.[60–64] The MC method is a coarse graining of
molecular dynamics (MD) simulations,[60] because MD is impractical for rare event
dynamics, such as hopping between deep minima of a potential energy surface. The MC
method stochastically solves an underlying master equation using pseudo-random numbers,
by constructing the probability with which the various states of the system have to be
weighted according to a Markov process. MC simulations can provide continuous time
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information. Gillespie established the foundations of time-dependency for chemical
reactions in a spatially homogeneous system.[46, 65] His approach is easily applicable to
arbitrary complex computational systems, and is often referred to as the kinetic or dynamic
MC method. Despite important algorithmic implementations (e.g., dependency graphs,[66]
lists of neighbors, binary-tree search, etc.), MC simulations are seriously plagued by (1) the
presence of fast reactions that occur in large biochemical networks seen in biology and (2)
the execution of one event at a time.

Our Spatial Kinetic Monte Carlo (SKMC) method[55, 58] utilizes a modified null-event,
lattice-based MC algorithm, as in Mayawala et al.[25, 59] The spatial domain, representing a
small region of the plasma membrane, is a two-dimensional square lattice of side ℓ, divided
into a large number of much smaller square bins of side a (≪ ℓ). The SKMC algorithm
consists of first randomly selecting an occupied lattice site, and then choosing either a
successful (reaction or diffusion) or unsuccessful (null) event, based on calculated

probabilities. If a successful event is chosen, it is executed. The transition rate , for
diffusion of species from any site i (i.e., lattice point i) to a nearest-neighboring site j is
defined as

where Γd = 4D/a2 and D is the diffusion coefficient of the species located at site i. The term
Bi denotes the set of four possible nearest-neighboring sites to which diffusion can occur in
two dimensions from site i. Because species are allowed to diffuse only to an unoccupied
site, we define an occupancy function σj for each of the four nearest-neighboring sites, in
order to simplify the procedure for computing the transition rate for diffusion. For any site k
(= i or j), σk is set equal to 1 if the site is occupied, or to 0 if the site is unoccupied. The
transition rate for a chemical reaction at site i, , depends on the reaction type and is
directly related to the standard reaction rate.

The probability  of an event x (= r reaction or d diffusion) at site i is computed by using
the relation

where Γmax is a normalization constant, defined as

where the multiplicative factor of 4 accounts for events occurring in the four directions of
the two-dimensional square lattice. Finally, the time step Δt used to advance the simulation
time is computed as Δt =1/Γmax.

IIa.3 Rule-based, non-lattice simulator—Our non-lattice, stochastic simulator is an
alternative approach[27, 28]. In the lattice-free method, particles are not confined to discrete
points in space but are randomly repositioned upon undergoing a diffusion event. Receptors
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and other proteins in the 2D membrane and 3D cytosolic space are represented by sphere-
like particles with radii determined from experimental data and their coarse-grained
molecular models. At each time step, species diffusion is simulated as Brownian motion
(Figure 3). In addition, species have the potential to react with spatially nearby species. This
simulator was designed for flexible model development and deployment by a modularized
and rule-based approach. It tracks the individual reactions of multistate molecules and
accommodates complex situations.

IIa.4 Hybrid approaches—We continue to improve our basic SKMC algorithm, leading
to increased efficiency and speed of the simulations. One significant advance was the
coupling of our lattice-based SKMC simulations on the cell membrane to well-mixed
stochastic simulations within the cytosol.[25] In Costa et al,[25] we describe the
development of an algorithm that couples a spatial stochastic model of membrane receptors
with a nonspatial stochastic model of cytosolic reactions. Our novel hybrid algorithm
provided a computationally efficient method to evaluate the effects of spatial heterogeneity
on the coupling of receptors to cytosolic signaling partners. Results obtained using a
compartmental ODE method compared well with those generated with our hybrid model.
Thus, for sufficiently high receptor copy number, the far simpler ODE model may be
adequate. However, for spatially inhomogenous systems where the receptors numbers are
low, the hybrid method was significantly superior to the ODE model.

IIa.5 EGFR density, through clustering or overexpression, influences
signaling output—We have applied these methods to study the early molecular
mechanisms involved in EGFR signaling. For example, we applied the lattice-based spatial
stochastic model of the plasma membrane to examine the influence of cytoskeletal corral
openings on EGFR clustering.[24] Clustering was shown to depend on both receptor
concentration and picket fence density. For high picket fence densities, clustering increased
with increasing receptor concentration in the range examined. Conversely, low receptor
concentrations combined with small corral sizes inhibited clustering; at normal to high
receptor concentration, maximal clustering occurred at an intermediate corral size (~100
nm). These results indicate that both the number of clusters and the average cluster size are
likely to be complex functions of receptor density and microdomain size. It follows that
compartmentalization of the plasma membrane could either inhibit or enhance signaling,
concepts that require further exploration.

The non-lattice, rules-based simulator allowed us to explore the effect of EGFR
overexpression and its relation to carcinogenesis.[28] We postulated that increased receptor
density in membrane microdomains or protein islands might lead to more frequent
interactions between non-ligand bound receptors and, further, that large numbers of these
short-lived interactions might explain EGFR signaling known to occur even in the absence
of ligand.[19] One important aspect was consideration of EGFR extracellular domain
conformation, based upon structural studies showing that the resting EGFR is predominantly
in a “closed” conformation. Binding of ligand is proposed to stabilize the extended
conformation and expose the dimerization arm. In our simulations, we assumed that the
resting EGFR “fluxes” between the open and closed states, but spends 99% of its time in the
closed state. This property translates to a low probability that two diffusing monomers will
collide under conditions where both expose their dimerization arms and are therefore
competent to form a complex. The 2D simulation space included membrane microdomains
that transiently trapped receptors (as in Figure 3), setting up clusters undergoing dynamic
exchange. Remarkably, at levels of receptors typical of most normal cells, co-confinement in
membrane microdomains lowered the threshold for ligand-independent receptor
dimerization but resulted in very modest signaling output. When the simulation space was
populated with densities typically seen in tumors with EGFR gene amplification, which can
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express millions of EGFR per cell, the percent of activated receptors could exceed 10% with
our parameter values. Clustering had little effect in these cases, since the overall density on
the membrane was already very high

We have used both lattice and non-lattice models to consider how spatial aspects might
affect the recruitment of signaling molecules to the phosphorylated EGFR tail.[25, 27] In
Hsieh et al, [27]we also considered the combinatorial complexities associated with the fact
that EGFR has multiple phosphorylation sites and, further, the fact that each
phosphotyrosine site is capable of binding multiple partners. We used coarse-grained
molecular docking simulations to show that steric hinderance can impose important
constraints on the composition of adaptor proteins capable of docking simultaneously on the
EGFR tail. Modeling predictions in Hsieh et al[27] were quantitatively consistent with
experimental data for the kinetics of both EGFR phosphorylation and recruitment of adaptor
proteins. Importantly, both papers provide mathematical support for the conclusion that
clustering of receptors can amplify signaling by promoting sequential binding of adaptor
proteins. These results provide confidence in our models, and have led to ongoing studies of
other growth factor receptors that initiate signaling through dimerization, particularly
VEGFR, as well the heterodimerizing members of the ErbB family. This field continues to
advance, as demonstrated by the hybrid approaches of Radhakishnan and colleagues[54] that
consider ErbB structural and diffusion properties using increasingly complex models.
Additional aspects of cell surface topography, such as the induction of membrane curvature
by endocytic adaptor proteins, are new concepts that will provide important insight into the
control of signal transduction through the biophysical principals of membranes.

IIb. Work by others: the case of signaling via Ras/MAPK pathways
The Ras superfamily consists of over 100 small GTP-binding proteins (or GTPases), which
respond to various extracellular stimuli to regulate important signal transduction pathways.
[5, 11] These proteins, which have low intrinsic GTPase activity, “switch” between active
GTP-bound and inactive GDP-bound conformations. The processes mediated by GTPases
include cell division, differentiation, apoptosis and migration, cytoskeletal reorganization
and intracellular protein trafficking.[10] Abnormalities in these pathways are seen in various
pathologies, including obesity, diabetes, inflammatory diseases, cardiovascular disease,
neurological disease and cancer.[7, 10, 11] Therefore the pharmacological targeting of
GTPases and/or their signaling pathways is an active field[11].

The Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) pathway has been
investigated extensively, both in the clinic and the laboratory, and by mathematical
modeling.[12, 31, 32, 41–43, 67–74] Activation of a number of receptors, including EGFR,
leads to guanine nucleotide exchange (dissociation of GDP, gain of GTP) by membrane-
tethered Ras, thereby activating it. The activated Ras in turn activates Raf (Ras-associated
factor), the first kinase in the cascade. Subsequently, Raf activates MEK (MAPK/
extracellular signal-regulated kinase kinase), which then activates ERK (extracellular signal-
regulated kinase). The translocation of phosphorylated ERK to the nucleus and activation of
transcription factors mediates many cellular activities.

Numerous mathematical models have been developed to study this pathway.[31, 32, 41–43,
67–74] Much of this work uses compartmental models and ODEs to follow the temporal
evolution of activated ERK, and does not consider clustering in the plasma membrane.
However, Tian et al [31, 32] have mathematically evaluated various spatial aspects of Ras
signaling, including clustering in the plasma membrane. This group utilized a hybrid
approach to simulate reactions in the cell membrane and those in the cytosol, enabling them
to separate the contribution of the plasma membrane structure to the signal. They combined
the well-mixed stochastic model of Gillespie [46, 65] to simulate reactions in the membrane
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with an ODE model for the cytosolic reactions. They assumed that the number of RasGTP
clusters was proportional to the EGF concentration, and these clusters served as platforms
for recruiting Raf to the plasma membrane for activation. The lifetime of RasGTP clusters
was assumed to be normally distributed over a measured value. Plasma membrane reactions,
in addition to binding and activation of Raf by RasGTP clusters, included recruitment by
activated Raf of the KSR-MEK-ERK complex from the cytosol and activation of MEK by
activated Raf and of ERK (MAPK) by activated MEK. KSR (kinase suppressor of Ras) is a
scaffold protein that facilitates MAPK activation by providing binding sites for assembly of
the signaling complex. The recruitment of both Raf and the KSR-MEK-ERK complex was
modeled as occurring through random collisions with the plasma membrane. With
dissolution of a nanocluster, all recruited proteins diffused back to the cytosol, where the
activated MEK and ERK continued their roles. Using this model in conjunction with
biological experiments, Tian et al[31] concluded that RasGTP clustering is essential for
signal transduction. Moreover, the RasGTP clusters operate as sensitive switches in that they
produce approximately the same levels of normalized activated ERK over a wide range of
ligand concentration. One possible explanation for this behavior is the establishment of
locally high concentrations of recruited proteins and thus the spatial restriction of active
ERK production to RasGTP nanoclusters, whose generation and lifetime are themselves
strictly regulated.[31] Tian et al[31] also concluded that the production of RasGTP
nanoclusters in direct proportion to ligand concentration can ensure high fidelity of signal
transduction.

Subsequently, Tian et al[32] incorporated models for following the temporal evolution of
RasGTP clusters in the cell membrane. In particular, they studied K-Ras clustering and how
it is influenced by the protein Galectin-3 (Gal3). Previous experimental work had shown that
Gal3 is a scaffolding protein recruited to the plasma membrane, where it is necessary for the
formation of Ras nanoclusters.[75] Their mathematical model[32] considered the two
species, membrane-bound RasGTP and Gal3, initially in the cytosol. Once Gal3 is recruited
by RasGTP, the RasGTP-Gal3 complexes are assumed to diffuse randomly in the plasma
membrane and react with one another to form complexes of various sizes.

To simplify the calculation procedure, Tian et al [32] allowed for a maximum cluster size of
ten. The various combinations of possible complexes resulted in a total of 27 species and
136 reactions in the plasma membrane. In agreement with our earlier observation, they
concluded that spatial stochastic modeling of such a large system poses a considerable
computational burden. Therefore they developed an ODE system to follow the temporal
evolution of complexes of size 1–10, using a spatial stochastic model to only deduce
collision rates among the complexes.[27, 28] This deterministic system was solved with a
Runge-Kutta method suitable for stiff ODEs.[40] The collision rates were obtained by
initially placing RasGTP randomly in a square-shaped representation of the plasma
membrane. Recruitment of Gal3 produces the RasGal complex. These molecules were
allowed to diffuse randomly, and a collision was said to occur when the distance between
two molecules was less than the sum of their radii. The collisions produced various
combinations of Ras-Gal complexes. When a nanocluster, defined as a cluster consisting of
5 or more RasGTP molecules, formed it was assumed to become immobile in the plasma
membrane. During the calculation procedure the total numbers of collisions giving rise to all
cluster types were tracked. At the end of the computational time period, the collision rate
constants were computed from the total numbers of collisions. Kinetic rate constants for the
ODE model were then derived from the collision rate constants, by using a genetic algorithm
in conjunction with experimental data. The validity of this deterministic ODE model was
checked with results generated with a stochastic simulation algorithm.[65] Presumably due
to the large numbers of proteins, the stochastic simulations predicted only small fluctuations.
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This observation supports use of deterministic models when the protein copy number is
high, in agreement with our observations.

Using this modeling approach, Tian et al[32] studied clustering of K-Ras-GTP in the plasma
membrane arising from interactions with Gal3 for various KRas and Gal3 copy numbers.
The simulation time period was sufficiently long for the system to equilibrate. The time to
equilibrate was approximately two minutes, an important result because it is in good
agreement with the time period required for RasGTP loading in response to stimulation.[31]
Their results also successfully reproduced the experimental results of Plowman et al[76] that
approximately 42% of the RasGTP were in clusters and the average cluster size was
approximately 7. Tian et al[32] also generated the equilibrium nanocluster number versus
size histogram. Their results showed that nanoclusters with two to four molecules accounted
for only 2.1% of the RasGTP, whereas a cluster size of 5 was the most prevalent.
Nanoclusters larger than 5 in size were progressively smaller in number, approximately
inversely proportional to the size. The authors speculate that one possible reason for the
lowered incorporation of RasGTPGal3 complexes into clusters of size 5 or larger is the
remodeling of the lipid environment of the cluster by the stable pentamer. Their results also
suggest that cluster formation is only weakly dependent on RasGTP concentration, and is
determined by the Gal3 cytosolic concentration. Tian et al[32] concluded that on the basis of
their simulations neglecting the formation of clusters with more than 10 RasGTP molecules
is reasonable. Notably, this work illustrates the difficulty of spatial modeling of systems
with large reaction networks.

II.c Work by others: G-protein coupled receptors
The GPCRs constitute the largest family of transmembrane receptors, consisting of 5
subfamilies.[77, 78] These proteins, whose structure and function were reviewed recently by
Rosenbaum et al[78], are characterized by seven transmembrane spanning α-helical
segments.[77, 79] They regulate many physiological functions such as vision, gustation and
olfaction.[78, 80] Neurotransmitters, hormones and environmental stimuli activate these
pathways. GPCRs are also implicated in many human diseases, such as inflammation,
retinitis pigmentosa, nephrogenic diabetes insipdus and Kaposi’s sarcoma.[79–82] At
present, most pharmaceutical drugs used by humans target GPCRs by serving as agonists or
antagonists.[26, 80]

Many aspects of GPCR signaling are well established. In the classical view, binding of
ligand to a GPCR induces a conformational change in the receptor. The activated receptor
initiates guanine nucleotide exchange (GDP→GTP) in its principal signaling partner, a
heterotrimeric (αβγ) G-protein complex. Like ras, heterotrimeric G proteins are tethered to
the cytosolic leaflet of the plasma membrane through covalently attached lipids, and assume
an active state once bound to GTP. An additional step is required for heterotrimeric G
proteins: the separation of the GTP-bound Gα subunit from the Gβγ subunit, which diffuses
into the cytosol. The subsequent activation of downstream effector proteins results in
various distinct biological reactions.

Recent work has focused on new aspects of GPCR signaling, such as the evidence that at
least some GPCRs can form homo- or hetero-dimers.[23, 79, 82] These dimers can interact
further to form oligomers.[26] Although believed essential for signaling to occur, the
dimerization mechanism is well characterized for only a few GPCRs.[83] Due to the
importance of GPCR signaling in healthy and diseased states, GPCR interactions, along with
membrane organization, and their impact on signaling must be well characterized.
Mathematical modeling is therefore being used increasingly to help unravel the intricacies of
this pathway. A useful review of mathematical models that have been developed to study
GPCR signaling is given by Linderman.[29]
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Brinkerhoff et al[23] used triangular lattice-based Monte Carlo (MC) models to simulate
receptor dimerization and activation in a two-dimensional plane, examining how
dimerization creates clusters of receptors. Their model demonstrates the applicability of MC
methods to systems with discrete reactions that are diffusion limited.[23] Randomly selected
particles undergo either one of two possibilities at each time step: displacement in a random
direction by a distance governed by the diffusion coefficient or a chemical reaction.
Reaction possibilities considered were receptor dimerization, binding of ligand by receptor,
receptor activation of G protein and receptor phosphorylation. This group’s simulations
suggest that clustering arises through both dimerization and cross talk between receptors as
they approach one another closely and are able to share an effector. They also concluded
that the resulting clustering enhances signaling.

Fallahi-Sichani et al[26] investigated lipid raft impact on GPCR signaling with a
combination of MC (stochastic) and deterministic models. A lattice-based, kinetic MC
model was used to establish the effects of low-diffusivity rafts on receptor dimerization and
cluster dynamics. The stochasticity of the model allowed for receptor distributions to be
examined, leading to parameter estimations for exploring the effects on downstream
signaling using an ODE model. The fraction of plasma membrane covered by microdomains
(rafts), which was varied from 2–30%, had a significant impact on output. At 2% coverage,
microdomains amplified the overall response, but at higher coverage the signal was
attenuated. They concluded that dimerization and lipid raft trapping cooperatively control
the extent and dynamics of GPCR signaling.

Tolle et al[51] developed an off-lattice, Brownian diffusion-based stochastic model, which
they used to determine how AMPAR (alpha-amino-3-hydroxyl-5-methyl-4-
isoxazolepropionic acid receptor) diffusion in the dendritic spine affects synaptic signaling,
specifically Long-Term Potentiation (LTP).[84] LTP, an increase in synaptic strength, is a
well-studied form of synaptic plasticity, the ability to change the strength of a signal.[84, 85]
Tolle et al’s model accounts for the dendritic spine membrane, membrane receptors and
scaffolding proteins known to bind to membrane receptors.[84] The spatial domain
representing the plasma membrane of the synaptic spine was modeled as a square of surface
area corresponding to the measured volume of the spine. This square was separated into two
different compartments or domains, in order to account for the two physiologically different
portions of the plasma membrane: the post-synaptic density (PSD) and the extra-synaptic
membrane (ESM). The PSD is a protein-rich region where AMPARs are concentrated,[84,
85] while the rest of the membrane is classified as the ESM.[84] The transmembrane
receptor movement within the ESM was modeled with Brownian-type diffusion, while
confined motion was used to model the restricted diffusion within the PSD. Simulation
results indicate that randomly placed receptors quickly localize to the PSD, which Tolle et
al[84] suggest explains the quick onset of LTP.

III. Concluding remarks
This review specifically considers the mathematical modeling of protein clustering on the
plasma membrane and the evidence that signal transduction can be enhanced by locally high
concentrations of proteins that increase the probability of protein-protein interactions. This
feature is especially important when the numbers of particles are small. When proteins are
overexpressed, as in EGFR amplication in certain cancers, clustering may not be as
significant.[28] The role of membrane microdomains in signaling may be quite complex,
since both inhibitory and stimulatory effects have been observed experimentally and
theoretically.[24, 35–37]
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Mathematical modeling, in conjunction with biological experiments, is providing new
insights into the mechanisms that govern protein clustering in membranes and the resulting
impact on signaling. Increasing experimental detail is being matched by increasingly
complex models that account for previously ignored biological subtleties.[47, 50, 86–90] An
important goal is to predict the functional responses of whole cells and cell-tissue systems,
based upon integration of spatial and temporally encoded signals from surface receptors.
Achieving this goal will necessitate the development of efficient and accurate multi-scale
simulation capabilities. A daunting challenge to mathematical modeling of cell signaling
continues to be the scaling up of computationally intense methods developed for studying
molecular behavior to enable predictive modeling at progressively more complex levels,
from the cellular to the systemic.
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Figure 1. Schematic representation of microdomains and receptor clustering
Left: Cartoon representation of features that can subcompartmentalize the plasma
membrane, including rafts or islands and the cortical cytoskeletal network. These features
are highly dynamic, permitting rapid exchange by diffusion. Right: Representation of the
distribution of receptors (yellow, blue symbols) in and out of domains (pink shapes) formed
by these features. Arrows point to various states, including monomers, dimers and
aggregates. Receptors that are transiently trapped in domains are locally crowded (arrow,
top right) and appear as clusters by imaging technologies. This molecular crowding can be
more pronounced upon ligand stimulation, due in part to formation of dimers and larger
aggregates with decreased diffusive mobility. This review considers the experimental and
computational evidence that molecular crowding influences receptor dimerization/
aggregation and recruitment of signaling proteins.
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Figure 2. Classes of mathematical models for molecular processes in cells and the scales at which
they are applicable to signaling processes
A possible quantitative guide is the size of the largest element that can be treated as spatially
homogeneous (horizontal axis) and the typical number of molecules of one species in the
element (vertical axis). The suggested spatial resolution is determined by the size of the
biological elements of interest and current computational capabilities. Spatially resolved
models are resource-intensive, and are therefore generally applied to small subsystems. Cell-
level models of large signaling networks are typically well mixed; spatial Monte Carlo
studies rarely scale beyond a few hundred nanometers. A promising approach for multi-scale
applications is a combination of compartment-based models at the large scales and fully
spatial simulations focused on a few important processes within small structural elements of
the membrane. Temporal fluctuations arise largely from the discrete and stochastic nature
of the underlying molecular processes. The relative magnitude of temporal fluctuations
(ΔN) decreases as the number of particles increases. The discrete nature of the particle
number can thus be ignored when N is significantly greater than 1. That is, deviations from
the expected average behavior can be neglected when the expected magnitude of the
fluctuations is small compared to N.
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Figure 3. Experimental results and mathematical model predictions of EGFR clustering
(A). Experimental evidence for EGFR clustering in absence of ligand. Electron
micrograph of gold particle-labeled EGF receptors in resting A341 cells (~2 million EGFR/
cell), reveals a non-random distribution and provides evidence for receptor co-confinement.
(B). Spatial domain used in lattice-free Monte Carlo simulation.[28] The spatial domain
simulated by the off-lattice Monte Carlo procedure was a square of area 2 μm2,
representative of a small region in the plasma membrane. This region was modified to
include many islands or preferred domains (the green rectangles within the membrane
patch), to simulate the receptor-trapping micordomains seen in (A). Movement of receptors
into and out of the simulated microdomains over a time period of 30 s is indicated by the
thin colored tracings. Receptor trapping in the microdomains was reproduced
mathematically by stipulating that receptors had a greater probability of entering these
regions than of leaving them. (C) Simulation predictions of receptor clustering in
absence of ligand. The predicted particle positions after 30 s of simulation time are
indicated by the black dots. The Hopkins statistical test (inset) was used to test the
randomness of receptor distribution. The right shift of the distribution (compared to the
random or normal distribution shown in red) towards unity confirms the clustered nature of
the receptors. The predicted receptor distribution compares well with the experimental
observation in (A). (D) Simulations using a Coupled Spatial/Nonspatial Stochastic
Algorithm (CSNSA) support the conclusion that EGFR clustering promotes activation
of the adaptor SOS. ODE models confirm this conclusion, using a fast diffusion coefficient
to override contributions from membrane spatial organization. (From Hsieh et al.[28] and
Costa et al.24)
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