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ABSTRACT

Background Visual information is a crucial aspect of
medical knowledge. Building a comprehensive medical
image base, in the spirit of the Unified Medical
Language System (UMLS), would greatly benefit patient
education and self-care. However, collection and
annotation of such a large-scale image base is
challenging.

Objective To combine visual object detection
techniques with medical ontology to automatically mine
web photos and retrieve a large number of disease
manifestation images with minimal manual labeling
effort.

Methods As a proof of concept, we first learnt five
organ detectors on three detection scales for eyes, ears,
lips, hands, and feet. Given a disease, we used
information from the UMLS to select affected body parts,
ran the pretrained organ detectors on web images, and
combined the detection outputs to retrieve disease
images.

Results Compared with a supervised image retrieval
approach that requires training images for every disease,
our ontology-guided approach exploits shared visual
information of body parts across diseases. In retrieving
2220 web images of 32 diseases, we reduced manual
labeling effort to 15.6% while improving the average
precision by 3.9% from 77.7% to 81.6%. For 40.6% of
the diseases, we improved the precision by 10%.
Conclusions The results confirm the concept that the
web is a feasible source for automatic disease image
retrieval for health image database construction. Our
approach requires a small amount of manual effort to
collect complex disease images, and to annotate them
by standard medical ontology terms.

INTRODUCTION

Both textual and visual medical knowledge play
crucial roles in healthcare and clinical applications.
Doctors, caregivers, and patients need both natural
language and images to illustrate diseases, medical
conditions, and procedures. Scientists have con-
structed and reused a number of comprehensive
textual knowledge bases in the medical domain,
such as the Unified Medical Language System
(UMLS)." In comparison, fewer studies have
attempted to systematically organize medical
knowledge in a visual format. Many medical image
bases concentrate on specific domains, such as lung
CT images,” cardiovascular MRI images,” and
human anatomy images.* The scale of these data-
bases is limited, largely because the image

collection processes are manual and laborious.
Also, they annotate images by natural language sen-
tences, which introduce ambiguities in image
retrieval. Last but not least, most existing image
bases are not freely available.

Our eventual goal is to build a freely accessible,
large-scale, patient-oriented health image base com-
prising images of human disease manifestations,
organs, drugs and other medical entities. Unlike
previous databases, we plan to build our image
base in line with the UMLS structure and annotate
images using terms from standard medical ontolo-
gies such as the FMA (Foundational Model of
Anatomy),” ICD9 (International Classification of
Diseases, °th revision)® and RxNorm.” For each
medical term, we seek to provide a set of high-
quality images and create a rich and reusable infor-
mation source for patient education, patient self-
care and web-content illustration. In this paper, we
focus on providing disease manifestation images.
Since the image base is designed for consumers, we
collect photographic images, which are a significant
subset of all biomedical images. To the best of our
knowledge, our work is the first attempt to build a
large-scale medical image base annotated with
ontology terms.

The most challenging problem in building this
image base is to collect a large number of credible
images for millions of medical terms. The web is a
readily available source: it is free; it contains bil-
lions of images; and is fast growing. But many web
images are non-medical and need to be filtered.
Although generic image retrieval engines such as
Google can already retrieve reasonable images for
text queries, they do not specialize in medical
applications. For example, the top Google results
for UMLS concepts ‘heart, ‘ear deformities,
acquired’, and ‘ibuprofen’ do not only contain
images of the heart organs, ear deformities and ibu-
profen tablets, but also include other items such as
cartoon symbols, paper snapshots, and molecular
formulae.

In particular, image retrieval for disease terms is
highly challenging, since disease manifestation
images contain diverse objects and complex back-
grounds. For example, positive examples of ‘hand,
foot, and mouth disease’ may contain infected feet,
hands, mouths, or tongues. These body parts are in
different positions and sizes. In addition, more
than one infected body part may appear in one
single image. To collect disease images from the
web, we clearly need a content-based image
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retrieval (CBIR) method that analyzes the image at the object
level. This method should also require minimal manual effort,
as the number of disease terms is large.

Most CBIR systems apply machine learning approaches to
bridge the semantic gap between image content and users’ inter-
pretations.® These approaches include supervised classifica-
tion,’ similarity-based  clustering,"*  semi-supervised
co-training,’® and active learning based on relevant feedback.'?
A few methods incorporated additional information to improve
retrieval precision. For example, Deserno et al'* exploited
figure types and panel numbers to retrieve literature figures.
Muller et al'® summarized the retrieval methods for integrating
texts with image content. Simpson et al'® combined natural lan-
guage and image processing to map regions in CT scans to con-
cepts in RadLex ontology, which was automatically extracted
from image captions. Deng et al'” used semantic prior knowl-
edge to retrieve similar images. One particularly relevant
method of reducing human effort in health image collection is
the bootstrap image classification method.'® This approach uses
one positive sample as the ‘seed’ to iteratively retrieve more
positive images, and thus is appropriate for large-scale image
collection. Although this approach effectively collects human
organ and drug images, it has limited precision for disease
images.'® Because web images are highly heterogeneous, our
task requires supervision of the training data to ensure good
precision. However, traditional supervised methods need a train-
ing image set for each disease, thus will not scale up when the
number of disease terms is large.

To solve this scalability problem, we propose an ontology-
guided organ detection method to collect disease manifestation
images from the web. Based on observation, we assume that
most disease manifestation images contain abnormal human
body parts, such as eyes, ears, and hands, which show visible
disease symptoms. Therefore, our approach uses the existence
of these body parts to discriminate between images of disease
and non-disease images. Instead of training a classifier for each
disease, we pretrain a set of organ detectors, each of which
detects one target organ. When retrieving images for a given
disease, we extract the disease—organ semantic relationships
from ontologies, and use the corresponding detectors to detect
associated organs from web images.

Our method has two major advantages. First, we require much
fewer training data than the standard supervised method, which

UMLS

Target Body Part

Google
top results

Pre-trained Body
Part Detectors

1

Target Body
Part Detectors

(a)

Figure 1

trains a classifier for each disease, because we reuse organ detec-
tors across diseases. For example, 428 diseases in the UMLS
record eyes. Instead of training 428 classifiers, one for each
disease, we train one detector for ‘eye’ and reuse it to classify
428 types of eye disease images. Second, our approach achieves
high accuracy when disease images contain diverse manifestations
of different organs, such as images of ‘hand, foot, and mouth
disease.” For each disease, we use prior knowledge of disease—
organ associations as guidance to scan images at the object level.

METHODS

Our approach is based on a key observation that although the
number of diseases is in the tens of thousands, most of them are
shown on body parts, and the number of body parts is much
smaller. This motivated us to develop image retrieval models by
leveraging the disease—organ relationships from medical ontolo-
gies and sharing organ detectors among diseases. Figure 1A
shows the workflow of this method. For a given disease term,
we downloaded its top Google hits as the input, and selected
the target disease manifestation images from the input following
these steps: We first searched the UMLS for the organs affected
by this disease. To detect these organs from the input, we
scanned the images with the corresponding organ detectors,
which had been pretrained using images independent of the
disease. Finally, we combined the result of each individual organ
detector to classify the input images into disease or non-disease.

Discovering target body parts

For each disease, we found the affected body parts through the
UMLS semantic network relationship of ‘has finding site.” A
single body part is typically associated with hundreds of dis-
eases, and thus reusing common organ detectors across diseases
can save a significant amount of manual labeling. Also, a disease
can be displayed on multiple body parts: among the diseases
that have the ‘finding site’ information in the UMLS, around
15% are located on more than one body part. For such complex
diseases, we combined the organ detection results to boost the
retrieval precision.

Within the UMLS, diseases may affect accessory body parts
that are too detailed, such as the ‘oral mucous membrane struc-
ture,” ‘upper eyelid’, and ‘lower eyelid.” In images, symptoms on
these body parts are often associated with larger organs, such as
the mouth and the eye. Therefore, we systematically traced the
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(A) Overview of our approach. We used the Unified Medical Language System (UMLS) to determine the body part locations of disease

manifestations and to select from a set of pretrained organ detectors to filter Google search results into relevant and irrelevant images. In
comparison with a supervised method that would require labeled training examples for each disease, we achieved high precision in image retrieval
with minimal human effort. (B) The structure of organ detectors. Our decision rule is based on multiple objects’ detectors using multiple scales. It is
crucial to have multiple scales because some disease images have body parts occupying the entire frame, while others include a large portion of the

background.
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UMLS ontology hierarchy following the ‘part_of relationship,
and mapped these body parts to their upper-level terms until
the preselected terms of the large organs were reached. For
example, ‘oral mucous membrane structure’ is a part of the
‘mouth.” Diseases affecting the ‘oral mucous membrane struc-
ture’ are then associated with the ‘mouth.” In this paper, we pre-
selected six organ terms (eye, lip, mouth, ear, hand, and foot) as
the target body part, and performed image retrieval on asso-
ciated diseases to prove the feasibility of our method.

Detecting target organs

We developed a general human organ detection method, and
adapted it to specific targets by tuning the training data. We
have trained five detectors for eye, ear, lip/mouth, hand and
foot, and reused them in retrieving images of various diseases.
These detectors are constructed in a generic way and can be
easily extended to other body parts.

Object detection is a fundamental problem in computer
vision. Approaches to object detection typically consist of two
major components: feature extraction and model construction.
Lowe'® developed the scale invariant feature transformation
(SIFT) as the image patch descriptor. Dalal and Triggs®® pro-
posed the histograms of oriented gradients (HOG) for human
detection. These features have proved effective in object detec-
tion applications. In addition, Zhang et al*' constructed a
bag-of-feature model to classify texture and object categories.
Felzenszwalb et al** developed a generic object detector with
deformable part models to handle significant variations in object
appearances.

Figure 1B shows the structure of our organ detector. Each
detector i (i=A, B...) detects one target organ using multiple
classifiers. Each classifier Cj scans the input image and searches
for the target at detection scale j (j=1, 2...). For example, if
detector A is an eye detector and contains three classifiers, then
Ca1 decides if the full image is an eye, Ca» scans the image with
a detection window to search for small eyes, and Cu; searches
for eyes of an even smaller size. The organ detection results
{SA15SA25-, SB15SB2,---} are binary values and represent the
existence of each organ {A,B,...} at each detection scale {1, 2,
...;. We then combined these results into high-level features,
based on logic, to make final decisions about the input images.
We found that the accuracies of our simpler detection system
were comparable to that of Felzenszwalb et al.**

Training organ detectors

For all classifiers in each organ detector, the training samples
consisted of web images collected by Google. To collect positive
examples, we searched the six body part names as the keywords
and manually picked 200-300 images of the body part itself
with little background. Most positive examples are not medic-
ally relevant, but contain different views of the body parts. To
collect negative images, we summarized the categories of objects
and backgrounds that often appear in the Google query results,
such as paper snapshots, animals, and buildings. Negative exam-
ples were then collected by searching keywords such as ‘research
paper,’ ‘dog,” and ‘building.” Five thousand images comprised
the negative training set. We used the same negative examples
for all the organ detectors.

We trained three standard soft margin support vector
machine (SVM) classifiers for each organ detector to detect
targets on three scales. In detector i, Cj; was trained by full
training images. Since Cj; and Cj3 search for targets with detec-
tion windows, they used positive samples that were resized to
the window sizes, and randomly selected image patches of the

window sizes from negative samples. We extracted the HOG
features®® from training images. The HOG is reminiscent of the
SIFT descriptor, but uses overlapping local contrast normaliza-
tions for improved performance.*® The window sizes of Cj; and
Ci; were empirically chosen as 64x96 pixels and 32x48 for
eye, lip/mouth, and hand detectors; and 9664 and 48 x32 for
foot and ear detectors. By browsing 100 eye disease images, we
found that images containing only very small target organs were
usually false positives, therefore did not train classifiers at any
smaller scale in order to maintain high retrieval precision.

Combining detections for disease image classification

We finally used the organ detection results that represent the
existence of affected organs as high-level features to classify the
input images into disease or non-disease categories. Ideally, if all
the classifiers behave in the same way and are independent, the
high-level combined feature might look like:

Y = (Sa; +Saz +Sa3) + (Spy +Sp2 +Sp3) + ., (1)

where + is the ‘or’ operation between binary values.

However, we found that such a simple combination had pro-
blems. If the whole image itself is the target body part, it is
unlikely to contain the same target at smaller scales. If a body
part is detected at both the whole-image level and the finer
scales, the image is often a false positive. This may be partly due
to the incompleteness of the training samples or the challenge
of detection of small-scale objects. Rule (1) ignores this problem
and concludes that the result is positive if the classifiers at all
three scales are positive. As precision is more important for our
retrieval problem, we used the exclusive ‘or’ operation to set
the decisions in such cases as negative, even though the recall
might be decreased.

Our final decision rule was as follows:

Y= (Sa1® (Sap +543)) + (Sps® (Spp +Sp3)) + -0y (2)

where @ is the ‘exclusive or’ and + is the ‘or’ operation
between binary values. Comparison of the truth of (1) and (2)
shows that the two equations make different decisions only
when the detection results are positive at both the whole-image
level and the finer levels, and then decision rule (2) is more
desirable.

RESULTS

We evaluated the proposed ontology-guided disease image
retrieval method for two kinds of image sets: (1) images of mul-
tiple diseases that are located on the same body part, and (2)
images of diseases that are located on more than one body part,
in experiments A and B, respectively. All the test images were
top Google search results for the given disease term. We
excluded those images with either widths or heights smaller
than 128 to ensure image quality. Also, to apply the organ
detectors with the selected detection window sizes, we resized
all test images such that both their widths and heights were
between 128 and 256. For evaluation purposes, the test images
were labeled by three human evaluators. Since performance
depends on the ground-truth labeling, a majority vote was used
among individual evaluators. The average agreement rate among
the three evaluators was 929%.
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Comparison of the performance of 10 eye disease image test sets

Google test image sets: eye disease images

Object detection based method Supervised classification method

Disease CUI Disease term Positive percentage (%) Precision Recall F1 Precision Recall F1

C0009363 Coloboma 50 0.750 0.720 0.735 0.707 0.746 0.726
C0013261 Duane retraction syndrome 45 0.818 0.400 0.537 0.779 0.652 0.710
0014236 Endophthalmitis 66 0.852 0.697 0.767 0.817 0.867 0.841
0015397 Disorder of the eye 63 0.882 0.882 0.882 0.683 0.700 0.692
C0015401 Eye foreign bodies 4 0.826 0.792 0.809 0.648 0.687 0.667
0015402 Eye hemorrhage 45 0.692 0.800 0.742 0.772 0.821 0.796
C0015404 Bacterial eye infections 50 0.706 0.720 0.713 0.807 0.864 0.834
C0017601 Glaucoma 50 0.727 0.800 0.762 0.821 0.827 0.824
€0025210 Ocular melanosis 50 0.794 0.540 0.643 0.723 0.689 0.706
0086543 Cataract 62 0.862 0.806 0.833 0.862 0.913 0.887
Average 52.2 0.791 0.716 0.742 0.762 0.777 0.768

CUI, concept unique identifier.

Single-organ disease classification

Our method trained organ detectors by normal organ images.
Since the test images can be quite different from the training
images and much more diverse, we designed experiment A to
evaluate the performance of our method by comparing the
results with a supervised classification method. For each individ-
ual disease, the supervised method trained a soft margin SVM
classifier using the actual disease images as training data, and
extracted the same HOG features.

This experiment repeatedly compared our object detection-
based method with the supervised classification method on
2000 test images in three groups. Each group contains 10 sets
of eye, ear, and mouth/lip disease images, respectively. Our
method trains a single object detector to classify the 10 test sets
in each group. In contrast, the supervised method trains 10 dif-
ferent classifiers for each disease, thus requiring 10 times more
human labeling effort. The methods compared their precisions,
recalls and F1 measures. Precision is the most important criter-
ion among the three, because our goal is to collect data for a
health image base, and we are more interested in the credibility
than the completeness of the images. Table 1 compares the per-
formance for eye disease images. The average positive percent-
age of the 10 Google test image sets is 52.2%. After using our
method, the average positive percentage of the retrieved images
was 79.1%. For 9 out of 10 test sets, our method achieved pre-
cision of between 70% and 90%. The precisions, recalls and F1
measures of our method were comparable (p>0.1) to those of
the supervised method for all the 10 test sets, even though our
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Figure 2

Recall

method only needs one tenth of the manual labeling effort, by
reusing the organ detector across 10 diseases. In practice, our
method will be able to reuse the eye detector for far more than
10 eye diseases and further reduce human effort.

Also, we observed that the object detectors at smaller detection
scales tend to introduce more false-positive results. For eye
disease image retrieval, a finer detection scale yields decreasing
precision in 8 out of 10 test sets (figure 2A) and increasing recall
in all test sets (figure 2B). The second test set of Duane retraction
syndrome images has the lowest recall in all detection scales. One
possible reason is that many positive images in this set contain
eyes smaller than our detection window scales in order to illus-
trate the eye movement disorder. Adding organ detectors at
smaller scales may increase the recall, but may also introduce
many false positives. Since precision is of more importance, we
stopped the object detection at the third detection scale.

Tables 2 and 3 show the results for ear and mouth/lip disease
images. Our method achieved average precisions of 80.7% and
84.2%, while the baselines of test set quality were 43.4% and
47.5%, respectively. The three evaluation criteria in table 2 are
similar between the two methods (p>0.1), and the average pre-
cision of our method for ear disease retrieval was higher than
that of the supervised method. In table 3, our method achieved
around 6% average higher precision than the supervised
method (p=0.15), at the cost of lower recall. One possible
reason is that the body parts in some mouth disease images
from the test sets are at very different angles and considerably
deformed.
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(A) Trend for decreasing precision in finer scales. (B) Trend for increasing recall in finer scales.
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Table 2 Comparison of the performance of 10 ear disease image test sets

Google test image sets: ear disease images

Object detection based method Supervised classification method

Disease CUI Disease term Positive percentage Precision Recall F1 Precision Recall F1

C0008373 Cholesteatoma 0.640 0.794 0.818 0.806 0.881 0.953 0.915
C0013446 Acquired ear deformity 0.580 1.000 0.828 0.906 0.819 0.863 0.840
C0013449 Ear neoplasms 0.340 0.875 0.412 0.560 0.733 0.567 0.639
C0029877 Ear inflammation 0.450 0.921 0.778 0.843 0.822 0.804 0.813
C0154258 Gouty tophi of the ear 0.290 0.792 0.655 0.717 0.614 0.470 0.532
0347354 Benign neoplasm of the ear 0.300 0.571 0.533 0.552 0.820 0.497 0.619
C0423576 Irritation of the ear 0.360 0.733 0.611 0.667 0.933 0.607 0.735
€0521833 Bacterial ear infection 0.340 0.786 0.647 0.710 0.820 0.670 0.737
€0729545 Fungal ear infection 0.460 0.800 0.696 0.744 0.728 0.864 0.791
(2350059 Cancer of the ear 0.580 0.800 0.414 0.545 0.797 0.699 0.736
Average 0.434 0.807 0.639 0.705 0.797 0.699 0.736

Multiple-organ disease classification

Experiment B evaluated the performance of our method on 220
images of two diseases that are located on multiple organs.
Table 4 shows that the precision of the proposed method on
both test sets was >80%. Compared with the supervised
method, our method improved precision by more than 10% in
these two cases. Since the proposed method is guided by the
semantic information of body part location, it can detect
various kinds of positive images, whereas the supervised method
does not make use of the high-level features that have greater
semantic meaning.

For hand, foot, and mouth disease, 42.9%, 28.6%, and
37.1% of the positive images in the test set contained a hand,
foot, and mouth, respectively. A few positive images contained
two or three body parts at the same time. The hand, foot, and
lip/mouth detectors contributed to finding 28.6%, 14.3%, and
28.6% of the total positive images. For Ascher’s syndrome,
67.9% and 32.1% positive test images contained lip and eye,
respectively. The corresponding mouth/lip and eye detectors
found 57.1% and 28.6% positive images, respectively, from the
whole test sets.

In summary, we trained five organ detectors and reused them
to filter 2220 web images of 32 different diseases in two experi-
ments. Compared with the supervised approach that require
training 32 classifiers for each of the diseases, we reduce the
labeling efforts to 15.6%. The average retrieval precision of our
method on all the 32 datasets was 81.6%, an improvement of

3.9% compared with the supervised method. For 13 out of 32
disease datasets, we improved the retrieval precision by 10%.

DISCUSSION
With the aim of achieving large-scale medical image retrieval,
we compared the proposed ontology-guided approach with
standard supervised classification. We showed that the proposed
method achieves a precision comparable to that of the super-
vised method while saving manual labeling efforts by an order
of magnitude. The results also illustrated that our method has
limitations in low recall values on some test sets and in decreas-
ing precision when the detection scale becomes smaller. To
improve the recall, we need more robust algorithms and better
data to train the organ detectors. For the limitation of decreas-
ing precision, we plan to build a two-layer learning model, in
which the first layer classifiers detect target objects at different
scales and the second layer classifier learns the weights to
combine results from the first layer and make final decisions.
The scale of our experiments is limited owing to the intensive
manual labeling work required for training data and evaluation
purposes. Our experiments are based on five organ detectors. In
the future, we plan to train more organ detectors and apply the
method to handle more diseases. We also found that a few
organs, such as skin, muscle, and veins, do not appear as con-
crete objects in images. Our method based on object detection
is insufficient for diseases on these organs. In future work, we

Table 3 Comparison of the performance of 10 mouth/lip disease image test sets

Google test image sets: mouth/lip disease images

Object detection based method Supervised classification method

Disease CUI Disease term Positive percentage Precision Recall F1 Precision Recall F1

€0007971 Cheilitis 0.540 0.846 0.667 0.746 0.828 0.893 0.859
€0019345 Herpes labialis 0.530 0.900 0.486 0.632 0.817 0.953 0.880
C0023761 Lip neoplasms 0.400 0.909 0.500 0.645 0.607 0.553 0.579
C0149637 Carcinoma of the lip 0.460 0.952 0.435 0.597 0.819 0.906 0.860
C0153932 Benign neoplasm of the lip 0.300 0.625 0.333 0.435 0.833 0.713 0.769
C0158670 Congenital fistula of the lip 0.380 0.700 0.368 0.483 0.693 0.800 0.743
0221264 Cheilosis 0.520 0.750 0.577 0.652 0.813 0.867 0.839
0267022 Cellulitis of the lip 0.400 0.923 0.600 0.727 0.810 0.917 0.860
€0267025 Contact cheilitis 0.700 0.950 0.543 0.691 0.849 0.943 0.894
0267032 Granuloma of the lip 0.520 0.867 0.500 0.634 0.721 0.865 0.786
Average 0.475 0.842 0.501 0.624 0.779 0.841 0.807
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Table 4 Comparison of the performance of two complex disease
image test sets

Disease CUI €0018572 €0339085
Hand, foot and mouth
Disease term disease Ascher’s syndrome
Positive percentage 0.58 0.56
Disease locations 0222224 Skin structure of €0023759 Lip
hand structure

0222289 Skin structure of foot
€0026639 Oral mucous
membrane structure

C0015426 Eyelid
structure

Detectors Hand, foot and mouth/lip Mouth/lip and eye
Precision
Object detection 0.8333 0.8889
based
Supervised 0.6944 0.7857
classification
Recall
Object detection 0.7143 0.8571
based
Supervised 0.7753 0.9429
classification
F1
Object detection 0.7692 0.8727
based
Supervised 0.7326 0.8571
classification

plan to add texture pattern recognition to further improve the
retrieving precision and cover a wider range of diseases.

Our approach also depends on disease—organ relationships in
the UMLS, and assumes that the appearance of related organs
determines if the image is disease-related or not disease-related.
Although the assumption is true for many cases as we have
shown, a small number of false-positive samples retrieved by
our method are still non-disease images (only contain normal
organs), or images of a different disease. Another limitation of
this assumption is that the value of ‘has finding site’ relation-
ship in the UMLS is incomplete. Among 74 785 disease con-
cepts of semantic-type ‘disease or syndrome,” ‘neoplastic
process,” ‘acquired abnormality’, and ‘congenital abnormality,’
44.1% have values in ‘has_finding site.” For disease terms that
have no body-site information, we plan to extend our approach
by scanning the web images with all organ detectors. In this
way, the ‘has_finding site’ relationship in the UMLS can be
enriched by mining web images.

CONCLUSION

In this work, we developed an ontology-guided disease image
retrieval method based on body-part detection towards mining
web images to build a large-scale health image base for consu-
mers. Compared with standard supervised classification, the
proposed method improves the retrieval precision of complex
disease images by incorporating semantic information from
medical ontologies. In addition, our method significantly
reduces manual labeling efforts by reusing a set of pretrained
organ detectors. The resulting health image database is anno-
tated using terms from standard medical ontologies and will
create a rich source of information for multiple descriptive and
educational purposes. Although the scale of our study is limited,
it proves the concept that the web is a feasible source for

automatic health image retrieval, and it only requires a small
amount of manual effort to collect and annotate complex
disease images. In future work, we plan to improve the accuracy
of organ detectors and ontology-based classification, and extend
our approach to handle a wider range of diseases.
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