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ABSTRACT
Objective To investigate machine learning for linking
image content, human perception, cognition, and error
in the diagnostic interpretation of mammograms.
Methods Gaze data and diagnostic decisions were
collected from three breast imaging radiologists and
three radiology residents who reviewed 20 screening
mammograms while wearing a head-mounted eye-
tracker. Image analysis was performed in mammographic
regions that attracted radiologists’ attention and in all
abnormal regions. Machine learning algorithms were
investigated to develop predictive models that link:
(i) image content with gaze, (ii) image content and gaze
with cognition, and (iii) image content, gaze, and
cognition with diagnostic error. Both group-based and
individualized models were explored.
Results By pooling the data from all readers, machine
learning produced highly accurate predictive models
linking image content, gaze, and cognition. Potential
linking of those with diagnostic error was also supported
to some extent. Merging readers’ gaze metrics and
cognitive opinions with computer-extracted image
features identified 59% of the readers’ diagnostic errors
while confirming 97.3% of their correct diagnoses. The
readers’ individual perceptual and cognitive behaviors
could be adequately predicted by modeling the behavior
of others. However, personalized tuning was in many
cases beneficial for capturing more accurately individual
behavior.
Conclusions There is clearly an interaction between
radiologists’ gaze, diagnostic decision, and image
content which can be modeled with machine learning
algorithms.

BACKGROUND AND SIGNIFICANCE
Cognitive science is an important driver for innov-
ation in the field of biomedical informatics, provid-
ing the framework for designing, developing, and
properly assessing medical information technolo-
gies that meet the evolving needs of health profes-
sionals.1 2 For example, advances in human
perception understanding have been influencing
medical image display technologies,3–6 while
studies of human reasoning and problem solving
strategies have been guiding the development of
medical decision support technology.2 The import-
ance of merging cognitive and information
sciences has also been recognized by the Board of
the American Medical Informatics Association
(AMIA) in a recent white paper drafting the core
competencies for graduate education in biomedical
informatics.7

In medical imaging informatics specifically, there
have been great technological advances in both
image data visualization and interpretation.8 Yet,

these advances have not translated into substantial
reduction of medical error which has puzzled the
medical community. In 1949, Garland estimated an
average radiologic error rate of 30% in his land-
mark work9 10 and since then error rates have
remained virtually unchanged.11 Actually, diagnos-
tic error and inconsistencies among physicians in
the interpretation of medical images remain two of
the biggest challenges in radiology practice.11 12

Furthermore, the increasing volume and complexity
of medical imaging data generated today exacerbate
radiologists’ visual strain and cognitive fatigue, thus
increasing the risk of medical error.13 14

Imaging-based screening programs such as breast
cancer screening are particularly vulnerable to
error and variability due to the low disease preva-
lence and the large volumes of imaging studies
generated daily. For example, approximately 37
million mammograms are performed annually in
the USA and an estimated 1.2 million additional
women become eligible for screening each year.15

With breast cancer prevalence at 0.5% in a typical
screening population, searching for signs of cancer
in mammograms is one of the most challenging
tasks in radiology.16 Reportedly, up to 30% of breast
lesions go unreported in screening mammograms
and as many as 65% of those missed lesions are
deemed visible on retrospective review.17–19 Studies
repeatedly show that specialized training and experi-
ence make a big difference. Breast imaging experts
and radiologists who read regularly high volumes of
mammograms are significantly more accurate than
general radiologists for whom mammography is a
small part of their clinical workload.20–22

There is a significant body of work aiming to
understand the nature of diagnostic error in radi-
ology. Eye-tracking researchers have attempted to
understand better the visual search process23–29

and the sources of diagnostic error with respect to
the clinical task at hand.30 31 These studies clearly
show that eye movements correlate with radiolo-
gists’ diagnostic decisions. Furthermore, the same
studies verified that the three types of diagnostic
errors found in chest imaging32 occur in mammog-
raphy as well: search errors (ie, the radiologist fails
to fixate on the cancer), recognition errors (eg, the
radiologist fixates on the cancer but for short dur-
ation and fails to recognize it), and decision making
or cognitive errors (eg, the radiologist fixates on
the cancer for long duration but decides not to
report it). Search and recognition errors are also
known as perceptual errors.33 Reportedly, percep-
tual errors and cognitive errors are equally preva-
lent in radiology, including breast imaging.33 34

These findings inspired a whole new research area
targeting the development of decision support
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systems for mammography. For example, one study suggested
that the radiologists’ accuracy could be improved if they are
given feedback about areas of prolonged fixation,35 an idea pro-
posed and supported in chest radiography as well.36–39 Other
studies proposed the development of tailored image processing
algorithms focusing on spectral features of breast abnormalities
that are typically missed by radiologists.40–42 Although these
studies are a step towards the right direction, they have a funda-
mental limitation: they are based on the premise that radiolo-
gists make similar errors. This assumption is inconsistent with
clinical experience. Radiologists have diverse perceptual and
cognitive patterns when reading medical images. But even when
radiologists reach the same diagnosis, it may be due to different
reasons. For example, two radiologists may miss the same breast
cancer, but one due to errors of search while the other due to
errors of reasoning. Therefore, these two radiologists would
benefit from different types of training and decision support to
improve their accuracy. Understanding individual differences in
human perception and cognition of medical imaging data can
provide important insights in the development and successful
use of clinical decision support and education support informa-
tion systems that meet the personal needs of clinicians involved
in the interpretation of medical images.

OBJECTIVE
Our overarching goal in this study is to leverage eye-tracking,
user-modeling, and machine learning (ML) to elucidate the
potential link between medical image content and the percep-
tual and cognitive behavior a radiologist displays when viewing
an image. We approach the problem in a systematic way with a
series of research questions that aim to: (i) associate localized
image characteristics with radiologists’ perceptual and cognitive
behaviors; and (ii) investigate whether such errors can be pre-
dicted reliably by integrating radiologists’ gaze metrics, medical
decisions, and image content. Furthermore, our study explores
whether leveraging common perceptual and cognitive patterns
observed in a group of radiologists is sufficient to predict an
individual radiologist’s pattern or whether personalized model-
ing is a more effective approach.

MATERIALS AND METHODS
Image database
This study investigated the potential link between radiologists’
gaze behavior, diagnostic decisions, and image content for the
specific task of mass detection in screening mammograms.
Masses, microcalcifications, architectural distortions, and focal
asymmetries are the most common manifestations of breast
cancer. Masses comprise the overwhelming majority of missed
breast cancers due to their diverse range of shapes, sizes, and con-
trast.18 19 Moreover, mammographic masses can be extremely
subtle, often obscured by normal breast parenchyma.

To perform this study 20 screen-film mammograms were
selected from the Digital Database of Screening Mammography
(DDSM).43 The DDSM contains 2500 screening mammograms
along with associated patient and image information, including
ground truth established via biopsy, additional imaging, or
2-year follow-up. DDSM cases from the Lumisys volumes were
randomly selected. Higher selection priority was given to chal-
lenging cases containing subtle masses and denser breasts,
according to the mass subtlety and parenchymal density ratings
included in the DDSM truth files. Of the 20 study cases, 10
included 14 biopsy-proven malignant masses, five cases included
five biopsy-proven benign masses, and the remaining five cases
were normal as determined during a 2-year cancer-free

follow-up patient evaluation. The benign cases included challen-
ging masses requiring further follow-up according to the
American College of Radiology (ACR) guidelines. Thus, the
dataset did not include any easy, ‘benign–without-callback’
cases. Table 1 provides the list of the selected DDSM cases
along with a brief description for each one.

All mammograms were first preprocessed with standard image
processing techniques for optimized softcopy display. First, the
grayscale histogram of each mammogram was analyzed to iden-
tify the gray level distribution of the breast region and the back-
ground. Then, a window and level function was applied to the
mammograms using a sigmoid curve to balance the need for
contrast at the breast center with visualization of the breast skin
line. An experienced radiologist with specialized training in
breast imaging and 11 years of experience in mammographic
interpretation visually assessed and approved the quality of the
processed images. This radiologist did not participate any
further in the study. The images were displayed in single view
mode (ie, only one view of the breast was shown) on a Totoku 5
M-pixel LCD monitor. The monitor was calibrated to the
DICOM Gray Scale Display Function Standard. Ambient room
lights were turned off for viewing.

Eye-tracking data collection
Institutional review board approval was obtained prior to the
study. Six readers were asked to view the cases and report the
location of any suspicious masses as they typically do in clinical
practice. Three readers were experienced MQSA-certified
breast imagers while the other three were fourth year radiology
residents with at least one rotation in mammography. During
the reading sessions the readers wore an H6 head-mounted
eye tracker, with 60 Hz sampling speed, and eye-head integra-
tion from Applied Science Laboratories (ASL, Bedford,
Massachusetts, USA). The eye-tracker recorded each reader’s eye
position data within 1° of accuracy. The readers were instructed
to view each case until they were satisfied with the viewing
phase. When the readers were ready to give their diagnostic
opinion, the eye-tracking recording phase was halted until the
readers recorded their findings and they were ready to proceed
with viewing the next case. Prior to the study, each reader was
carefully calibrated using the 9-point calibration protocol pro-
vided by ASL.

The raw eye-position data were analyzed using a spatio-
temporal clustering algorithm that is well established and com-
monly used in radiology.45 First, the x, y coordinates of the
eye-position data points were grouped sequentially according to
a running mean distance calculation having an average of 0.5°
radius threshold to determine fixations.46 These fixations were
then grouped into clusters; that is, circular areas with 2.5°
radius centered at the mean x, y location of the group of fixa-
tions contributing sequentially to a cluster. This radius corre-
sponds to the useful human visual field.46 47 Finally, cumulative
clusters were calculated by combining fixation clusters generated
when the radiologist re-fixated the same image area at any point
in time. A re-fixation cluster contributes to a cumulative cluster
if they overlap by at least 50%. The new centroid was defined
by averaging the contributing clusters. If the centroid of a true
mass was within a cumulative fixation cluster, then the fixation
cluster was attributed to the corresponding mass lesion.

Three gaze metrics were extracted per cumulative fixation
cluster: (i) total dwell time per cumulative fixation cluster
(dwell), (ii) time from beginning of the case reading until the
reader fixated on the reported image location for the first time
(initial), and (iii) number of times the reader returned to the
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particular image location for additional viewing (returns).
Locations that attracted prolonged viewing (>1 s) were consid-
ered locations of long dwell. This cut-off threshold has been
suggested before as appropriate for mammographic studies since
it has been shown to identify 80% of true positive (TP) deci-
sions and 65% of false negative (FN) decisions.48 Locations that
attracted some viewing (<1 s) were considered short dwells. All
other locations that did not attract any viewing were treated as
locations of no dwell.

Local image analysis
Fixed size (512×512 pixels) regions of interest (ROIs) were
automatically extracted around the centroid of each cumulative
fixation cluster. In addition, ROIs were extracted around masses
that attracted no visual dwell. Six texture image signatures were
calculated for each ROI: two based on first order statistics
(entropy, SD) and four based on second order statistics, also
known as Haralick features49 50 (contrast, correlation, energy,
homogeneity). The Haralick features were calculated from the
ROI’s gray-level co-occurrence matrix for a single distance (d=1
pixel) and four angular directions (θ=0°, 45°, 90°, 135°). The
MATLAB Image Processing Toolbox (The MathWorks, Natick,
Massachusetts, USA) and standard MATLAB functions were
used to extract the above signatures.

The ROIs were also analyzed using the Gabor wavelet analysis
method due to its perceptual relevance.51 Reportedly, Gabor
filters model the spatial frequency and orientation responses of
simple cells in the primary visual cortex.52 53 Specifically, we
implemented the Gabor analysis method introduced by
Manjunath et al.54 The principle of the specific method is as
follows. First, the Gabor filter bank is generated by selecting
(1) its size equal to the ROI size, (2) the spatial bandwidth, (3)

the number of levels for the multiresolution decomposition, and
(4) the filter orientations. The number of filters per bank is equal
to the number of decomposition levels times the number of
dimensions. In our case we had 24 filters as we relied on 4
decomposition levels and 6 orientations, which is the same con-
figuration employed in Manjunath and Ma.54 The spatial band-
width was also fixed according to Manjunath and Ma,54 under
the assumption that those parameters are optimal for many scen-
arios. There was only a single scale investigated, equal to the ROI
size. Each ROI was processed to generate two texture features:
the mean μij and the SD σij, for i=4 decomposition levels and
j=6 orientations (μ11, σ11, ….,μ46, σ46), both aimed at describing
locally homogeneous textures. Thus, this process resulted in 48
Gabor signatures extracted in total (2 features × 4 decomposition
levels × 6 orientations). In total, each ROIi was described by a
feature vector f (ROIi,j) which was constructed using 54 local
image texture signatures (2 first-order+4 Haralick+48 Gabor)
and 3 gaze metrics for the specific reader j who viewed the mam-
mographic case containing the specific ROIi.

Coding diagnostic errors
Each ROIi,j was associated with a diagnostic decision (yes or
no), depending on if the specific reader j decided to report the
image location as suspicious of containing a mass lesion (yes) or
not (no). Depending on the reader’s decision and the ground
truth associated with the ROI, there were four possible types of
decisions collected: true positive (TP), true negative (TN), false
positive (FP), and false negative (FN).

Experimental design
The collected feature vectors were analyzed using various ML
algorithms with and without feature selection to elucidate the

Table 1 Description of study cases

Case Ground truth Patient age Breast density Mass description

B3021 Malignant 59 Heterogeneous (1) Shape: lobulated, Margin: ill-defined, Subtlety: 3
Malignant (2) Shape: lobulated, Margin: ill-defined, Subtlety: 3
Malignant (3) Shape: lobulated, Margin: ill-defined, Subtlety: 3

B3054 Malignant 71 Heterogeneous Shape: irregular, Margin: speculated, Subtlety: 4
B3070 Malignant 56 Heterogeneous Shape: irregular—architectural distortion, Margin: spiculated, Subtlety: 2
B3072 Malignant 38 Heterogeneous Shape: irregular, Margin: ill-defined, Subtlety: 3
B3376 Malignant 65 Heterogeneous Shape: irregular- architectural distortion, Margin: obscure-spiculated, Subtlety: 3
C0142 Malignant 60 Dense Shape: architectural distortion, Margin: ill-defined, Subtlety: 3
C0149 Malignant 57 Fibroglandular Shape: oval, Margin: obscure, Subtlety: 1
C0157 Malignant 62 Fatty (1) Shape: oval, Margin: microlobulated, Subtlety: 5

Malignant (2) Shape: oval, Margin: microlobulated, Subtlety: 5
Malignant (3) Shape: oval, Margin: microlobulated, Subtlety: 5

C0162 Malignant 40 Heterogeneous Shape: irregular, Margin: ill-defined, with associated calcifications, Subtlety: 4
C0339 Malignant 44 Heterogeneous Shape: round, Margin: spiculated, Subtlety: 5
B3122 Benign 65 Fibroglandular Shape: round, Margin: microlobulated, Subtlety: 3
B3151 Benign 60 Heterogeneous Shape: lobulated, Margin: circumscribed, Subtlety: 3
C0274 Benign 54 Fibroglandular Shape: oval, Margin: circumscribed, Subtlety: 5
C0286 Benign 38 Fibroglandular Shape: round, Margin: obscured, Subtlety: 4
C0311 Benign 46 Fibroglandular Shape: round, Margin: obscured, Subtlety: 3
B3616 Normal 50 Fibroglandular N/A
B3633 Normal 62 Fatty N/A
B3660 Normal 41 Fibroglandular N/A
B3673 Normal 39 Heterogeneous N/A
B3677 Normal 75 Fibroglandular N/A

The breast density, mass shape, and mass margin descriptors are according to the BI-RADS (Breast Imaging Reporting and Data System) lexicon established by the American College of
Radiology.44 The subtlety rating ranges from 1 (subtle lesion) to 5 (obvious lesion).
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link between image content, human perception, human cogni-
tion, and human error within the context of the specific clinical
task. Specifically, three study hypotheses were pursued in a hier-
archical way to test progressively the link between (i) image
content and gaze, (ii) image content, gaze, and cognition, and
(iii) image content, gaze, cognition, and medical error.
▸ Hypothesis 1: Local image content of a mass-containing

mammographic region can be used to predict whether a
breast mass will attract prolonged dwell from the readers
(thus, image content is predictor of gaze behavior).

▸ Hypothesis 2: Local image content and gaze metrics can be
used to predict readers’ diagnostic decisions (thus, image
content and gaze behavior are predictors of cognitive
behavior).

▸ Hypothesis 3: Local image content, gaze metrics, and cogni-
tive opinions can be used to predict readers’ erroneous deci-
sions (thus, image content, gaze behavior, and diagnostic
opinion are predictors of human error).
For each study hypothesis, different ML algorithms were

developed and tested using the leave-one-case-out and/or the
leave-one-reader-out cross-validation sampling schemes, depend-
ing on what was appropriate and feasible. Initially, the data col-
lected from all readers were grouped and analyzed as one
dataset to determine whether group-based predictive modeling
is indeed possible. If yes, then a radiologist’s perceptual and
cognitive behavior could be predicted reliably by observing and
modeling the behavior of many other radiologists and using
such a model to predict the behavior of a new (unobserved)
individual. However, as discussed earlier, inconsistencies among
radiologists in the diagnostic interpretation of medical images
are well documented. Therefore, user-specific modeling was also
explored to determine whether personalized models capture
more effectively individual behavior than a group-based model.
All models were developed and validated using the WEKA data
mining package (University of Waikato, New Zealand).55

Predictive performance was assessed in terms of receiver operat-
ing characteristics (ROC) analysis56 using the JROCKIT soft-
ware.57 ROC analysis is preferred when a performance metric
independent of decision threshold and class prevalence is neces-
sary for meaningful comparison among predictive models. The
area under the ROC curve (AUC) estimated by JROCKIT was
the selected performance index.

RESULTS
Readers’ diagnostic accuracy
Table 2 summarizes the readers’ decisions. Note that readers
1–3 are the radiology residents and readers 4–6 are the breast
imaging experts. The table groups the readers’ decisions accord-
ing to their total dwell classification (long, short, no). For
example, reader 3 missed five masses in total, three malignant
and two benign. Thus, this reader made three FN decisions
related to malignant masses and two FN decisions related to
benign masses. Of the three malignant masses missed, two were
visually scrutinized for a long time, suggesting a cognitive error,
while the third one was viewed for a short time, suggesting rec-
ognition error. Similarly, one of the benign masses missed by
reader 3 did not attract any dwell at all, suggesting a search
error. On the other hand, reader 2 marked three normal loca-
tions as masses (ie, two FPs). Of those two overcalls, one FP
corresponded to a location that attracted long dwell, which sug-
gests cognitive error. The second FP corresponded to a location
of short dwell, suggesting a recognition error. A possible explan-
ation is that the breast parenchyma in the particular location
resembled an obvious mass to reader 2, who immediately called

it without prolonged viewing and deliberation. In addition,
there were no TP or FP decisions made for locations that
attracted no dwell, as expected since a reader does not mark a
location that has not gazed at all.

Overall the readers’ diagnostic accuracy varied between
78.6% and 100% for malignant masses (mean=85.7%, 95% CI
79.5% to 91.9%) and was 80–100% for benign masses
(mean=96.7%, 95% CI 90.1% to 100%). Their case recall rate
varied between 0% and 10% (mean=6.7%, 95% CI 3.5% to
9.9%). The observed performance is consistent with what is
reported in the literature. Although the residents’ detection
accuracy was on average lower than that of the experts, their
recall rate was on average the same.

Experiment 1: predicting perceptual behavior from image
content
Hypothesis 1 focused on the 19 breast masses present in our
dataset. The purpose of this hypothesis was to determine the
group-based (ie, global) and user-based (ie, individual) links
between the image signatures of breast masses and the readers’
tendency to visually dwell on the masses for a prolonged
period.

To assess the global component, we explored various ML
algorithms for predicting whether a particular mass attracted
prolonged dwell from the majority of the study participants (ie,
at least four readers). This experiment was done using a
leave-one-case-out sampling scheme. In other words, starting
with the set of 19 masses, each mass was excluded once to serve
as a test case. A predictive model was developed using
the remaining 18 masses and then tested on the one left out.
The same process was repeated 19 times until each mass in the
dataset served as a test case. The test results were aggregated to
derive the predictive accuracy of the developed model. The pre-
dictive power of each group of textural signatures (statistical,
Gabor) was evaluated separately. To assess the individual compo-
nent, ML predictive models were explored for each reader’s
data separately.

Table 2 Correct (TP, TN) and erroneous (FP, FN) decisions
grouped according to the dwell time of the reader who made the
corresponding decision

Reader Dwell Malignant Benign Normal

1 Long 9 TPs+2 FNs 2 TPs+0 FNs 12 TNs+1 FP
Short 3 TPs+0 FNs 3 TPs+0 FNs *+1 FP
No 0 TPs+0 FNs 0 TPs+0 FNs *+0 FPs

2 Long 6 TPs+0 FNs 4 TPs+0 FNs 15 TNs+1 FP
Short 5 TPs+2 FNs 1 TPs+0 FNs *+1 FP
No 0 TP+1 FN 0 TPs+0 FNs *+0 FP

3 Long 7 TPs+2 FNs 2 TPs+1 FN 16 TNs+0 FPs
Short 4 TPs+1 FN 1 TP+0 FNs *+0 FPs
No 0 TP+0 FNs 0 TPs+1 FN *+0 FPs

4 Long 10 TPs+1 FN 3 TPs+0 FNs 16 TNs+2 FPs
Short 2 TPs+0 FNs 2 TPs+0 FNs *+0 FPs
No 0 TPs+1 FN 0 TPs+0 FNs *+0 FPs

5 Long 8 TPs+0 FNs 3 TPs+0 FNs 14 TNs+1 FP
Short 6 TPs+0 FNs 2 TPs+0 FNs *+0 FPs
No 0 TPs+0 FNs 0 TPs+0 FNs *+0 FPs

6 Long 9 TPs+0 FNs 4 TPs+0 FNs 10 TNs+1 FP
Short 3 TPs+2 FNs 1 TPs+0 FNs *+0 FPs
No 0 TPs+0 FNs 0 TPs+0 FNs *+0 FPs

*Indicates all normal breast parenchyma which the radiologist spent <1 s viewing
and correctly decided not to report.
FN, false negative; FP, false positive; TN, true negative; TP, true positive.
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Table 3 provides details on the architecture and performance
of the best performing global and personalized models for this
experiment. The best performing predictive models varied in
terms of selected features and ML algorithms. Overall, the
results suggest that readers’ general gaze behavior for breast
masses can be predicted to a good extent using image features.
Stepwise forward feature selection combined with an Adaboost
classifier and a Radial Basis Function (RBF) network as weak
learner produced the best results; 73.5% overall classification
accuracy (83.3% accuracy for long dwells vs 57.1% accuracy for
short dwells) and ROC area of 0.820±0.112. Energy was the
single most useful feature in predicting the perceptual behavior
of the participating readers when analyzed collectively as a
group. Personalized modeling was also effective, producing user
models with AUC ranging from 0.667±0.127 (reader 5) to
0.867±0.108 (reader 3). Even though there were notable differ-
ences among the predictive accuracy of the individual models,
these differences were not statistically significant. The lack of
significant difference could be attributed to the small sample
size of mammographic cases. Furthermore, the individual reader
models developed for the breast imaging radiologists had lower
AUC metrics than those developed for the radiology residents.
These differences were not statistically significant either, but the
general trend suggests that the gaze behavior of radiologists may
be more complex than that of the residents, and the image sig-
natures used in our study were not sufficient to capture such
complexity as well as they did for the radiology residents.
Finally, the most predictive image features varied among the

individual models, suggesting that different image features are
important for capturing effectively the perceptual behavior of
individuals.

Experiment 2: predicting cognitive behavior from image
content and perceptual behavior
Hypothesis 2 focused on the readers’ diagnostic decisions (ie, to
report a particular image location or not) and their potential
link to image content and visual gaze. As with the previous
experiment, different predictive models were explored in the
WEKA environment to determine a group model as well as per-
sonalized user models. The group model was evaluated both
with a leave-one-case-out as well as a leave-one-reader-out cross-
validation sampling scheme. The group model would be rele-
vant in a specific clinical setting built using data collected from
all practicing radiologists in that setting. Then the developed
model could be deployed for use but it would be applicable to
the specific radiologists who provided the training data. On the
other hand, the leave-one-reader-out sampling scheme was
implemented to investigate whether an individual’s performance
could be predicted from a group-based understanding of the
user community. The leave-one-reader-out sampling scheme
works as follows. A separate model is developed using data
from five readers. The model is then tested on data collected
from the sixth reader who was left out during training. The
process is repeated six times so that each reader serves once for
testing. If effective, such a model could be far more useful in
clinical practice since it assumes that an individual’s behavior

Table 3 Predictive accuracy of WEKA-generated classifiers for predicting readers’ gaze behavior with respect to breast masses

Model Features Classifier ROC area

All (group model) Gabor RotationForest 0.766±0.121
Statistical RandomForest 0.703±0.123
All MultilayerPerceptron 0.644±0.154
Best: energy Adaboost w/RBF 0.820±0.112

Reader 1 Gabor Logistic 0.612±0.130
Statistical DecisionStump 0.731±0.178
All Logistic 0.612±0.130
Best: μ23 Logistic 0.821±0.102

Reader 2 Gabor Bagging 0.589±0.139

Statistical MultilayerPerceptron 0.684±0.121
All Logistic 0.751±0.116
Best: μ22, μ23 AdaBoost w/RBF 0.865±0.097

Reader 3 Gabor RotationForest 0.791±0.119
Statistical NaiveBayes 0.561±0.169
All BayesNet 0.747±0.141
Best: μ15, μ25 Adaboost w/RBF 0.876±0.108

Reader 4 Gabor Logistic 0.523±0.128
Statistical Bagging 0.481±0.182
All Logistic 0.518±0.127
Best: μ11, μ15, μ16, energy Bagging w/RBF 0.741±0.141

Reader 5 Gabor DMNBtext 0.227±0.112
S DMNBtext 0.351±0.129
A DMNBtext 0.312±0.125
Best: energy Adaboost w/RBF 0.667±0.127

Reader 6 Gabor MultilayerPerceptron 0.746±0.124
Statistical NaiveBayes 0.712±0.119
All RotationForest 0.778±0.132
Best: μ15, μ26, entropy Adaboost w/ BLR 0.767±0.116

BLR, Bayesian logistic regression; DMNBtext, discriminative multinomial naive Bayes classifier; RBF, radial basis function network; ROC, receiver operating characteristics.
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can be predicted from observing past behavior of other radiolo-
gists, without explicit knowledge of the individual’s past behav-
ior. Finally, individualized models were also developed and
cross-validated using a leave-one-case-out sampling scheme as in
experiment 1, using data collected from the specific reader in
question. The results are shown in table 4. Stepwise forward
feature selection was also included in experiment 2 to determine
the relative contribution of image content and human gaze
features.

All models achieved their highest ROC performance using
gaze features and a mix of image signatures that were common
among many models. The high ROC performance observed
consistently with leave-one-reader-out cross-validation suggests
that there are similarities among readers’ cognitive behavior.
Therefore, pooling data together from multiple readers for
group-based modeling is reasonable and it provides several
advantages due to the increased sample size available for model
development. For example, this was beneficial in the case of
Reader 4 whose cognitive behavior was captured more effect-
ively when leveraging the larger amount of data collected from
other readers (AUC=0.919±0.051) rather than relying only on
his data (AUC=0.799±0.073). However, there are some
notable differences as well. Reader 6 was modeled better by
using personal data (AUC=0.891±0.067) rather than data col-
lected from other readers (AUC=0.808±0.081). Even though
the difference was not statistically significant, the difference is
substantial, suggesting that there are some unique characteristics
in this reader’s decision-making process which could not be cap-
tured as adequately by leveraging data from the other five
readers only.

Experiment 3: predicting diagnostic errors from image
content, perceptual behavior, and cognitive behavior
The last experiment focused on linking image content and
readers’ perceptual and cognitive characteristics with erroneous
diagnoses (ie, either an FN one when failing to report a true
breast mass or an FP one when overcalling a normal breast
finding as mass). The small number of erroneous decisions
made by the readers (1 to 5 per person, 22 in total) posed two
limitations with this experiment. It was not feasible to explore
individual models or feature selection. Only group models were
explored with both leave-one-case-out and leave-one-reader-out

cross-validation. The results are reported in terms of percentage
accuracy. Due to the very small sample size of the erroneous
decisions per reader, ROC analysis was not feasible for the
leave-one-reader-out cross-validation. Table 5 summarizes the
results of this experiment.

The best ML algorithm for all models was the J48 decision
tree. Overall, the leave-one-case-out group model demonstrated
high predictive accuracy with an ROC area index of 0.929
±0.038. The group predictive model was able to classify cor-
rectly 59% of the diagnostic errors and 97.3% of the correct
diagnoses made by the readers. The leave-one-reader-out evalu-
ation further confirmed the ability to predict an individual
reader’s correct and erroneous decisions by observing and mod-
eling the error making patterns of other readers.

DISCUSSION
This study addressed the general problem of clinical error in the
diagnostic interpretation of medical images and it proposed an
ML approach for studying the interaction between the case
under review and the clinician assigned to review the case. A
series of experiments were performed to understand the pos-
sible link between image content, perception, cognition, and
error in the radiology domain, and specifically in the context of
cancer detection in screening mammography. The extent and
nature of diagnostic error in mammography has been the focus
of much research in the past. Therefore, mammography was an
excellent application domain for the study we presented here.

In an earlier work we demonstrated that radiologists’ individ-
ual error making patterns could be captured to a good extent by
analyzing image characteristics that are visually extracted and
recorded by the radiologists.58 59 Those earlier studies were
based only on radiology residents who were asked to decide the
malignancy status of breast masses. In this study, we expanded
the scope including (i) perceptual, cognitive, and error-making
aspects of human behavior, (ii) a broader community of radiolo-
gists, (iii) automated image content analysis, and (iv) a different
clinical task (detection rather than characterization). The under-
lying hypothesis of the study was that by monitoring the radiol-
ogist’s gaze pattern for the specific case and integrating human
gaze characteristics with image content is a promising way to
infer radiologists’ perceptual and cognitive behavior and
whether the radiologist is at risk of making a diagnostic error.

Table 4 Predictive accuracy of WEKA-generated classifiers for predicting readers’ decisions to report a mammographic location as suspicious
based on image and gaze features

Model Selected features Classifier ROC area

Group Model_LoCo Gaze+Contrast+Correlation+Energy+μ22+μ31 Bayesian Network 0.900±0.022
Group Model_LoRo_R1 Gaze+Contrast+Entropy+Correlation+μ12+μ22 RBF 0.929±0.050
Group Model_LoRo_R2 Gaze+Contrast+Entropy+Energy+μ22+μ31 Bayesian Network 0.888±0.056
Group Model_LoRo_R3 Gaze+Correlation+Contrast+Energy+μ12+μ22+σ44 RBF 0.872±0.056
Group Model_LoRo_R4 Gaze+Correlation+Energy+ μ22+μ31 Bayesian Network 0.919±0.051
Group Model_LoRo_R5 Gaze+Contrast+Correlation+Energy+μ12+μ22 Adaboost w/ MLP 0.907±0.051
Group Model_LoRo_R6 Gaze+Contrast+Correlation+Energy+μ12+μ22+σ32 MLP 0.808±0.081
Individual_Model_R1 Gaze Adaboost w/ MLP 0.927±0.050
Individual_Model_R2 All features MLP 0.864±0.061
Individual_Model_R3 Dwell+Returns NaiveBayes 0.766±0.082
Individual_Model_R4 All features MLP 0.799±0.073
Individual_Model_R5 All features MLP 0.919±0.046
Individual_Model_R6 All features MLP 0.891±0.067

Gaze, dwell+initial+returns; LoCo, leave-one-case-out; LoRo, leave-one-reader-out; RBF, radial basis function; ROC, receiver operating characteristics.
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We tested the hypothesis by performing a series of experiments
for the problem of mass detection in mammograms, a well-
known challenge in breast cancer screening.

The first experiment drew the link between image content
and radiologists’ perception. We found that indeed radiologists’
perceptual behavior can be predicted by local image content.
Furthermore, there appear to be both a global and an individual
component when modeling such behavior. The global compo-
nent was adequately captured with a single texture feature (ie,
energy), which was able to predict radiologists’ general tendency
to dwell or not on a particular image location. Individual mod-
eling appeared to offer advantages for some radiologists.
However this finding was not consistent. To some extent this
inconsistency could be attributed to sample size; some radiolo-
gists may require a larger number of cases to be properly
modeled than others.

The second experiment furthered the link from image
content and radiologists’ perception to radiologists’ cognition.
The experimental results showed that cognitive behavior can be
predicted to a good extent by observing gaze behavior. In many
cases combining image content offered a clear advantage. This
experiment also suggested that there is a global as well as an
individual component when modeling radiologists’ decisions.
This observation makes intuitive sense. Even though certain
cases are considered straightforward for the vast majority of
radiologists, there are always differences of opinions on a per
case basis, depending on how the individual radiologists apply
the ACR guidelines in their daily practice.

The third and final experiment completed the exploration by
drawing the final link from image content, perception, and cog-
nition to human error. Although the paucity of diagnostic errors
in our dataset does not allow us to make conclusive statements,
the experimental results were quite promising, suggesting that
contextual information collected from the image and the radi-
ologist can be leveraged to predict diagnostic error. The small
number of errors made by the study participants limited our
investigation even further since we could not properly delineate
the global and individual components. Still, our results sup-
ported the presence of the global component consistently for all
readers. Therefore, leveraging a group-based understanding of
radiologists’ error-making patterns appears to be useful.
However, given our findings with experiments 1 and 2, further
fine-tuning using ‘user-specific’ data should be considered to
develop more reliable predictive models of diagnostic error in
radiology. It should be noted that the need for individual profil-
ing of human error in mammography was discussed in an
earlier study by Mello-Thoms et al.60 Our observations certainly

support such an approach. Overall, the promising results of the
third experiment encourage a larger scale study for a deeper
investigation of the above issues.

There are several limitations with our study. The biggest limi-
tation is the relatively small number of cases and readers.
Collecting carefully calibrated eye-tracking data in a clinical
setting is a time consuming process. We recruited a mix of more
and less experienced readers and we used an enriched dataset
with very high prevalence of breast cancer (50%). Enriching
artificially the clinical cases with more challenging abnormal
cases is common for laboratory studies in radiology. Simply
relying on consecutive screening cases would require an unreal-
istically high number of screening mammograms to be collected
to reach an adequate number of cancer cases. A prior large-scale
mammography study on the ‘laboratory prevalence effect’ topic
concluded that such an effect is very small in magnitude and
does not measurably alter the results of a study.61 Another pos-
sible limitation of the study due to its retrospective, laboratory
nature is that the diagnostic accuracy and inter-reader variability
observed among the readers may not reflect their true clinical
performance. Indeed, an earlier study suggested that experi-
enced radiologists performed significantly better in a laboratory
study involving diagnostic interpretation of mammograms than
they did in the clinical environment.62 Specifically, the radiolo-
gists demonstrated a very conservative approach when deciding
to call a finding ‘suspicious’. This may be true in our case as
well, given that the three experienced radiologists in our study
had an average detection rate of 90%, certainly higher than the
performance of the average radiologist in practice. Finally, our
user modeling relied on standard image texture features which
may not be the best choice for optimal user modeling.
However, they were a good starting point given our promising
results. A follow-up study investigating a wide range of image
features is certainly justified.

Regardless of the above limitations, our study produced
some highly consistent trends in terms of applying effectively
ML techniques for modeling effectively group and individual
behaviors. Although our study was based on screen-film mam-
mograms, there is no particular reason to suspect that our find-
ings would not translate to full field digital mammograms.
Reader studies have shown that the perceptual and cognitive
behaviors of radiologists are similar in digital and screen-film
mammograms.63 64

CONCLUSION
The results of our pilot study clearly demonstrated a link among
image content, human perception, human cognition, and
human error for mammographic breast cancer detection.
Furthermore, our study delineated differences between group-
based versus individualized understanding of the discovered
links. An important finding is that monitoring clinicians’ case-
specific gaze metrics and cognitive behavior and merging those
with computer-extracted information from the specific image
could form the foundation for a system to predict diagnostic
error in medical imaging. A second and equally important
finding is that error-making patterns are not one-size-fits-all.
Although studying collectively the broad community of clini-
cians involved in medical image interpretation can capture the
common error-making aspects, personalized tuning appears to
be beneficial in many cases. We believe that these findings
encourage a paradigm shift in the way we think and develop
computerized decision support systems and computerized
education support systems for medical image interpretation.65

A personalized approach is a promising way to improve existing

Table 5 Accuracy of WEKA-generated classifiers for predicting
readers’ diagnostic errors

Model

% Accuracy

Correct DX Wrong DX

Group Model_LoCo 97.3 59 (13/22)
Group Model_LoRo_R1 100 50 (2/4)
Group Model_LoRo_R2 100 60 (3/5)
Group Model_LoRo_R3 93.9 40 (2/5)

Group Model_LoRo_R4 97 100 (1/4)
Group Model_LoRo_R5 92.6 66.7 (0/1)
Group Model_LoRo_R6 85.2 66.7 (2/3)

LoCo, leave-one-case-out; LoRo, leave-one-reader-out.
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systems that are driven only by population-based understanding
of the user community.
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