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ABSTRACT
Background and objectives Advances in MRI
hardware and sequences are continually increasing the
amount and complexity of data such as those generated
in high-resolution three-dimensional (3D) scanning of the
spine. Efficient informatics tools offer considerable
opportunities for research and clinically based analyses
of magnetic resonance studies. In this work, we present
and validate a suite of informatics tools for automated
detection of degenerative changes in lumbar
intervertebral discs (IVD) from both 3D isotropic
and routine two-dimensional (2D) clinical T2-weighted
MRI.
Materials and methods An automated segmentation
approach was used to extract morphological (traditional
2D radiological measures and novel 3D shape
descriptors) and signal appearance (extracted from signal
intensity histograms) features. The features were
validated against manual reference, compared between
2D and 3D MRI scans and used for quantification and
classification of IVD degeneration across magnetic
resonance datasets containing IVD with early and
advanced stages of degeneration.
Results and conclusions Combination of the novel
3D-based shape and signal intensity features on 3D
(area under receiver operating curve (AUC) 0.984) and
2D (AUC 0.988) magnetic resonance data deliver a
significant improvement in automated classification of
IVD degeneration, compared to the combination of
previously used 2D radiological measurement and
signal intensity features (AUC 0.976 and 0.983,
respectively). Further work is required regarding the
usefulness of 2D and 3D shape data in relation to
clinical scores of lower back pain. The results reveal the
potential of the proposed informatics system for
computer-aided IVD diagnosis from MRI in large-scale
research studies and as a possible adjunct for clinical
diagnosis.

INTRODUCTION
Symptomatic intervertebral disc (IVD)-related disor-
ders account for the largest proportion of musculo-
skeletal complaints in industrialized countries
and may be associated with acute or chronic disabil-
ity.1 MRI is an important diagnostic tool in
clinical decision-making, providing highly detailed
patho-anatomical examination of the spine,2 with
significant radiological resources and specialist
time devoted to the assessment of IVD in developed
countries.1 3 Given the burgeoning amount
and complexity of MRI data4 (multiple image
sequences per patient, increasing resolution, three-
dimensional (3D) imaging), informatics tools such

as computer-aided diagnosis (CAD) systems have
potentially large roles to play in clinical and research
trial settings.
Common pathological conditions affecting IVD

include disc degeneration, bulging or herniations
(protrusion, extrusion or sequester), frequently asso-
ciated with dysfunction, spinal canal and foraminal
stenosis, segmental instability and pain.2 Radiological
analyses in MRI aim to relate morphological and
signal changes in the IVD to the patient’s clinical
symptoms.5 Routine clinical MRI scans of lumbar
IVD are typically acquired as a set of two-
dimensional (2D) slices (eg, slices with >3 mm thick-
ness) of both T1-weighted and T2-weighted contrast
in sagittal and axial orientation. Radiological assess-
ment of disc pathology requires synthesis of IVD
signal intensity characteristics from T2-weighted
scans (eg, nucleus pulposus (NP) signal intensity,
annulus fibrosis (AF) tear, relative intensity difference
amongst neighboring discs) with disc morphology
(eg, disc height, broad based bulging or focal hernia-
tions in the case of disc protrusion, extrusion or
sequestration). Early diagnosis of IVD degenerative
changes and reliable assessment during follow-up
may have important implications for clinical decision-
making for emerging conservative and surgical
interventions.6

Morphological information extracted from 2D
MRI has involved mostly manual delineation and
measurements performed on relatively thick non-
contiguous slices,7–9 providing planar-based measures
such as IVD height, width or interpolated volume.
Manual assessment is a tedious and resource-intensive
task (expertise, time, equipment) prone to intra and
inter-observer variability, and represents a major hin-
drance for performing large-scale research studies or
for routine implementation in clinical practice.
Moreover, recent advances in magnetic resonance
hardware, software and pulse sequence design have
provided the capacity to acquire 3D volumetric MRI
scans of the human spine with nearly isotropic reso-
lution under 0.5 mm3 (eg, the SPACE sequence).10

The volumetric scans can be used to acquire detailed
3D morphological information about the IVD shapes
(figure 1) for research studies investigating relations
between morphological and structural IVD alterations
and clinical symptoms.5 However, the manual delin-
eation of volumetric MRI scans for large-scale clinical
and research environments is impractical and auto-
matic computer approaches are required for fast, cost-
effective and objective analysis.
In our research we aim to construct a suite of auto-

mated informatics tools for analysis of IVD degenera-
tive changes apparent in high-resolution 3D MRI as
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well as in 2D scans routinely acquired in a clinical setting.
Advanced image preprocessing techniques are implemented to
reduce imaging artifacts and to adjust for varying image resolu-
tions. In our recent work,11 an automated segmentation algorithm
was developed to extract 3D shapes of the IVD from high-
resolution 3D SPACE MRI scans. The extracted 3D parameters
were used in a preliminary analysis of IVD shape characteristics in
asymptomatic subjects presenting with no and early signs of disc
abnormalities.11 The high accuracy of this initial proof of concept
motivated further study to test the 3D morphological parameters
for automated IVD classification. The aim of the current paper is
to extract and quantify magnetic resonance-based information of
likely relevance for the detection of degenerative IVD changes. In
particular, the segmentation algorithm is tested on both high-
resolution 3D and routine clinical 2D MRI scans for comparison
of the extracted IVD morphological characteristics between the
two sequences. A set of morphological and signal intensity features
is proposed and evaluated in an IVD classification task to test
whether morphological features based on novel 3D segmentations
can improve the detection of IVD degeneration when compared
to previously used morphological features extracted from a single
2D slice. Similar automated informatics tools have the potential to
benefit large-scale studies investigating disc degeneration, trials of
pharmaceutical or surgical interventions and to provide novel
CAD tools for clinical practice. The developed algorithm circum-
vents resource-intensive manual segmentation procedures and
enables automated 3D analysis of the IVD.

BACKGROUND
Intervertebral disc degeneration
MRI has become a key investigative tool in radiological assess-
ment of IVD degeneration stemming from its excellent soft
tissue contrast and multiple scanning sequences for depicting
various patho-anatomical states.12 13 An IVD consists of two
main structural elements—the central gel-like NP, surrounded by
the peripheral fibrocartilagenous AF. In T2-weighted MRI, a
healthy NP appears as a bright elliptical structure, while the AF

is imaged as a hypointense region bordering the NP.14 The char-
acteristics used to describe degenerative disc changes during a
typical magnetic resonance radiological assessment include:
structural cues (height of IVD, IVD space narrowing, bulging or
herniation), signal intensity cues (hypointense/hyperintense NP
to cerebrospinal fluid, NP homogeneity and distribution) and
the level distinction between the NP and AF (AF tear with pro-
lapse of NP or intact AF surrounding the NP).15 A successful
CAD classification algorithm would likely include both morpho-
logical and signal intensity features.

Automated detection of disc abnormalities
Several automated approaches for MRI-based classification of
IVD degenerative changes have been presented in the literature.
Alomari et al16 detected desiccated IVD in 2D MRI in the
lumbar spine by using signal intensity features (median intensity
level of pixel neighborhood) extracted from single mid-sagittal
T2-weighted slices. A Gaussian model of IVD appearance was
combined with a Bayesian model to describe the relationship
between signal intensities of neighboring IVD. In a subsequent
study, Alomari et al17 detected disc abnormalities (desiccation,
degeneration) by a probabilistic modeling of three energy terms:
appearance (several magnetic resonance contrasts), location and
context (describing spatial neighboring relations) from a mid-
sagittal MRI slice. In a further study based on MRI, disc hernia-
tion was detected by Alomari et al18 with a Bayesian classifier
based on two shape features: major and minor axis of the seg-
mented IVD. Ghosh et al19 used the mean signal intensities of
eight rectangular regions covering the IVD in a mid-sagittal slice
together with a shape feature (height to width ratio of IVD
bounding box) and statistical texture features to detect herniated
IVD from 2D MRI of the lumbar spine. Several advanced inten-
sity and texture features extracted from a mid-sagittal MRI slice
were also compared in Ghosh et al.20 First and second order
texture features extracted from a segmented 2D MRI were eval-
uated by Michopoulou et al21 to quantify the degree of disc
degeneration. Recently, Hao et al22 modeled the anatomical
shape space of 2D IVD contours in T2-weighted images of the
lumbar spine and defined a geodesic metric that is used for an
automated classification.

To the best of our knowledge, all previous MRI classification
approaches have been based on features extracted from 2D slices.
Many signal intensity features have been proposed varying from
raw intensity values to higher-order statistical texture characteris-
tics, while elementary planar (2D) shape features such as disc
height, width or their ratio have been presented. However, the
degeneration affects the IVD morphology in 3D and precise
quantification of the volumetric changes can provide novel tools
to study and describe the degenerative processes.

Current study
In this paper, we extended on our previous work11 that
involved automated analysis of 3D T2-weighted SPACE MRI
scans of the lumbar IVD in asymptomatic individuals. The aims
of the current work are: (1) to compare and validate manual
and automated quantification of IVD morphology in a sample
of subjects imaged with both 3D T2-weighted SPACE and stand-
ard clinical 2D T2-weighted turbo spin echo (TSE) sequences;
(2) to evaluate our previously presented automated spine seg-
mentation algorithm on routine clinical scans of patients with
varying degree of IVD degeneration; and (3) to introduce and
evaluate morphological (2D and 3D) and signal intensity classifi-
cation features for automated detection of IVD abnormalities
from T2-weighted MRI scans. The overreaching aim of this

Figure 1 Sagittal (left) and axial (middle) views of an example 2D
turbo spin echo (top, 3.3 mm slice spacing) and 3D SPACE (bottom,
1 mm slice spacing) MRI scans with manually segmented IVD shapes
(right). The high resolution 3D image provides information about the
anatomical shape that is not available in the sparser 2D scan. IVD,
intervertebral disc; 2D, two dimensional; 3D, three dimensional.
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research is to develop an automated processing pipeline for ana-
lyses of IVD in MRI examinations with easily interpretable clas-
sification features applicable for wider use in clinical practice.4

METHODS
Imaging database
The classification performance of proposed features was evalu-
ated on two MRI datasets. The first dataset consisted of
MRI scans from 28 apparently healthy subjects acquired using
the T2-weighted 3D SPACE pulse sequence (details in table 1).
Although all subjects self-reported as being asymptomatic at the
time of imaging, signs of early degenerative IVD changes were
identified by an experienced radiologist (DW) in 15 cases
(17/140 lumbar IVD). A subset of 14 cases (69 IVD) was manu-
ally segmented (by AN, under supervision of CE) and used to
build a statistical shape model (SSM) of lumbar IVD. Incidental
radiological findings in these cases included magnetic resonance
observed degenerative changes in seven IVD, Schmorl’s nodes
(vertebral endplate fractures with focal disc protrusion) and ver-
tebral hemangiomas.

The second dataset contained 16 2D T2-weighted TSE scans
acquired in the sagittal plane (details in table 1). Eleven cases
were patients presenting to the University Hospital of
Heidelberg, Germany, for MRI investigation of symptomatic
conditions of the lumbar spine. There was a variety of radio-
logical findings (performed by DW) with respect to the IVD,
including severe degeneration, IVD bulges and herniations
(including cord impingement). The remaining five cases were
follow-up scans of volunteers from the first dataset with previ-
ously identified IVD degenerative changes. Degenerative
changes were identified (by DW) altogether in 53/93 IVD from
the combined set of 16 scans.

The five follow-up scans (12 months) were used for validation
of the proposed features and for comparisons between 2D
SPACE and 3D TSE sequences. Four cases were apparently
healthy asymptomatic individuals and one case (becoming symp-
tomatic during the 12 months) had been diagnosed with poster-
ior L4/L5 bulge. Incidental MRI findings by an experienced
radiologist (DW) revealed at least one lumbar IVD with degen-
erative changes in every subject, with the total number equaling
to 10 IVD (out of 29). The set of 29 lumbar IVD (T12/L1–L5/
S1) were manually segmented in a mid-sagittal slice in both 3D
and 2D scans independently by two experienced raters
(Dr Mark W Strudwick and CE) and the manual ground truths

were used to evaluate the inter-rater variability and the accuracy
of the automated segmentation.

Image preprocessing and segmentation
All images were preprocessed using a customized intensity
adjustment procedure based on the N4 bias field correction
algorithm,23 which was applied to the region of the lumbar
spinal column. Smoothing by anisotropic diffusion (15 iterations
with a time step 0.01 and conductance 1.0) was applied next to
reduce the acquisition noise. Image histogram normalization
was then performed to standardize the intensity values by
matching the histogram (extracted from the spinal column) to
the histogram of an atlas image. The 2D clinical scans were
reformatted using B-Spline image interpolation to an isotropic
resolution (0.7142 mm).

An active shape model (ASM) based segmentation approach11

was used to extract the IVD shapes. The algorithm was previ-
ously applied to the SPACE images in dataset 1 and the segmen-
tation accuracy was reported.11 Furthermore, the 3D SPACE
and 2D TSE of five volunteers were manually segmented in the
mid-sagittal slice by two experienced raters and the inter-rater
variability and segmentation accuracy was evaluated using the
Dice similarity coefficient24 (DSC) to evaluate the applicability
of the method to 2D TSE scans:

DSC(A,M) ¼ 2jA>Mj
jAj þ jMj

The DSC measures the overlap between automatic (A) and
manual (M) segmentation masks.

Feature extraction
Two sets of morphological features were extracted from the
automatically segmented IVD: planar (2D) measurements,
similar to those previously reported,19 20 and 3D shape/volume
characteristics (see below). Signal appearance features were
extracted from histograms of signal intensities within the seg-
mented IVD. The 2D morphological features were quantita-
tively evaluated against manual reference and both sets of
morphological features were compared between 2D and 3D
MRI scans. Finally, the features were analyzed for the ability to
detect IVD degenerative changes automatically.

Planar measurements
There were three morphological features extracted from the
planar IVD measurements: mid-sagittal IVD middle height
(inferior–superior), mid-sagittal IVD middle width (anterior–
posterior) and the height–width ratio (figure 2). The measures
were extracted using triangular mesh of the automatically seg-
mented IVD, in which four areas of interest were marked: anter-
ior, posterior, inferior and superior central areas (figure 2).
Mesh points from all areas were projected to the mid-sagittal
slice and the IVD height was computed as the minimal distance
between the superior–inferior points (similarly for the width).
The computed values were compared (on five cases with 29
IVD) against manually extracted measurements (by AN under
supervision of CE) using two-way analysis of variance (the
factors are IVD level T12/L1–L5/S1 and the measurement
method) and Spearman’s rank correlation coefficient r was com-
puted. Correlation of the features between 2D and 3D MRI
scans was analyzed by Spearman’s rank correlation coefficient r
and two-way analysis of variance was used to investigate effects
of MRI acquisition sequence (2D, 3D) and parameters (inter-

Table 1 MRI acquisition parameters for the 3D SPACE and 2D TSE
images

Parameter 3D T2-weighted SPACE 2D T2-weighted TSE

Slices 176 11–21
Image matrix 640×640 448×448
Pixel spacing (mm) 0.3437×0.3437* 0.7142×0.7142
Slice thickness (mm) 1 3
Slice spacing (mm) – 3.3
TR (ms) 1500 2790–4620
TE (ms) 131 105–113
Echo train length 167 19–25

*The image matrix is interpolated in the scanner from the acquisition of 0.7×0.7 mm.
Subjects at the University of Queensland were scanned using Siemens Trio 3 T system,
patients in Heidelberg with Siemens Verio 3 T scanner.
2D, two dimensional; 3D, three dimensional; TSE, turbo spin echo.
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slice gap, slice thickness, resolution) that influence the anatomy
visualization, and consequently the extracted features.

3D shape parameters
In our previous work, we used a dedicated algorithm incorporat-
ing a 3D SSM approach for automatic segmentation of the individ-
ual lumbar IVD.11 In brief, SSM describe statistical variations of
objects in a training database that are represented by correspond-
ing landmarks (mesh point coordinates in this case). Point distribu-
tions of the landmarks are analyzed, and modes of variation are
computed by principal component analysis. A segmented IVD
shape is projected on the SSM and weights of the first three princi-
pal modes of variation (b1, b2 and b3 also called shape parameters)
are used as 3D shape features (figures 3 and 4A):

xi ¼ xþ Pbi; bi ¼ PTðxi � xÞ
where bi ¼ fb1i ; b2i ; . . . ; bmi g are the shape parameters of shape
xi, x is the mean shape and P is the matrix of principal modes
of variation. The SSM of lumbar IVD (T12/L1−L4/L5) and the
first two modes of variation are shown in figure 3. Figure 4

shows the use of the SSM and the 3D shape parameters to
quantify 3D IVD shape information and relative IVD shape
changes automatically.

Signal intensity features
Disc degeneration is commonly associated with NP desiccation,
observed as signal intensity attenuation in T2-weighted MRI.
The degree of attenuation is a recognized sign of the degenera-
tive change and an indicative marker within diagnostic proce-
dures. Changes in magnetic resonance signal intensities can be
well observed from image histograms. A histogram of a healthy
disc is typically characterized by two distinctive intensity peaks,
corresponding to the hypointense AF and brighter NP on
T2-weighted MRI. In IVD with degenerative changes on MRI,
the peak of brighter signal intensities will decrease and shift
towards the lower peak (darker T2-weighted signal). To quantify
the appearance of the discs automatically, we model the disc
signal intensity histogram by a Gaussian mixture model of two
normal distributions, corresponding to the signal intensities of
the AF and NP. This model can fit and separate two distinct
peaks in the histogram, and will result in two largely overlap-
ping distributions if only one peak is present (figure 4D).
Consequently, the degree of degeneration can be described by
parameters of the two Gaussians (figure 4).

Histograms were extracted using IVD segmentation masks,
eroded by 1 mm to eliminate extraneous surrounding tissue,
and the Gaussian mixture model was fitted using the expect-
ation maximization algorithm. Five appearance features were
used in the experiments, corresponding to the two Gaussian
means and variations and a Gaussian weight (of either the first
or second peak).

Classification
In total, 11 features from three feature sets (planar measure-
ments, 3D shape parameters, signal intensity features) were
defined. Every feature was first evaluated separately on both
datasets using two established classification techniques—linear
discriminant analysis (LDA) and support vector machine (SVM)
with linear kernel. The LDA classifier was chosen to reveal how
linearly separable the data are, while the SVM is a significantly
more advanced technique that allows a better estimate of per-
formance and comparison among different features. Repeated
(1000 times) stratified twofold cross-validation was performed
by splitting both imaging datasets into a training (60%) and a
cross-validation set (40%) while maintaining the ratio of healthy
and degenerative discs in each. Next, all three feature sets were
evaluated using the same strategy and the backward search

Figure 2 Automated location and measurement of the IVD height
and width was done using the statistical shape model with four areas
of interest. Points from the areas of the segmented IVD are projected
to the mid-sagittal slice and the minimal distance between superior–
inferior and anterior–posterior clouds are used as IVD height and
width, respectively. Example manual measurements are illustrated by
white lines. IVD, intervertebral disc. Access the article online to view
this figure in colour.

Figure 3 The statistical shape model
of lumbar IVD extracted from the 3D
SPACE MRI scans. The mean shape
(middle of each panel) and shapes
generated at ± 3 SD are shown (left,
superior view; top right, posterior
view; bottom right, side view) for the
first (abscissa axis) and second
(ordinate axis) modes of variation.
Both modes are associated with
relative disc thinning, the second mode
includes further information on
anterior–posterior wedging of the disc.
IVD, intervertebral disc; 3D. three
dimensional.
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feature selection with the area under the receiver operating
curve (area under the curve; AUC) as the performance metric.
Subsequently, the 2D and 3D morphological features were com-
bined with signal intensity features (one at a time and both
together). The performance among different feature sets was
evaluated for statistical significance using the unpaired Student’s
t test. In all statistical tests, an effect was considered to be sig-
nificant if the p value was 0.05 or less. The p values were not
adjusted for multiple testing and interpretation of p values was
explorative.

RESULTS
Comparison against manual reference
Manual and automatic segmentations for the 3D SPACE and 2D
TSE obtained on five cases (29 IVD) are compared in figure 5.
The inter-rater DSC is 0.916±0.031 and 0.923±0.029 (for 3D
SPACE and 2D TSE, respectively), the DSC for manual versus
automatic segmentations is 0.873±0.044 and 0.843±0.064 for
rater 1, and 0.889±0.055 and 0.854±0.067 for rater 2 (3D
SPACE and 2D TSE, respectively). Figure 5 presents a compari-
son of the automatically extracted IVD widths and heights

Figure 4 Projection of dataset 1 onto the first two modes of variation (±2 SD) is shown in (A). Most of the abnormal discs (red crosses) are located
in the bottom right area, describing IVD narrowing (as can be seen in figure 3). Four individual example IVD automatic segmentations are shown in (B),
corresponding MRI in panel (C) and the corresponding histograms with fitted distributions in (D). A progressive IVD space narrowing can be observed
in (B) from top to bottom, which is reflected by the spatial relationship of the corresponding points in (A). The nucleus pulposus signal intensity is
lower in the middle two IVD, as seen in (C), resulting in a compressed ‘single’ intensity peak in the histograms (D) demonstrating two close and
overlapping Gaussian distributions. IVD, intervertebral disc; 3D, three dimensional. Access the article online to view this figure in colour.

Figure 5 DSC scores for inter-rater variability and accuracy of the automated segmentation algorithm evaluated on 29 IVD (R1, rater 1; R2, rater
2; Auto, automatic segmentation) are presented in (A). (B) Presents correlations of extracted IVD heights and widths (a healthy IVD is marked with a
circle, abnormal with a cross). One outlier in IVD width assessment (top left cross) was removed from linear regression fitting and Spearman’s
r computation for IVD widths. This case presented particular anterior bulge and posterior herniation combined with adjacent vertebral body
degeneration and challenged both manual and automatic assessment (the outlier marked in DSC box plots). DSC, dice similarity coefficient; IVD,
intervertebral disc; 2D, two dimensional; 3D, three dimensional; TSE, turbo spin echo.
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against manual measurements. The main effect of the measure-
ment method and interaction (IVD level and method), respect-
ively, does not reach statistical significance for IVD heights in
3D SPACE images (p=0.7669, p=0.9929) but a statistically sig-
nificant bias (1.01 mm) for the automated method was observed
for IVD heights in 2D TSE (p<0.05). No statistically significant
effect of the method or interaction was observed for IVD
widths in 3D SPACE (p=0.6966, p=0.9561) or 2D TSE
(p=0.4151, p=0.8984).

Reproducibility of all manual and automatic morphological
features between both image types is presented in figure 6.
There is a statistically significant effect of the magnetic reson-
ance sequence on manually extracted IVD heights (p<0.05)
with a bias of −1.07 mm. Effects of the imaging sequence or
interaction do not reach statistical significance for IVD heights
automatically extracted with our method (p=0.8494,
p=0.9907). No significant effect was observed on IVD widths
with either the manual (p=0.5331, p=0.9976) or automatic
(p=0.9068, p>0.9999) methods. Finally, no statistically signifi-
cant effect was observed on the three modes of SSM variation
(p=0.4782, p=0.9850 for mode 1, p=0.2926, p=0.9981 for
mode 2, p=0.7797, p=0.5928 for mode 3).

Classification results
Reported results reveal very similar performance for both classi-
fication techniques (LDA and SVM) in all experiments. The

performance of individual features is reported in table 2. The
second mode of SSM variation (IVD thinning and anterio-
posterior wedging, figure 3) is the best predictive feature for the
classification of IVD abnormalities on the first dataset (AUC
0.95), followed by the mean and variance of the second (corre-
sponding to NP signal) Gaussian (AUC both 0.93). The width
to height ratio feature is next (AUC 0.86). The same four fea-
tures perform best on the second dataset with the Gaussian
mean of the NP signal first (AUC 0.90), followed by variance
and the second mode of variation (AUC 0.88) and then the
width to height ratio (AUC 0.86).

Classification results of three feature sets (2D and 3D morpho-
logical and signal intensity features) are summarized in tables 3
and 4 and include lists of selected features for each scenario. In
the first dataset with 3D SPACE data (table 3), both the 3D-based
signal intensity data and shape parameters deliver good classifica-
tion results and clearly outperform the planar (2D) measurement
features. The combination of 3D morphological features and
signal intensity features results in a statistically significant
improvement against the combination of signal intensity and 2D
morphological features (LDA AUC 0.984 to 0.976 with
p<0.0001, SVM AUC 0.978 to 0.964 with p<0.0001) or when
the intensity features are used alone (LDA AUC 0.984 to 0.977
with p<0.0001, SVM AUC 0.978 to 0.964 with p<0.0001).
Combination of all 11 features did not reach a statistically signifi-
cant improvement over the combination of 3D morphological

Figure 6 Reproducibility of the morphological features (2D measurements in (A), 3D modes of variation in (B) between 2D and 3D MRI scans
(a healthy IVD is marked with a circle, abnormal with a cross) with Spearman’s rank correlation coefficient r. IVD, intervertebral disc; 2D, two
dimensional; 3D, three dimensional; TSE, turbo spin echol.

Table 2 Evaluation (AUC) of individual features on both datasets (data 1, data 2)

AUC 1 2 3 4 5 6 7 8 9 10 11

Data 1 LDA 0.762 0.716 0.866 0.668 0.950 0.646 0.437 0.479 0.604 0.933 0.931
Data 1 SVM 0.761 0.713 0.864 0.672 0.950 0.641 0.435 0.484 0.604 0.930 0.934
Data 2 LDA 0.795 0.650 0.862 0.758 0.879 0.686 0.783 0.538 0.499 0.907 0.880
Data 2 SVM 0.792 0.650 0.859 0.753 0.882 0.686 0.785 0.538 0.498 0.907 0.883

1, IVD height; 2, IVD width; 3, IVD width/height; 4, SSM mode 1; 5, SSM mode 2; 6, SSM mode 3; 7, Gaussian weight; 8, mean 1 (AF); 9, variance 1 (AF); 10, mean 2 (NP); 11,
variance 2 (NP).
AF, annulus fibrosis; AUC, area under the curve; LDA, linear discriminant analysis; NP, nucleus pulposus; SSM, statistical shape model; SVM, support vector machine.
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and signal intensity features (p=0.9843 for LDA, p=0.6800
for SVM).

In the second dataset (table 4), the signal intensity features
alone deliver good classification results (LDA AUC 0.978, SVM
AUC 0.961). The 3D shape parameters outperform the planar
(2D) measurement features when used alone (LDA AUC 0.954
to 0.870 with p<0.0001, SVM AUC 0.952 to 0.868 with
p<0.0001), and deliver a small but statistically significant
improvement in combination with the intensity features for the
LDA classifier (AUC 0.988 to 0.983 with p<0.05), and the
SVM classifier (AUC 0.981 to 0.972 with p<0.0001). None of
the 2D morphological features were selected from the combin-
ation of all 11 features.

DISCUSSION
Feature evaluation against manual reference
The good accuracy (figure 5) of the automated segmentation (in
light of the inter-rater variability involving manual segmenta-
tions) provides a promising basis for the use of the algorithm11

on both 2D and 3D MRI sequences. The higher variance of the
automated method is partly due to the presence of one outlier
and, in the case of the 2D TSE scans, to the slightly lower accur-
acy on some cases. The overall better results on 3D SPACE
images are expected as the ASM was trained on these high-
resolution data with a larger field of view, leading to potential
segmentation imprecisions towards the margins of the field of
view in 2D TSE scans. However, the morphological features
extracted from these segmentations are strongly correlated with
manual measurements, which provides a sound argument for
further development of the automated approach. There was a
bias between automatic and manual measurements for IVD
heights in 2D TSE. This is likely to be a consequence of ASM
training on SPACE data that, according to our experiment, bias
the visualization and measurement of manually measured IVD
heights. A strong correlation between 2D and 3D MRI scans
was, however, found for all morphological features, with the

exception of the third mode of variation. Investigations on
larger datasets will be needed to assess further the relationship
of morphological features between the acquisitions for both
healthy and degenerative IVD. Possible sources of variation can
include local morphological degenerative changes not captured
by the 2D TSE scans with inter-slice gap, or bias of the segmen-
tation algorithm trained on 3D SPACE images.

Classification
The more elaborate SVM technique delivers very similar results
to LDA, suggesting that the classification boundary is well
defined and the data reasonably separable with used features.
Classification results show that both 3D-based morphological
and signal intensity features contain important information for
the correct detection of IVD degenerative signs. The results
indicate that the second mode of SSM variation (feature 5)
encodes core morphological information for classification on
both datasets. This is highlighted by single feature classification
analyses in table 2 and confirmed by feature selection proce-
dures reported in tables 3 and 4. Similarly, the mean and vari-
ation of the second (NP) histogram Gaussian (features 10
and 11) are key signal intensity features for IVD degeneration
classification. The combination of 2D morphological and signal
intensity features never outperforms the 3D morphological and
signal intensity features, and on the second dataset, all height,
width and their ratio were excluded from the classification when
all features were combined together. Confirmed by the explora-
tive tests of statistical significance, the SSM-based 3D morpho-
logical features offer a clear advantage over simple planar
measurements for IVD classification.

To our knowledge, this is the first time that a 3D shape has
been used in the classification of IVD degeneration. Although it
is difficult to compare classification experiments performed on
different datasets with varying acquisition parameters or disease
type and severity, our classification accuracy for the combined
3D shape and signal intensity features (0.945 for LDA and

Table 3 Classification results on dataset 1 (AUC/accuracy/sensitivity/specificity)

Features Linear discriminant analysis Support vector machine

A: Planar measurement 0.870/0.811/0.678/0.829: {1, 2} 0.860/0.798/0.668/0.815: {3}
B: 3D shape 0.954/0.919/0.941/0.916: {4, 5} 0.952/0.920/0.927/0.919: {4, 5}
C: Intensity 0.977/0.887/0.942/0.879: {9, 10, 11} 0.964/0.898/0.840/0.906: {9, 10}
A + C 0.976/0.883/0.937/0.876: {9, 10, 11} 0.964/0.919/0.906/0.922: {1, 2, 7, 10}
B + C 0.984/0.945/0.969/0.942: {4, 5, 9, 10, 11} 0.978/0.940/0.879/0.949: {4, 5, 7, 10}
A+B+C 0.984/0.942/0.975/0.937: {2, 4, 5, 9, 10, 11} 0.977/0.936/0.911/0.941: {1, 5, 6, 9, 10}

Selected features are noted in the braces (feature index corresponds to table 2), the best results are highlighted in bold.
AUC, area under the curve; 3D, three dimensional.

Table 4 Classification results on dataset 2 (AUC/accuracy/sensitivity/specificity)

Features Linear discriminant analysis Support vector machine

A: Planar measurement 0.859/0.773/0.771/0.777: {1, 2} 0.860/0.767/0.757/0.780: {3}
B: 3D shape 0.922/0.843/0.839/0.849: {5, 6} 0.923/0.848/0.847/0.849: {5, 6}
C: Intensity 0.978/0.921/0.937/0.900: {7, 8, 9, 10, 11} 0.961/0.910/0.874/0.959: {8, 10}
A+C 0.983/0.934/0.929/0.941: {1, 7, 8, 10, 11} 0.972/0.930/0.901/0.968: {1, 2, 8, 10}
B+C 0.988/0.930/0.943/0.913: {5, 7, 8, 10, 11} 0.981/0.925/0.929/0.920: {5, 6, 8, 10}
A+B+C 0.988/0.930/0.944/0.913: {5, 7, 8, 10, 11} 0.981/0.923/0.924/0.923: {5, 6, 8, 10}

Selected features are noted in the braces (feature index corresponds to table 2), the best results are highlighted in bold.
AUC, area under the curve; 3D, three dimensional.
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0.940 for SVM on dataset 1, 0.930 for LDA and 0.925 for SVM
on dataset 2) compares favorably to classification results pre-
sented by Alomari et al,17 who reported the accuracy of 0.913.
Michopoulou et al25 achieved comparable accuracy of 0.94 in
detecting degeneration of cervical IVD. The values are compar-
able to the accuracy of 0.949 reported by Ghosh et al20 who,
however, focused solely on the detection of IVD herniation.

Our experiments suggest that the proposed automated 3D
features relate well to the radiological (magnetic resonance) find-
ings of IVD degenerative changes and achieve comparable accur-
acy as the state-of-the-art techniques. They are straightforward
to interpret and offer novel insight for assessment of the IVD in
3D. This may provide a useful and clinically feasible approach
for an efficient CAD for large-scale research and clinical studies.

Study limitations and future work
While the classification results obtained with the automated ana-
lysis are promising, an extended validation on a larger dataset
and the correlation to clinical symptoms would be beneficial.
A logical extension would involve analyses of a fuller dataset
containing annotated cases with concomitant registration of
lower back pain scores and quality of life scores, acquired with
both 2D and 3D MRI sequences, which will allow distinguish-
ing features suitable for the detection of early or advanced
stages of IVD degeneration, correlations to clinical symptoms
and comparison between 2D and 3D MRI scans on cases with
different stages of degeneration. A bigger dataset with increased
case numbers and pathological presentations will also allow
opportunities for greater comparisons of larger feature sets pre-
viously proposed in the literature.

An interesting direction for ongoing investigations could be
the combination of morphological features with signal intensity
information from multi-modal MRI contrasts and biochemical
MRI. Several biochemical magnetic resonance characteristics
have recently been studied in the context of IVD degeneration
(T2 or T1ρ relaxation times (collagen network and water
content),6 26 27 diffusion MRI (extracellular space volume)28 or
sodium MRI (glycosaminoglycan content)),29 which might
provide new insights into the pathogenesis of the disease.

CONCLUSION
High-resolution 3D MRI of the spine with automated segmenta-
tions of IVD provide novel possibilities for CAD assessment of
disc-related pathologies. In this paper, we have introduced an
informatics system for automatic extraction and quantification of
3D MRI data of the IVD in the lumbar spine. The 3D morpho-
logical and signal intensity features, based on statistical shape
analyses and intensity histogram modeling of lumbar IVD, were
successfully applied to detect IVD abnormalities automatically.
The results suggest that the 3D shape features contain salient
information for the detection of degenerative changes, compared
to the traditionally used planar morphological features. The
results highlight the potential benefit of the presented method
for studies concerned with automated quantification of IVD
changes, and a straightforward interpretability of the proposed
features supports their implementation within CAD systems for
clinical practice to aid the processing of ever increasing amounts
of radiological data. An automated quantification of IVD changes
has the potential of a more accurate and reproducible assessment
of IVD changes during follow-up and in relation to clinical symp-
toms, because, although spine pathology is ubiquitous and is
encountered by nearly all medical specialties, the language used
by radiologists to describe pathology may be complex and is not
directly correlated to clinical symptoms.30 31
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