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Platelet-Derived Factors for Cell Culture and Tissue 
Regeneration

Ex vivo/in vitro cell culture requires basal medium plus 
supplements providing growth factors, proteins, and enzymes 
to support attachment, growth, and proliferation. Fetal bovine 
serum (FBS) is commonly used to supplement cell culture 
media, because the fetal milieu is enriched in growth factors 
compared to the adult situation and poor in antibodies [1]. In 
contrast to plasma, serum contains a variety of growth factors, 
cytokines, and chemokines derived during blood coagulation 
and released by physiologically activated platelets [2]. Beside 
stop of bleeding, these factors mediate wound closure and 
healing. Studies in the 1980s defined growth-promoting ef-
fects of human platelet lysate (HPL) on various cell lines [3], 
tumor cells [4], and articular chondrocytes [5]. Especially the 

-granule-derived factors such as platelet-derived growth fac-
tor (PDGF), transforming growth factor-  (TGF- ), insulin-
like growth factor (IGF), vascular endothelial growth factor 
(VEGF), fibroblast growth factor (FGF-2/bFGF), hepatocyte 
growth factor (HGF), and epidermal growth factor (EGF) 
have been identified as cell mitogens with wound-healing ca-
pacity [6–8]. In conjunction with extracellular matrix mole-
cules platelet factors, for instance TGF- 1, provide osteoin-
ductive capacity for osteoblasts [6] (fig. 1). To utilize these 
physiological functions, platelet-derived factors have been ap-
plied as therapeutic agents for wound healing and bone regen-
eration. To concentrate the factors, platelet-rich plasma 
(PRP) has been developed. This is derived by centrifugation 
of anticoagulated whole blood, yielding plasma enriched in 
platelets. Further concentration can be achieved by a second 
centrifugation step [6, 9]. Subsequent coagulation with cal-
cium forms a fibrin gel, which, in conjunction with the platelet 
released growth factors, serves as a therapeutic agent in plas-
tic surgery, orthopedic interventions, chronic wound healing, 
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Summary 
Mesenchymal stromal cells (MSC) emerged as highly at-
tractive in cell-based regenerative medicine. Initially 
thought to provide cells capable of differentiation to-
wards mesenchymal cell types (osteoblasts, chondro-
cytes, adipocytes etc.), by and by potent immunoregula-
tory and pro-regenerative activities have been discov-
ered, broadening the field of potential applications from 
bone and cartilage regeneration to wound healing and 
treatment of autoimmune diseases. Due to the limited 
frequency in most tissue sources, ex vivo expansion of 
MSC is required compliant with good manufacturing 
practice (GMP) guidelines to yield clinically relevant cell 
doses. Though, still most manufacturing protocols use 
fetal bovine serum (FBS) as cell culture supplement to 
isolate and to expand MSC. However, the high lot-to-lot 
variability as well as risk of contamination and immuni-
zation call for xenogenic-free culture conditions. In terms 
of standardization, chemically defined media appear as 
the ultimate achievement. Since these media need to 
maintain all key cellular and therapy-relevant features of 
MSC, the development of chemically defined media is 
still – albeit highly investigated – only in its beginning. 
The current alternatives to FBS rely on human blood-de-
rived components: plasma, serum, umbilical cord blood 
serum, and platelet derivatives like platelet lysate. Focus-
ing on quality aspects, the latter will be addressed within 
this review. 
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‘mesenchymal stem cells (MSC)’, according to the hematopoi-
etic stem cell (HSC) nomenclature [19]. Since later studies, 
however, failed to fulfill the self-renewal criterion of stem 
cells (1. self-renewal, 2. unspecialized, and 3. differentiation 
capacity to specialized cell types), it has been proposed to bet-
ter name the cells ‘mesenchymal stromal cells (MSC)’ [20]. 

Of note, till now MSC are characterized as culture-adapted, 
ex vivo expanded cells. This population is still heterogeneous 
and contains progenitor cells at different maturation stages 
and also mature stromal cells [21]. In conjunction with the 
heterogeneity of cell preparations, inconsistencies in the use 
of different tissues as starting material and in isolation and 
cultivation protocols render comparability of results compli-
cated. As an effort to standardize the term MSC, the Interna-
tional Society for Cell Therapy (ISCT) defined minimal crite-
ria to be fulfilled [22]:
– adherence to cell culture plastic surfaces yielding cells of a 

fibroblastoid phenotype,
– expression of typical markers (CD105, CD73 and CD90) 

and lack of expression of CD45, CD34, CD14 (or CD11b), 
CD79  (or CD19) and HLA-DR surface molecules, and

– differentiation towards at least the three mesodermal 
chondrocyte, adipocyte and osteocyte lineages.

(for further overview see TRANSFUSION MEDICINE AND HEMO-
THERAPY special issues Vol. 35, No. 3 and 4, 2008, and Vol. 37, 
No. 2, 2010 [23–41]).

ophthalmology etc. [6, 9–13]. Despite the manifold interven-
tions, evidence of effectiveness of PRP administration re-
mains controversial: Sommeling et al. [10] reported a signifi-
cant benefit in several indications, including wound healing as 
well as fat and bone grafting, whereas Martinez-Zapata et al. 
[13] found no evidence for a benefit of PRP in chronic wound 
treatment, similar to Sheth et al. [12], who state ‘the current 
literature is complicated by a lack of standardization of study 
protocols, platelet separation techniques, and outcome 
measures’.

Certainly platelet-derived factors attracted attention as ef-
fective tool to supplement cell cultures replacing FBS. To im-
prove safety for cell-based therapies Doucet et al. [14] initi-
ated the use of HPL in supplementing mesenchymal stromal 
cell cultures. 

Mesenchymal Stem/Stromal Cells

In the 1970s Friedenstein et al. [15, 16] described a popula-
tion of non-hematopoietic progenitors isolated from the bone 
marrow. Although already described as being able to differ-
entiate into a variety of mesodermal lineages such as bone, 
cartilage, fat, marrow stroma, tendon, muscle, dermis and 
connective tissues, further research rested until the 1990s [17, 
18]. Only then, these non-hematopoietic cells were termed 

Fig. 1. Diversity of biological activities of MSC.
MSC have a broad spectrum of biological activ-
ities leading to a variety of potential clinical 
 applications. Currently 307 clinical trials are 
found searching for ‘mesenchymal stem cells’ 
and 32 for ‘mesenchymal stromal cells’  
(http://clinicaltrials.gov; assessed June 2013). 
Since the exact mode of action has not been 
 revealed yet, the combination of biological ac-
tivities appears to be advantageous for therapy 
success.
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MSC, which in most cases is needed to achieve clinically rele-
vant cell numbers, provokes spontaneous transformations [58, 
59]. The few cases reporting spontaneous transformation, 
however, had to retract their publications: ‘spontaneous’ 
transformation occurred due to laboratory cross-contamina-
tion with tumor cell lines. Thus yet consensus evolved that at 
least human MSC in general undergo replicative senescence 
instead of malignant transformation. Even documented 
events of aneuploidity, observed in few clinical-scale MSC 
preparations, in all cases caused progressive growth arrest and 
senescence [60]. Yet, by way of precaution, consensus on 
common standards and harmonized protocols need to be im-
plemented to strengthen both efficacy and safety.

Towards Xenogenic-Free Manufacturing of  
Mesenchymal Stromal Cells

To ensure safety and efficacy, all steps within the MSC 
manufacturing process need to be standardized. Cellular qual-
ity and potency have to be reproducible. However, the manu-
facturing process for MSC is complex and composed of pro-
curement, isolation, expansion, and quality control [37, 51, 61, 
62]. Clinical success is linked to a sufficient number of vital 
and functional cells. Further, the cellular product shall bear 
no risks for infections, allergies, or malignancies. Thus within 
the manufacturing process, a number of considerations have 
to be taken into account [63]. Ancillary reagents pose a risk 
for the safety of the cellular product. FBS is typically used to 
isolate and expand MSC. It is a highly complex mixture of 
proteins and other factors and by nature ill-defined and vari-
ant from batch to batch [1]. Due to the high risk of contami-
nations (virus positivity reported to be as high as 20–50%), 
FBS is critically rated by the European Medicines Agency 
[64]. Because MSC internalize xenogenic proteins at high 
amounts, there is an additional risk of allergic reactions. FBS 
immunogenicity has already been demonstrated to compro-
mise the therapeutic success [49, 65–67]. In view of these con-
siderations xenogenic-free culture conditions appear desira-
ble. Due to the numerous constituents of FBS, which posi-
tively (and negatively) affect adhesion (cell-cell and cell-ma-
trix), mitosis, survival, apoptosis etc., a chemically defined 
medium needs an optimal composition of the few most essen-
tial factors to promote at least all key cellular features. By this 
it is hard to establish [68–70]. 

Although some regulatory agencies may tolerate xenogenic 
components, such as FBS, in phase I clinical trials, it is ex-
pected that later clinical trials including larger patient cohorts 
will require serum- or at least xenogenic-free cell prepara-
tions. Albeit washing procedures or sequential cultivation in 
human plasma or serum may help to reduce the content of 
xenogenic proteins, a residual risk is left over [65, 67].

To replace FBS, numerous studies now refer to ‘human-
ized’ culture conditions. ‘Humanized’ supplements include 

Encouraged by this broad differentiation capacity, early 
clinical trials were initiated for a wide range of ailments [42, 
43]. Based on the stromal origin within bone marrow, the 
stromal support capacity to facilitate HSC engraftment was 
assessed [44, 45]. Despite an unexpectedly low level of en-
graftment, a long-lasting therapeutic effect became apparent. 
To answer the question how MSC achieve this benefit without 
being actually present, MSC research returned ‘back to 
bench’ [46]. Now seminal studies identified strong immu-
nomodulatory properties of MSC [47, 48]. In combination 
with their low immunogenicity based on the lack of HLA-DR 
and co-stimulatory molecules, MSC were rated well-suited for 
both autologous and allogeneic transplantation settings [49]. 
Continuatively the beneficial therapeutic effects could be at-
tributed to the capacity of MSC to home to sites of inflamma-
tion and injury where MSC release a variety of pro-regenera-
tive, anti-apoptotic and anti-fibrotic factors enabling endog-
enous repair processes [50]. 

Thus based on their differentiation capacity, hematopoietic 
support as well as their immunomodulatory and pro-regener-
ative features, MSC are increasingly applied in cell-based 
therapy: currently 307 clinical trials are found searching for 
‘mesenchymal stem cells’ and 32 for ‘mesenchymal stromal 
cells’ (http://clinicaltrials.gov; assessed June 2013). The high 
number of clinical trials raise an intense controversy regard-
ing the pace of translation [51]. Despite fascinating in vitro 
results and promising preclinical data, clinical data are often 
less prominent. The scientific basis for some clinical trials ap-
pears often rather weak, because, despite intense research, 
the mode of action of MSC remains elusive. Thus it is essen-
tial to carefully weigh the putative benefits with the risks. 

Although, up to now, the majority of preclinical and clini-
cal data fail to report severe adverse events after MSC appli-
cation, suggesting that MSC can be applied safely [52], there 
have been reports of severe complications after stem cell infu-
sions, including deaths [51, 53, 54]. In Korea, for instance, one 
patient died from pulmonary embolism after stem cell admin-
istration, and the International Cellular Medicine Society 
(ICMS) considered it ‘likely to have been caused or triggered 
by the stem cell procedure’ (www.cellmedicinesociety.org). 
Yet beyond these few cases possibly related to market-ori-
ented companies that ‘are setting up operations around the 
globe, and taking advantage of loopholes in other countries’ 
regulations’ [53], few adverse events have been reported. Cal-
cifications were observed after transplantation of MSC or un-
fractionated bone marrow into infarcted hearts in a mouse 
model [55]. Tumor growth appeared facilitated after MSC in-
fusion [56, 57]. Especially latent tumors, such as gliomas, sar-
comas and melanomas, but also metastases became manifest 
after MSC infusion. This suggests that tumor surveillance may 
be impaired by MSC immunosuppressive activities or that 
 direct integration into the tumor stroma and secretion of an-
giogenic factors may facilitate tumor growth [57]. It has been 
intensely debated whether or not the ex vivo expansion of 
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to gain the releasate, mechanical lysis to yield HPL appears 
preferable as being much easier, less time-consuming, and less 
cost-effective. It further avoids the use of additional sub-
stances such as thrombin which may cause side effects. 

Platelet concentrates, used for HPL production, can be ei-
ther frozen immediately after donation or used at the end of 
the shelf life (4–6 days after donation depending on the current 
local regulation) [76–78]. Thus those platelet concentrates not 
used for platelet transfusion can be allocated for HPL manu-
facturing, minimizing the decay of already donated units and 
consequently avoiding an additional donation from blood do-
nors. Platelet concentrates can be then stored frozen, thawed, 
centrifuged, pooled, and sterile-filtered after quarantine stor-
age (analogous to therapeutic fresh frozen plasma) to increase 
safety [77]. Final HPL can be stored at –20 °C for a prolonged 
time, maintaining a stable growth factor content [79].

Doucet et al. [14] have shown that PRP-derived HPL well 
supports MSC isolation and expansion whilst osteo-, adipo- 
and chondrogenic differentiation propensity is retained com-
pared to FBS. A variety of studies followed, exploiting HPL 
as GMP-compliant substitute for FBS in MSC expansion, sup-
porting even significantly enhanced proliferation of MSC [73, 
74, 80–85]. For large-scale MSC expansion 50–100 conven-
tional tissue culture flasks may be needed. These are hard to 
handle and prone to contamination. Thus a few studies evalu-
ated the isolation and expansion within a bioreactor using 
HPL [86, 87] in order to define the risks of MSC therapy. The 
majority of these studies report a lower size of MSC and ac-
celerated proliferation compared to FBS. Furthermore, HPL 
increased not only size but also numbers of colonies [82, 88]. 
Importantly, only in FBS-supplemented media clonal chro-
mosomal instabilities were monitored but not under the hu-
manized culture conditions [59, 82, 89]. 

Although MSC are considered to escape allo-recognition, 
mitogens such as FGF and PDGF-BB as well as inflammatory 
cytokines have been documented to induce HLA-DR expres-
sion in MSC and by this the stimulation of CD4 T cells. Im-
portantly HPL appears not to cause HLA-DR expression 
[90]. Regarding the maintenance of immunomodulatory prop-
erties, contradictory data exist. Flemming et al. [91] directly 
compared bone marrow-derived MSC cultivated in FBS or 
HPL regarding their immunosuppressive capacities. The in-
hibitory effect on T-cell proliferation was similar, likewise the 
activation of cytomegalovirus-specific T cells. Similar data 
were presented by Bernardo et al. [83]. In contrast, Abdel-
razik et al. [92] defined an alteration in surface protein ex-
pression relevant for immunomodulation and adhesion after 
culture in HPL. This corresponded to a reduced inhibition of 
T and NK cell proliferation. These authors compared MSC 
expanded in three different batches of FBS (including two 
commercially available MSC growth media) with HPL 
supplementation. 

Microarray analyses highlighted the down-regulation of 
several gene families that are included in differentiation/de-

human serum (autologous or pooled allogeneic), cord blood 
serum as well as different platelet derivatives [69, 70]. Be-
cause these human blood components are in clinical use since 
years, can be derived from healthy blood donors and had 
been tested according to blood banking standards for infec-
tious and immunological parameters, the potential risk is low-
ered. Similar to FBS, human blood component-derived sup-
plements include a variety of essential factors capable of pro-
moting cell growth. Human plasma, autologous and allogeneic 
serum as well as cord blood serum have been investigated as 
reviewed in [70]. Yet human platelet-derived factors emerge 
as the most intensely studied alternatives to FBS for MSC 
culture.

Platelet Releasate

As already stated, human platelets contain numerous fac-
tors to promote cell growth of cells and cell lines [3]. Early 
studies evaluated the MSC growth-promoting effects of plate-
let growth factors in PRP released by calcium and thrombin 
stimulation [71, 72]. Coagulated fibrin is subsequently re-
moved by centrifugation and filtration. Both studies described 
accelerated expansion and migration but differed with respect 
to osteogenic differentiation potential. Thus platelet factors 
released by physiological stimuli might offer some advan-
tages. Several substances have been shown to activate plate-
lets, including thrombin, collagen, ADP/epinephrine and 
thrombin receptor-activating peptide (TRAP) [73]. Interest-
ingly, own studies have shown that processed thrombin-acti-
vated platelet releasate in plasma (tPRP) and HPL promote 
different proliferation rates of bone marrow- and adipose tis-
sue-derived MSC. Whereas HPL promoted a significant 
higher proliferation rate of bone marrow MSC than tPRP 
[74], adipose stromal cells exhibited, if at all, similar prolifera-
tive responses to HPL and tPRP [74, 75]. Differential pro-
teomics of HPL and tPRP identified 20 differential proteins 
(Kinzebach et al. unpublished data). Identified proteins fur-
ther denoted differences between bone marrow and adipose 
stromal cells: for example, fibrinogen significantly supported 
the expansion of adipose-derived stromal cells (ASC), and 
apolipoprotein A1 selectively reduced proliferation rate of 
bone marrow MSC. 

Platelet Lysate

Platelet releasates contain only those factors released after 
platelet activation. Platelet lysates (HPL) in contrast contain 
all factors platelets are composed of. These can be easily de-
rived by mechanical disruption of platelet concentrates via 
freezing and thawing. Subsequent centrifugation separates the 
platelet debris from the supernatant containing all bioactive 
platelet factors. Compared to chemical activation of platelets 
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the reduced expression of lipocalin-type prostaglandin D2 
synthase was related to this effect. The authors conclude that 
HPL might offer an option to prevent unwanted adipogenic 
differentiation.

Quality Criteria for Platelet Lysate
Human supplements, likewise FBS, still need to be consid-

ered ill-defined, and they share some safety concerns. Gener-
ally platelet concentrates are manufactured and released for 
therapeutic purposes to be transfused to patients with se-
verely reduced platelet numbers and/or impaired platelet 
function before they are converted for use as MSC supple-
ment. Having been released as blood product, stringent blood 
donor eligibility criteria as well as sensitive viral NAT testing 
have already been fulfilled, ensuring safety of the starting ma-
terial for HPL manufacturing [77, 78].

Autologous or Allogeneic
Platelet transfusion practices consider the blood groups and 

rhesus factors to avoid adverse events for the patients. For 
preparation of autologous MSC, autologous HPL may be con-
sidered. However, in severely sick patients a whole blood do-
nation or apheresis may be risky. Due to the restricted volume 
of HPL from one patient the cell number achieved within the 
expansion steps might be restricted as well. Furthermore, vari-
ations between individual autologous donors hamper stan-
dardization and increase the need to quality control each indi-
vidual HPL batch. Thus the majority of current protocols rely 
on pooling platelet concentrates from up to 50 healthy blood 
donors [85]. The cryopreservation step prior to further pooling 
allows quarantine storage of individual platelet concentrates. 
These can be released for clinical-grade HPL production once 
the donors have been retested negative for all infectious mark-
ers after a consecutive second donation [77]. The resulting 
large batch is easy to be quality controlled according to blood 
banking standards and for protein and growth factor content. 
For patients at risk, e.g. patients with known antibodies, blood 
group/Rhesus factor-matching allogeneic platelet preparations 
could be considered [78]. Interestingly, donor age appears to 
be of impact for HPL quality: comparing umbilical cord with 
adult PRP revealed a higher concentration of mitogenic 
growth factors in the cord blood-derived preparations [101]. 
Similar HPL from younger donors (<35 years) was more pro-
liferative than that from older donors which increased the ex-
pression of senescence markers [102].

Thrombocyte Concentration
Crucial for manufacturing MSC is the concentration of 

thrombocytes which is directly related to the growth factor con-
centration. Lange et al. [84] evaluated different thrombocyte 
concentrations as 5% supplement in basal medium to evaluate 
the effect on MSC proliferation: 1.5, 1.0, 0.75, and 0.5 × 109/ml. 
It became obvious that a platelet concentration below 1.5 ×  
109/ml significantly reduced the pro-proliferative effect. 

velopment, cell adhesion / extracellular matrix-receptor inter-
action, TGF-  signaling and thrombospondin-1-induced ap-
optosis. Gene clusters associated with cell cycle, DNA replica-
tion, and purine metabolism were up-regulated concomitant 
to the enhanced proliferation in HPL as well as in human 
serum [84, 93]. Albeit low, these changes in gene expression 
may cause differences in MSC therapeutic potential. Homing 
and engraftment are prerequisites for most therapeutic inter-
ventions. Changes in cell adhesion molecules thus may have 
relevant consequences. We detected that the reduced expres-
sion of integrin 6 (CD49f) in adipose tissue-derived stromal 
cells cultivated in a humanized medium correlated to deceler-
ated integrin signaling and reduced adhesion to laminin [94]. 
We also observed reduced adhesion to endothelial cells. Fi-
nally fewer cells cultivated in human serum were detected in 
the lungs of mice infused with MSC in contrast to higher num-
bers of those cells cultivated in FBS. Whether this diminished 
entrapment is related to the lower size of cells, reduced inter-
action with extracellular matrix molecules, changed homing 
specificities, or other reasons is a matter of further analyses. 
Although observed for cells cultivated in human serum, simi-
lar ideas are discussed by Lucchini et al. [95]. Thus the choice 
of supplement may play a critical role when balancing risk 
and efficacy: reduced adhesion to the lung may lower the po-
tential risk of pulmonary embolism. It may, however, also re-
duce the release of immunomodulatory TSG-6 (TNF-stimu-
lated gene 6 protein) secreted of lung-adhered MSC to pro-
vide protection, e.g., in myocardial infarction [96]. 

Combining the growth-promoting effect of HPL on MSC, 
the osteoinductive properties in bone, and the scaffold prop-
erties of fibrin, HPL has been used to promote bone tissue 
engineering. Dozza et al. [97] for instance demonstrated that 
HPL-expanded MSC applied as collagen or fibrin construct to 
an uncemented hip prosthesis significantly promoted new 
bone formation compared to the prosthesis alone. Further-
more, there are indications that HPL may induce osteogenic 
differentiation without any further osteogenic stimuli. Only 
ceramics seeded with MSC grown in HPL were able of ectopic 
bone formation [88, 98]. Based on this differentiation poten-
tial, these cells have been used to treat patients in various or-
thopedic conditions. Centeno et al. [99] reported the results of 
339 patients having received autologous bone marrow-derived 
MSC expanded in autologous HPL. Adverse event surveil-
lance revealed a few cases most probably related to the re-
implant procedure and three cases possibly related to stem 
cell applications. These few cases were either self-limited or 
cured by small therapeutic interventions. Importantly, no ne-
oplastic transformations were observed at the stem cell injec-
tion site. Although in total two patients developed tumors, the 
neoplasm rate was similar to the control population. 53.1% of 
the patients reported symptom relief in the follow-up period 
of 11 months. 

Lange et al. [100] observed decreased adipogenic differen-
tiation potential of MSC expanded in HPL. Amongst others, 
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FGF2/bFGF, PDGF, EGF, IGF, and TGF, among others, 
have been studied but failed to support MSC growth when 
supplemented solitary or in combination to serum-free me-
dium [104]. Yet added to FBS-supplemented media, these 
growth factors were capable of fostering proliferation and dif-
ferentiation. This effect, however, may not necessarily hold 
true in ‘humanized’ culture systems. Similar to our own yet 
unpublished data, bFGF appears to support expansion of 
FBS-supplemented bone marrow MSC cultures, but fails to 
do so in HPL-supplemented systems [105]. Neutralization of 
PDGF-AB/BB, TGF- 1 and FGF significantly diminished the 
proliferative effect of HPL, with the strongest effects seen by 
neutralizing FGF alone or in combination with PDGF-BB 
[77]. Although these factors appear to be essential, it was not 
possible to induce proliferation by a cocktail of these growth 
factors in serum-free medium. Providing extracellular matrix 
molecules as attachment factors in addition likewise failed to 
mimic HPL. Obviously, additional components are necessary 
to fully support MSC proliferation. 

Pathogen Reduction Strategies
Combining a number of advantages, human supplements 

still pose the risk of transferring infectious agents. Hemovigi-
lance plus quarantine storage can in part overcome the risk of 
the diagnostic window [77]. However, there is still a residual 
risk due to pathogens which are currently not routinely tested 
(especially viruses). Then, being stored at room temperature, 
platelet concentrates bear the risk of undetected bacterial 
contamination. Thus various pathogen reduction or inactiva-
tion strategies became investigated for erythrocyte and plate-
let concentrates [106]. Pathogen inactivation protocols based 
on photochemical treatment have been established and path-
ogen-inactivated human serum showed no differences regard-
ing the quality of MSC compared to control serum [107]. A 
virally inactivated HPL was introduced by Shih et al. [108]. 
Here the HPL was treated by solvent/detergent, then ex-
tracted by soybean oil, and further purified by C18 chroma-
tography and sterile filtration. Via a semiquantitative human 
cytokine antibody array cross-reacting with some bovine pro-
teins, the growth factor cocktail was compared. 22 cytokines 
showed a higher concentration in the virally inactivated HPL 
than in FBS, and only two cytokines (angiopoietin-2 and 
bFGF) were found at lower concentrations. Virally inacti-
vated HPL induced massive proliferation compared to FBS. 
The typical MSC characteristics, phenotype, immune pheno-
type, and differentiation were maintained, indicating the fea-
sibility of this approach. 

Clinical Trials with Mesenchymal Stromal Cells  
Expanded in Human Supplements

A few studies already applied ‘humanized’ culture condi-
tions to expand MSC for clinical trials. The study presented 

Shelf Life of Platelet Concentrates prior to HPL Production
To reduce the risk of transfusion-transmitted bacterial in-

fections, in Germany the shelf life of platelet concentrates is 4 
days. A variety of laboratories allocate the platelet concen-
trates at the end of this shelf life for HPL production. Bacte-
rial screening complemented by subsequent donor testing is 
taken as safety measures. Fekete et al. [77] compared HPL 
prepared from platelet concentrates 2 days or 6 days after do-
nation without any change in quality. Consequently, the plate-
let concentrate does not need to be discarded when not used 
for the initial intended therapeutic use but can be converted 
to HPL production after the shelf life has been exceeded. 

Plasma or Thrombocyte Additive Solution
Although most critical, data regarding growth factor con-

centrations significantly differed in the various publications 
[79]. These discrepancies are predominantly due to different 
preparation methods to manufacture platelet concentrates, 
using either plasma or plasma additive solution. Plasma addi-
tive solution has been introduced to reduce the adverse ef-
fects of plasma [78]. Initially convinced that plasma compo-
nents in conjunction with the platelet factors comprise the 
optimal MSC supplement, we for instance evaluated a pool of 
freshly prepared buffy coat-derived platelet concentrates pre-
pared in human AB plasma of one of the blood donors [73, 
74]. Later we and others tested outdated ‘routine’ platelet 
concentrates. As pool of 8–50 donors, no divergence from 
freshly prepared platelet lysate was obvious, suggesting that 
outdated platelet concentrates – instead of autoclaving – can 
be cryopreserved to manufacture HPL [77, 85]. For instance 
the group of Dirk Strunk filed an US-patent entitled ‘Plasma-
free platelet lysate for use as a supplement in cell cultures and 
for the preparation of cell therapeutics’ (Pub. No.: US 
2009/0305401 A1; Dec 10, 2009). 

Buffy Coat- or Apheresis-Derived Platelet Concentrates
Within their study Fekete et al. [77] furthermore compared 

GMP-grade HPL obtained from pooled whole blood-derived 
buffy coats with those from apheresis-derived platelet concen-
trates. There were no significant differences regarding the cy-
tokine content (bFGF, sCD40L, PDGF-AA, PDGF-AB/BB, 
sVCAM-1, sICAM-1, RANTES, TGF- 1) fitting to the simi-
lar support of MSC proliferation. 

Specific Cytokines
As already mentioned, HPL contains a plethora of cy-

tokines, chemokines, and soluble adhesion molecules which 
have been intensely studied by proteomic approaches [8, 82, 
103]. However, concentrations between the groups differ sig-
nificantly [77, 79]. And those growth factors essential for MSC 
isolation and expansion have not been defined yet. It needs to 
be established whether the composition and concentration of 
platelet-derived factors can serve as quality control parame-
ters for HPL.
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conditions between preclinical and clinical trials. This is, how-
ever, complicated by the fact that the mode of action has not 
yet been defined comprehensively for FBS-cultivated cells. 
Thus the effects of a changed culture condition cannot be 
compared. These effects are expected to be even more drastic 
when developing chemically defined media, composed of only 
few factors and lacking the manifold other undefined factors 
present in HPL or serum. Otherwise, identifying the impact of 
defined media components may allow generating designed 
MSC for specific therapeutic applications, similar to the dif-
ferentiation media already applied for targeting differentia-
tion of MSC. 

Of note, culture medium is only one building block in the 
complex structure of the GMP-compliant MSC manufacturing 
process. The establishment of standardized manufacturing 
protocols, quality control parameters, and assays is of utmost 
importance. This becomes even more important given the 
rapid pace in which clinical trials are initiated, often based on 
only weak scientific evidence. Despite the intensified research 
work in the translational field, only agreement on standard-
ized protocols in conjunction with a strictly regulated environ-
ment performed by experts in the field of GMP manufactur-
ing is expected to enable meaningful comparative multicenter 
studies assessing feasibility, safety, and efficacy. 

The fact that the transition to clinical trials employing MSC 
is evolving rapidly, even without knowing the mode of action, 
complicates this demand. To not slow down clinical MSC evo-
lution, an intense interaction between basic and clinical re-
search is demanded to deepen our knowledge and to develop 
safe but efficacious MSC-based novel therapies.
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by von Bonin et al. [109] evaluated bone marrow MSC ex-
panded in human HPL in patients with refractory graft-ver-
sus-host disease (GvHD). Two out of 13 patients treated in 
total benefitted from the treatment. After a second dose, 5 
out of 11 patients responded with a mitigation of their symp-
toms. Similar findings were obtained in a study where 11 pedi-
atric patients suffering from acute or chronic GvHD have 
been treated with MSC expanded in HPL. Some patients re-
ceived up to 5 MSC infusions with no acute and late side ef-
fects. A complete response was observed in 23.8% and a par-
tial remission reported in 47.6% of patients [95]. In contrast, a 
higher rate of complete response has been reported analyzing 
MSC expanded in FBS. Here a complete response in 30 from 
a total of 55 patients has been obtained [110]. Further, 9 pa-
tients profited with an improvement of GvHD symptoms. It is 
discussed whether differences in the mode of MSC expansion 
may cause different migration towards chemotactic stimuli 
and by this favor one or the other organ affected by GvHD. 
By this, the discussion fits to the described changes in gene 
expression related to adhesion and homing. 

Conclusion

For standardized MSC manufactured on a routine basis, 
chemically defined media approved for GMP and clinical use 
are regarded as ultimate endpoint. Until achieving this, objec-
tive supplements derived from human blood products (serum 
or platelet lysate) emerged as reasonable alternatives to FBS. 
Rauch et al. [79] defined quality criteria for HPL: a 10- to 20-
fold enrichment of -granule factors compared to serum and a 
reduced overall protein content, including immunoglobulins 
and albumin achieved by washing. 

Any change of culture conditions can be of major impact 
on cellular quality. Switching from FBS to human supple-
ments induces measurable changes. Although main character-
istics of MSC, as defined by the ISCT, appear retained, con-
tinuative studies indicated that the choice of supplement for 
instance affected gene and protein expression. Adhesion as 
well as homing are changed by humanized culture systems 
compared to FBS. It is thus recommended to study the cellu-
lar effects in detail before – simply acting on the assumption 
that FBS and HPL have similar effects – changing culture 
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