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Abstract

Several recent reports suggest that inflammatory signals play a decisive role in the self-renewal, migration
and differentiation of multipotent neural stem cells (NSCs). NSCs are believed to be able to ameliorate the
symptoms of several brain pathologies through proliferation, migration into the area of the lesion and either
differentiation into the appropriate cell type or secretion of anti-inflammatory cytokines. Although NSCs have
beneficial roles, current evidence indicates that brain tumours, such as astrogliomas or ependymomas are
also caused by tumour-initiating cells with stem-like properties. However, little is known about the cellular and
molecular processes potentially generating tumours from NSCs. Most pro-inflammatory conditions are con-
sidered to activate the transcription factor NF-kB in various cell types. Strong inductive effects of NF-xB on
proliferation and migration of NSCs have been described. Moreover, NF-«B is constitutively active in most
tumour cells described so far. Chronic inflammation is also known to initiate cancer. Thus, NF-«kB might pro-
vide a novel mechanistic link between chronic inflammation, stem cells and cancer. This review discusses the
apparently ambivalent role of NF-kB: physiological maintenance and repair of the brain via NSCs, and a
potential role in tumour initiation. Furthermore, it reveals a possible mechanism of brain tumour formation
based on inflammation and NF-«B activity in NSCs.
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Neural stem cells

During mammalian central nervous system (CNS) cells (NSCs) are commonly defined as undifferentiated
development, multipotent cells undergo division, cell  cells with the ability to proliferate, exhibit self-renew-
fate specification and maturation. These neural stem  al, generate a large number of progeny including the
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principal phenotypes of nervous tissue, and retain
their differentiation potential over time. Within
the adult brain NSCs are mainly located in the
subventricular zone (SVZ) and the dentate gyrus of
the hippocampus.

NSCs are believed to have the capacity to replace
lost cells within the CNS, thus offering a potential
starting point for therapy of neurodegenerative dis-
eases such as Parkinson’s and Alzheimer’s disease
[1, 2]. They also provide a promising method for treat-
ing brain cancers by delivering chemotherapeutic
agents directly to the tumour cells (reviewed in [3]).
On the other hand, multipotent subsets of NSCs
such as radial glia are believed to generate all the
phenotypically diverse cells that populate brain
tumours (for review see [4]).

NF-«B

The transcription factor NF-xB plays a pivotal role in a
variety of biological processes including innate and
adaptive immunity (reviewed in [5]), neuroprotection
and degeneration (reviewed in [6] and [7]), learning and
memory formation and pathological tumour malignan-
cies (reviewed in [8] and [9]). In particular NF-kB has
distinct functions in multiple immune cell types via the
regulation of target genes essential for cell proliferation,
survival, effector functions and cell trafficking [10-12].
In the nervous system NF-kB is known to mediate
either neuroprotection or apoptosis in a stimulus
depending manner [13]. Concerning memory forma-
tion NF-«B regulates spatial memory formation, synap-
tic transmission and plasticity through protein kinase A
(PKA) and cAMP responsive element binding protein
(CREB) signalling as demonstrated in a forebrain neu-
ronal conditional NF-kB-deficient mouse model [14].
The NF-«B protein family comprises p50, p52, p65,
RelB and c-Rel, which form different heterodimeric
complexes (reviewed in [15]). The most common NF-
kB dimer within the CNS, p50-p65, exists as an inac-
tive cytoplasmic complex bound to inhibitory proteins
of the I1xB family (see [6] for review). The trimeric NF-
kB-IkB complex can be activated by several stimuli,
such as inflammatory cytokines, neurotransmitters,
mitogens and growth factors (reviewed in [16] and [6]).

TNF-a

Tumour necrosis factor-alpha (TNF-«) is one of the
best-characterized mediators of inflammation.
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Among the cells of the haematopoietic system,
TNF-a is mainly secreted by macrophages, mono-
cytes, neutrophils, T cells and NK-cells after stimula-
tion with bacterial lipopolysaccharides (LPS). In the
event of pathological alterations within the CNS,
TNF-« is secreted by astrocytes and microglial cells
[17, 18]. TNF-a synthesis is induced by several differ-
ent stimuli including interferons (IFN), interleukin 2
(IL2) and GM-CSF, whereas it is inhibited by IL6,
TGF-a2 and dexamethasone [19].

In eukaryotes, members of the TNF receptor
superfamily play pivotal roles in several biological
processes like haematopoiesis, protection from bac-
terial infection and immune surveillance [19-24].

On the other hand, dysregulation of TNF and
its superfamily members leads to various pathologi-
cal symptoms like diabetes (Type Il), heart failure,
artheriosclerosis, tumourigenesis and tumour metas-
tasis [25—28].

Activation of this family of receptors leads to acti-
vation of multiple signal transduction pathways
including NF-kB signalling [29].

NF-kB activation via TNF-a

NF-kB can be activated by a wide range of stimuli
including endotoxins (e.g. LPS), hypoxia, cytokines
or bacterial and viral infection (see [16] for review).
During inflammation, the activation of NF-kB is
mediated mainly by TNF-«. In this canonical NF-
kB activation pathway, the TNF ligand binds to the
receptor, thereby transducing the signal to the IxB
kinase (IKK) complex. This complex in turn leads
to phosphorylation, ubiquitinylation and finally pro-
teasomal degradation of the inhibitory B
(reviewed in [6]). NF-kB is thereby released,
enabling it to be translocated to the nucleus where
it binds to specific promoter regions on the DNA,
and finally the target genes are transcribed (see
NF-kB target genes affecting NSCs and tumour
formation).

Inflammation, NF-xB and
neural stem cells

Brain inflammation is a complex phenomenon. In
addition to the well-described neurodegenerative
effect of inflammation, several studies suggest that
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inflammatory signals influence NSCs in respect of
proliferation, migration and differentiation leading
either to functional integration and improvement of
the symptoms of inflammation or to secretion of anti-
inflammatory cytokines by the NSCs [15, 30-39]).

As described above, much inflammatory signal
transduction can be considered an innate immune
response triggered by TNF [40, 41]. The transcrip-
tional profile of TNF-treated astroglioma cells has
been investigated by Schwamborn et al. as a model
for brain inflammation [42]. In this study, more than
800 TNF-regulated genes have been found and
analysed by microarray analysis. Macrophage
Chemoattractant Protein 1 (MCP-1) gene expression
was demonstrated to be strongly up-regulated and
secreted into the medium as shown by immunocyto-
chemistry and ELISA.

It is well known that NSCs express various
chemokine receptors as a result of brain pathology
(for review see [43] and [15]). In addition to MCP-1,
expression of stromal derived factor 1o (SDF1-a)
[34], stem cell factor (SCF) [33] and vascular
endothelial growth factor has been reported [44].
Subsequent experiments provided strong evidence
that MCP-1 induces NSC migration [35].

In view of the well-characterized TNF secretion in
the course of inflammatory diseases and the very
potent induction of NSC migration by MCP-1, it has
been proposed that in pathological situations like
neuroinflammation these cells migrate from the SVZ
to the area of the lesion. Belmadani et al. showed
that in hippocampal slice cultures enhanced green-
fluorescent protein (eGFP)-labelled neural progeni-
tors migrate toward injected inflammatory stimuli and
that chemokines are the major regulators of this
process [38].

Functional chemokine signalling strongly depends
on expression of the relevant receptors.

Robust in vivo expression of chemokine receptors
in neurogenic regions of the brain has been recently
demonstrated [45]. In this report, Tran and col-
leagues clearly showed the expression of CCR1,
CCR2 (the cognate MCP-1 receptor), CCR5, CXCR3
and CXCR4 on NSCs in the dentate gyrus of the hip-
pocampus, SVZ and olfactory bulb. These findings
accord with a model proposed by Muller et al. stating
that NSCs are attracted by inflammation, reactive
astrocytosis and angiogenesis [43].

Thus, NSCs are exposed after migration to TNF at
the area of inflammation. In this context, it is notewor-
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thy that TNF-induced NF-kB activity results in
increased proliferation of NSCs ([31, 32]). After
migration and proliferation, NSCs may participate in
the repair process. In accordance with this hypothe-
sis, Pluchino et al. showed that NSCs are able to pro-
mote neuroprotection during CNS inflammation [30].
This phenomenon might be explained either by
secretion of neuroprotective cytokines or by function-
al integration of the proliferated NSCs. In addition,
the transplanted NSCs exerted immune-like func-
tions by inducing apoptosis of blood-borne CNS-infil-
trating encephalitogenic T cells [30].

In summary, the function of NF-«B in NSCs during
acute inflammation consists in the increase of prolif-
eration and in migration.

Inflammation, NF-xB and cancer

Inflammation is prerequisite for wound healing, elim-
ination of infections and regeneration after patholog-
ical situations via, inter alia, the migration, prolifera-
tion and differentiation of stem cells (see above). On
the other hand, cancer is associated with maladap-
tive chronic inflammation.

In the 19" century, Rudolf Virchov hypothesized
that chronic inflammation may cause several malig-
nancies including cancer [46—48]. Interestingly, one
of the most prominent inflammatory cytokines — TNF-
a (see above) — is known to activate NF-«kB strongly
in several experimental cancer models and to act as
a potent tumour promoter (reviewed in [9]). Brain
tumours were demonstrated to express TNF recep-
tors like TNFRI, TNFRII, DR6, Fas or Fn14 and the
TNF receptor associated signalling molecules con-
sisting of TRAIL-R1, TRAIL-R2, TRAIL, TRAF1,
TRAF2 and TANK/I-TRAF [49-56]. In addition brain
tumours express the chemokine receptors CXCR4,
CCR1, CCRS3, CCR5 and CCR2 [57-59].

The role of NF-kB in cancer development and pro-
gression has been extensively discussed ([8,16,
60—67]). In particular, the activation of NF-xB blocks
apoptosis via modulation of anti-apoptotic target
genes, such as c-IAP, bcl-2 and bcl-xL and mediates
tumour cell proliferation via up-regulation of targets
like cyclin-D1 and c-myc [51, 68—76].

It also induces resistance to chemotherapeutic
agents. In fact, numerous genes involved in tumour
initiation, promotion and metastasis are regulated by
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the NF-kB pathway (for review see [16, 63]). NF-xB
is constitutively active in most tumour specimens
described to date (reviewed in [16] and [9]).

NSCs and brain cancer

Cancer is defined as a progressive disease, typically
requiring initial mutations in proliferating cells.
Physiologically, proliferation is tightly controlled and
restricted to only a few cell types, including stem
cells. In this context it is noteworthy that the ‘immor-
tal strand hypothesis’ postulates that during the
process of self-renewing primitive stem cells retain
DNA strands with the fewest mutations acquired dur-
ing DNA replication [77]. These stem cells remain
primitive and divide slowly in asymmetric manner.
The second one, more differentiated daughter cell,
for example NSC divides fast. Thus, amplifying NSCs
potentially have time to accumulate genetic muta-
tions leading to tumour formation [78].

Recent studies on brain tumours have revealed
stem-cell-like tumour cell populations. Uchida et al.
described Nestin and Musashi-1 expressing cells
within an infant brain tumour; this tumour was also
positive for several immature neuronal and astrocyt-
ic markers [79]. Nestin — an intermediate filament
[80], and Musashi, a RNA binding protein [81, 82] are
very well-described markers for NSCs.

Hemmati et al. [83] isolated tumourigenic cells with
stem cell properties from paediatric brain tumours.
These neurosphere-forming, multipotent and self-
renewing cells could differentiate into neural and glial
lineages. Similarly, Tunici et al. [84] reported neu-
rosphere-forming tumour cells with neural stem/pre-
cursor cell properties. Recently, Lee and colleagues
found that TSCs derived directly from glioblastomas
harbour extensive similarities to normal stem cells if
they are cultured in basic fibroblast growth factor
(bFGF)- and epidermal growth factor (EGF)-contain-
ing media [85—-87].

These similarities include the formation of neu-
rosphere-like structures in vitro, self-renewal, termi-
nal differentiation into glial and neuronal lineage and
of gene expression profile similar to NSCs.

TSCs have also been detected in brain tumours,
such as ependymomas, glioblastomas and medul-
loblastomas (see [88] for review). Some reports pro-
vide evidence that neuroblastomas — embryonic can-
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cers of the neural crest — contain stem cell popula-
tions as well (see [89] for review). Moreover, Taylor
et al.[90] discussed radial glia as potential stem cells
for ependymomas in a recent review.

In summary, similarities between stem cells and
cancer stem cells have been demonstrated in cell
signalling pathways, differentiation and drug resist-
ance [91-93].

During inflammation, stem cells are believed to
switch from asymmetrical divisions that give rise to
differentiated progeny to rapid symmetrical divisions
resulting in an increased number of undifferentiated
stem cells (reviewed in [94]). Several reports show
that the molecular pathways regulating asymmetrical
division in stem cells control the orientation of the
mitotic spindle [95, 96]. The switch from asymmetri-
cal to symmetrical cell division may increase the like-
lihood of aneuploidy — a frequently observed phe-
nomenon in tumour cells.

Interestingly, Diamandis et al. [97] demonstrated
in a recent report that small molecules known to
affect neurotransmission pathways inhibit the prolif-
eration of NSC also have inhibitory effects on brain
cancer stem cell proliferation.

NF-xB target genes affecting
NSCs and tumour formation

In this review, we focus on NF-«kB targets regulating
cell-cycle, anti-apoptosis, cellular ageing and multi-
drug-resistance.

Several tumour specimens like malignant astrocy-
tomas, especially glioblastomas show elevated levels
of the c-myc proto-oncogene [51]. c-myc is a well-
described NF-kB target with functional «B-binding
site in its promoter region [98, 99]. In addition, in their
study Bouragel-Rey and colleagues demonstrated
that activated NF-«kB strongly induces c-myc [100].
Recently, Faria and colleagues showed a positive
correlation between c-Myc expression and the
histopathologial grade and the proliferative status of
astrocytic tumours [101].

Also, many human medulloblastomas express sig-
nificantly elevated levels of myc oncogenes correlat-
ed with worse clinical outcome [102—104]. The c-Myc
oncoprotein is well described to be a potent mitogen
for neural precursors in vitro and in vivo [105].
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Fig. 1 Neural stem cells (NSC) division in physiological situation and in acute inflammation. Physiologically, NSCs
proliferate slowly and asymmetrically generating more committed precursors or differentiated cells. In an inflammatory
environment, NSCs might start to proliferate rapidly and symmetrically in response to pro-inflammatory cytokines such
as TNF-a. The pro-inflammatory stimuli activate the transcription factor NF-«xB. After acute inflammation is attenuated,
NF-kB becomes deactivated and NSCs switch back to the asymmetrical mode of division.

In a recent study Xiaohua et al. showed that in
NSCs, an elevated expression of c-Myc and neural
restricted silencer factor (NRSF), a transcriptional
repressor of neuronal differentiation causes cerebel-
lar tumours [106]. Additionally, c-Myc enhances
sonic-hedgehog-induced medulloblastoma formation
from nestin-expressing neural progenitors [107].
Interestingly, TNF-a stimulated rat NSCs showed
highly elevated c-Myc expression compared to
untreated control (Widera et al. unpublished data).

All these data suggest c-myc to be one of the
NF-kB target genes responsible for induction of
tumours from NSCs in inflammatory situations.

A further NF-kB target gene known to trigger prolif-
eration of tumour cells is cyclin D1. Cyclin D1 has two
NF-kB binding sites in the promoter region. The stim-
ulation of the transcription of cyclin D1 by NF-«B

© 2008 The Authors

results in increased proliferation of several cell types
(reviewed in [108]). Similar to c-myc, Cyclin D1 is wide-
ly up-regulated in several brain tumours like menin-
giomas, olfactory neuroblastomas and gliomas and is
closely related to oncogenesis, proliferation of tumour
cells and worse clinical prognosis [76, 109, 110].

In contrast loss of cyclin D1 suppresses medul-
loblastoma formation [111]. The NF-«B induced up-
regulation of Cyclin D1 has been identified as one of
the crucial events in cell cycle progression of tumour
cells [75, 112].

In NSCs, Cyclin D1 seems to act in a similar man-
ner. TNF-a treated rat NSCs show highly up-regulat-
ed Cyclin D1 expression and significantly increased
proliferation compared to control cells [31]. This find-
ing is in accordance with the hypothesis that inflam-
mation activates the transcription factor NF-«xB
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Fig. 2 Model for the correlation between chronic inflammation, symmetric division of NSCs and cancer. In chronic
inflammation, NSCs are permanently exposed to proliferation-inducing stimuli such as TNF-a. The ensuing rapid pro-
liferation entails a much higher risk of mutation than slow cell division. Initial mutations could easily be propagated as
a result of the fast symmetric division. Secondary mutations then may lead to constitutive NF-kB activity, aneuploidy

and finally to cancer.

resulting in transcription of target genes that induce
proliferation. In contrast, dexamethasone induced
ubiquitination of Cyclin D1 or down-regulation of
Cyclin D1 by GATA2 led to decreased proliferation of
NSCs [113, 114]. Thus, cyclin D1 seems to be anoth-
er NF-kB target gene potentially responsible for
tumour formation and progression.

In addition to the deregulated cell cycle control,
several pathways regulating apoptosis are also dis-
rupted in brain tumours. Thus, malignant tumours
often show intense resistance to apoptosis. NF-kB is
known to directly activate the apoptosis inhibitors
Bcl-xL and Bcl-2. In tumours a positive correlation
between high expression of NF-kB and up-regulated
levels of the target genes Bcl-xL and Bcl-2 has been
demonstrated [69]. This phenomenon might partially
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explain the apoptosis resistance of tumours through
NF-kB driven induction of anti-apoptotic genes like
Bcl-xL and Bcl-2.

One problem of many brain malignant tumours is
their resistance to chemotherapy [115]. This observ-
able fact can be explained by the expression of ATP-
binding cassette (ABC) drug efflux transporters
(reviewed in [116] and [117]). Mutch and colleagues
clearly demonstrated that the ABC transporter
ABCB?2 contains a functional NF-«kB binding site in its
promoter region [118]. Cells expressing ABCG2 are
known to exclude Hoechst in flow cytometry, have
been called side population (SP) cells [119].
Furthermore, it has been demonstrated that putative
stem cells from solid tissues may also possess this
SP phenotype [120].
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A robust expression of ABC transporters ABCA2,
ABCA3, ABCB1 and ABCG2 in NSCs has been
described (reviewed in [121]). This fact suggests a
potential role of these NF-«B targets in tumour biology.

Conclusion

Inflammatory signals and conditions have been
described as inducing NSC proliferation via activa-
tion of the NF-kB pathway [31, 122-124].
Physiologically, NSCs proliferate slowly and asym-
metrically or rest in the GO-Phase of the cell cycle. In
an inflammatory environment, they start to proliferate
rapidly and symmetrically [94]. This may be attributa-
ble to the release of pro-inflammatory cytokines,
such as TNF-a from the injured tissue. In addition,
the expression of mitogens like FGF-2 is increased in
inflammation [125]. The expression of FGF and FGF
receptors seems to be crucial for symmetrical divi-
sion of embryonic and NSCs (self-renewal) [60—62].
Recently, evidence was provided that FGF-2 acti-
vates NF-«kB [63]. In addition, FGF-2 acts in an anti-
apoptotic and pro-proliferative manner through acti-
vated NF-kB [64, 65].

After attenuation of the acute phase of the inflam-
mation and a decrease in local concentration of pro-
inflammatory signals NSCs decrease their rate of
proliferation and proceed either to slow proliferation
or to the resting state (GO-Phase) (see Fig. 1).

In contrast, during chronic inflammation, NSCs
are permanently exposed to proliferation signals.
Fast proliferation holds a much higher risk of muta-
tion than slow cell division. These fast symmetric
divisions may promote the expansion of NSCs and
lead to aneuploidy (see Fig. 2). In rapidly proliferat-
ing NSCs, an initial mutation may be followed by
additional mutations that ultimately lead to transfor-
mation. If the mutations occur in proto-oncogenes
coding, for example for signalling molecules activat-
ing NF-«B, constitutive activity may lead to growth
factor-independent proliferation of the transformed
NSCs.

In fact, subsets of adult NSCs isolated from a
long-term culture might become independent of
exogenous growth factors. Such growth factor inde-
pendent cells still expressed typical stemness mark-
ers as well as migratory activity, identifying them as
stem cells. Moreover, these cells showed a constitu-
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tively high NF-kB activity and an aberrant, polyploid
DNA content (Kaus et al., unpublished data).

From our point of view, NF-kB may be one of the
most important regulators of brain tumour develop-
ment via NSCs and later via TSCs. A primary
physiological function of NF-kB may be to regulate
stem cell proliferation via transcriptional regulation
target genes like c-myc or cyclin D1 and their migra-
tion and differentiation. On the other hand, patho-
logically high activity of NF-«kB during chronic
inflammation may cause tumour initiation, progres-
sion and metastasis.
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