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Abstract

The increasing interest in nanoparticles for advanced technologies, consumer products, and
biomedical applications has led to great excitement about potential benefits but also concern over
the potential for adverse human health effects. The gastrointestinal tract represents a likely route
of entry for many nanomaterials, both directly through intentional ingestion or indirectly via
nanoparticle dissolution from food containers or by secondary ingestion of inhaled particles.
Additionally, increased utilisation of nanoparticles may lead to increased environmental
contamination and unintentional ingestion via water, food animals, or fish. The gastrointestinal
tract is a site of complex, symbiotic interactions between host cells and the resident microbiome.
Accordingly, evaluation of nanoparticles must take into consideration not only absorption and
extraintestinal organ accumulation but also the potential for altered gut microbes and the effects of
this perturbation on the host. The existing literature was evaluated for evidence of toxicity based
on these considerations. Focus was placed on three categories of nanomaterials: nanometals and
metal oxides, carbon-based nanoparticles, and polymer/dendrimers with emphasis on those
particles of greatest relevance to gastrointestinal exposures.
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1 Introduction

Nanoparticles (NPs), defined by the US National Nanotechnology Initiative as materials
having at least one diameter measuring 100 nm or less, are increasingly utilised in consumer
products. This review will focus on relevant parameters and current state of knowledge
regarding toxicity of ingested NP. This exposure route is highly relevant to human health as
there are numerous NP applications that directly or indirectly have potential for ingestion.
Such applications include flavour enhancers, food pigments, or health supplements (Hagens
et al., 2007; Bouwmeester et al., 2009; Wijnhoven et al., 2009; Frohlich and Roblegg, 2012).
Some non-edible products may shed NP over time — examples are nanosilver-coated
toothbrushes, food and drink containers, and even baby bottles and pacifiers (Benn et al.,
2010). Medical applications include oral drug delivery vehicles or therapeutic molecules
(Bisht et al., 2008; Cattani et al., 2010; Dhar et al., 2010). In addition to direct ingestion, a
proportion of inhaled particulate materials are eventually removed via the gastrointestinal
tract (GIT), after being mobilised up the trachea via the mucociliary escalator. Additional
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potential exposures include consumption of fish or shellfish that have accumulated NP due
to ingestion or absorption of contaminated effluent (Gaiser et al., 2009). Finally, certain NPs
have been considered as alternatives to growth-promoting antibiotics in animal agriculture,
which may affect tissue accumulation and microbial resistance profiles in food animals
(Fondevila et al., 2009).

Specific discussion of all NP with potential for ingestion is beyond the scope of this review.
Consequently, we will first discuss general features applicable to NP ingestion. These
include the structure and function of the GIT and the impact of NP physicochemical
parameters, dosimetry, dissolution, the gut mucus layer, and the protein corona on studies of
NP toxicity. Subsequently, we will specifically discuss NPs considered to be of high
likelihood for ingestion. These fall into three main categories — metals and metal oxides,
carbon-based materials (fullerenes and carbon nano-tubes), and polymeric/dendrimeric
engineered nanomaterials. Of these categories, metal NPs, in particular nanosilver, have the
highest potential for ingestion by the largest segments of human populations, due to their
increasing inclusion in dietary supplements and food packaging materials (Wijnhoven et al.,
2009; Frohlich and Roblegg, 2012). Carbon-based materials are more likely to pose
accidental or occupational exposure risks and polymers/dendrimers are more likely to be
utilised in biomedical applications, which are subject to pre-market regulatory scrutiny and
affect a smaller population.

One important category of ingested nanomaterials that will not be evaluated with respect to
toxicity in this review are nanoliposomes and related lipid-based compounds. Many
naturally occurring foods, including breast milk, contain liposomes, and engineered
liposomes used as flavour enhancers or facilitated nutrient delivery may be absorbed and
metabolised by similar routes (Mozafari et al., 2008). Since nanoliposomes have been the
topic of several recent reviews (Mozafari et al., 2008; Bouwmeester et al., 2009; Handy and
Shaw, 2007; Das et al., 2009) we will limit our scope to the engineered particles described
above.

2 The GIT and significant considerations for ingested NPs

2.1TheGIT

2.1.1 GIT organisation—The GIT is a selective mucosal barrier that represents a
considerable surface area, estimated at 200 m? in the adult human, for potential interaction
with ingested NP. Different species have anatomical and physiological differences that must
be considered when utilising animal models for ingestion studies (Kararli, 1995; McConnell
et al., 2008; Merchant et al., 2011). Each area of the GIT encompasses digestive, absorptive,
secretory, and protective functions. Potential outcomes of ingestion of NP include
absorption, by which NP can gain access to the blood and hence to other organs, local
interaction with the GIT mucosa including deposition and/or physical effects on motility,
and finally, effects on luminal components, including the mucus layer and the GIT
microbiome, which have critical roles in normal gut physiologic, metabolic, and immune
function (Mason et al., 2008; Hansson, 2012; Young, 2012).

All areas of the GIT are mechanically protected by epithelium and a layer of mucus of
variable thickness and composition that is produced by specialised gastrointestinal epithelial
cells. In the stomach, protein digestion begins by the activity of the protease pepsin. Pepsin
activation is dependent upon hydrochloric acid secretion by parietal cells within the mucosal
epithelium. The gastric pH varies with species and with diet and stage of ingestion. For
example, the gastric pH of the human stomach varies from 1.2-2.0 in a fasted state to
approximately 5.0 with a food bolus, followed by gradual re-acidification (McConnell et al.,
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2008). In mice, gastric pH in the fed state is lower (pH 3.0) than the fasted state (pH 4.0)
(Kararli, 1995; McConnell et al., 2008; Merchant et al., 2011).

The small intestine is the site of most nutrient digestion and absorption, including
carbohydrates, peptides, and fats. It also serves secretory and protective immune functions.
The pH of the duodenum is between 6-7 in humans (Evans et al., 1988) and 4-5 in mice and
rats (McConnell et al., 2008). The intestinal compartment is highly chemically and
physically complex. Absorption is facilitated by the increased mucosal surface area of
elongated villus folds lined by absorptive enterocytes. Each enterocyte has a fine apical
brush border (microvilli) that further increases surface area. The mucus layer is produced by
specialised mucus-secreting goblet cells. It contains mucopolysaccharides and glycoproteins
and provides a physical barrier to luminal bacteria, preventing them from reaching the
enterocyte surface. In the small intestine, the mucus layer also contains enzymes for
carbohydrate digestion and fat emulsion in preparation for nutrient absorption. Progressing
distally in the Gl tract, villus height decreases while goblet cell number and mucus
production increase. While most absorption takes place in the upper small intestine, the
distal small intestine and colon have specialised absorptive roles in water, B vitamin, and
fatty acid absorption (Kararli, 1995).

2.1.2 Immune function of the GIT—In addition to barrier and innate defences the GIT
has localised representations of the adaptive immune system in the form of gut-associated
lymphoid tissue (GALT) aggregates. In the small intestine, these are termed Peyer’s patches
and are most numerous and prominent in the ileum, the terminal portion of the small
intestine. These GALT foci represent sentinel sites for the adaptive immune system and
have a highly specialised structure (Mason et al., 2008). Luminal antigens enter through
specialised epithelial cells termed M cells at the surface of the mucosa. M cells transfer
antigen to antigen-presenting cells which process and present antigen to T-cells in the
GALT. T-cells become activated and direct B-cell generated production of antigen-specific
secretory immunoglobulins (sIgA) which are secreted onto the luminal surface. Activated T-
cells can also migrate to draining lymph nodes and direct development of cytotoxic T-cells
which migrate into the adjacent mucosa (Mason et al., 2008). In addition to the ileum, the
cecum (located at the junction of the small and large intestine) is also a significant
immunologically active site.

2.1.3 Commensal microbiota of the GIT—The functions of the GIT are facilitated by
microbial activity, which is tremendously increased in the cecum and colon. In humans the
gut microbiome has been estimated as weighing 1 kg in an average adult human and
consisting of up to 5,000 species (Zoetendal et al., 2004; Manson et al., 2008; Kim et al.,
2009b; Young, 2012). In both the mouse and the human, the majority of gut bacteria belong
to the phyla Bacteroidetes and Firmicutes, although there are host-species specific
differences at the genus level. More than 50% of intestinal bacterial are non-culturable and,
to capture these, newer techniques for evaluating gut microbial populations utilise non-
culture-based sequencing technologies (Zoetendal et al., 2004; Young, 2012). In the normal
gut, the overwhelming majority of bacteria are commensals that do not leave the lumen.
These organisms play critical functional roles in normal digestion and in the immunological
functions of the GIT. These include conjugation of bile acids, regulation of colonic
enterocyte health by production of the short-chain fatty acid butyrate, production of vitamins
B12 and K, detoxification (or toxification) of certain ingested drugs or plant toxins, and
maturation of the immune system (Manson et al., 2008; Mason et al., 2008; Atarashi and
Honda, 2011; Young, 2012). In addition to these host metabolic or immune influences, the
normal resident microbiota occupy a niche that might otherwise be exploited by a
pathogenic species (Walk and Young, 2008). There is increasing recognition that altered gut
microbes can influence host health in areas ranging from cancer risk (Canani et al., 2011) to
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xenobiotic metabolism (Clayton et al., 2009). Thus, there is a need for targeted toxicological
investigations of the influence of ingested compounds, such as NP, on the gut microbiome.

2.2 Significant considerations for ingested NP

Both biological features of the GIT and physicochemical features of NP impact
interpretation of NP ingestion studies. Particle size, surface area, particle number,
aggregation/agglomeration state, charge, and surface coatings are all likely to influence the
biological availability and effects of an administered NP (Oberdorster et al., 2005a; Abbott
and Maynard, 2010). With this in mind, a set of minimum nanomaterial characterisation
requirements for toxicology studies was recommended by the MINChar Initiative (2008).
These parameters include particle size and size distribution, agglomeration/aggregation
state, shape, chemical and surface composition, surface area/chemistry/charge, purity, and
stability. Oxidant generation and rate of dissolution will also impact absorption and
biological response (Castranova, 2011). For /n vivo studies, significant variation can be
introduced due to species, strain, diet, housing conditions, time of dosing, circadian rhythm
variations, and endogenous microbiota. Meticulous reporting of these parameters can
provide some measure of transparency and facilitate resolution of disparate inter-study
results. No consensus for reporting /n vivo experimental parameters in NP toxicity studies
currently exists, however, the Animal Research: Reporting In Vivo Experiments (ARRIVE)
(Kilkenny et al., 2010a, 2010b) guidelines and the /in vivo portion of the Metabolomics
Standards Initiative (Griffin et al., 2007) represent laudable efforts at standardisation of in
Vivo metadata.

2.2.1 GIT absorption—Translocation of particles through the intestinal barrier is a
multistep process that involves diffusion through the mucus layer, contact with enterocytes
and/or M-cells, and uptake via cellular entry or paracellular transport. As reviewed by
Frohlich and Roblegg (2012), the most common mechanism for uptake of NP into intestinal
epithelial cells appeared to be endocytosis (Frohlich and Roblegg, 2012). Mechanisms of
endocytosis include clathrin-mediated, caveolae-mediated, clathrin and caveolae-
independent, and macropinocytosis. It has been shown that polystyrene NPs are
preferentially taken up across M cells (des Rieux et al., 2007). Size influences absorption, as
shown by greater absorption of smaller (50 nm) polystyrene particles compared to larger
(100 nm) particles (Jani et al., 1990). The largest particles in this study (300 nm) were not
absorbed. Additionally, larger particles remained within the submucosa or GALT of the
intestine and colon, while smaller particles entered the bloodstream and accumulated in the
liver and spleen (Jani et al., 1990). Non-lymphoid areas can also be involved in NP uptake,
particularly with conjugation of nutrients or nutrient-like compounds. For example,
conjugation of tomato lectins (plant-derived glycoproteins) to polystyrene beads increased
absorption in non-lymphoid areas and decreased lymphoid detection (Florence et al., 1995).
Endotoxin adherence to the large surface area of NP is a common complication of NP
manufacture and may enhance pro-inflammatory pathways (Dobrovolskaia et al., 2009).

2.2.2 Dissolution—NP stability, dissolution, and release of potentially toxic ions are
dependent, in part, on fluid pH, composition, and duration of exposure (Xie et al., 2012). pH
variance within the gastrointestinal compartments can affect aggregation status (Peters et al.,
2012) and alter surface chemistry, particularly in NPs where zeta potential is highly
dependent on pH (e.g., chitosan) (Loretz and Bernkop-Schnurch, 2007). Understanding
parameters of dissolution in gastrointestinal fluids may help predict uptake and blood
concentrations. Limited work has been done in this area.Wang et al. (2008) exposed CdSe
quantum dots (QDs) with a ZnS shell to simulated gastric fluid (SGF) and NaHCO3
neutralisation. Here, SGF treatment increased QD cytoxicity, an effect reversed by
neutralising the SGF-treated QDs with NaHCO3. The authors postulated SGF mediated
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disruption of the ZnS shell, enabling dissolution and Cd++ toxicity. In contrast to most cell
culture systems, pH in vivo varies sequentially across different gut compartments and with
differing composition of ingesta. The impact of these changes are difficult to study /in vivo.
Recently,Walczak et al. (2012) used an /n vitro human digestion model to demonstrate that,
after gastric digestion, the number of 60 nm AgNPs decreased due to clustering and
interaction with chlorine ions, in the presence of protein. However, the particle number
increased again under intestinal conditions. Furthermore, soluble silver (AgNOy) also
formed silver NPs with chlorine and sulfur ions upon incubation at gastric pH.Peters et al.
(2012) showed similar findings in an /in vitro dissolution model of SiO,NP in foods. Here,
NP was present under conditions mimicking the oral cavity, but agglomerated under
conditions of low pH and high electrolytes, as in the gastric compartment (Peters et al.,
2012). Under intestinal pH, nanoparticulate silica reappeared, as with the Walczak AgNP
experiment. Thus, it is likely that the absorptive intestinal epithelium encounters lumenal
NP, at least for metals, however it is still unclear whether these are absorbed in the intestine
primarily as NP or in soluble form.

2.2.3 Mucus layer—Intestinal mucus, a complex network of highly branched
glycoproteins, lipids, cellular and serum macromolecules, is the first barrier through which
ingested NPs must pass (Crater and Carrier, 2010). Surface charge can play a crucial role
(Frohlich and Roblegg, 2012). Net neutral or positive surface charge prevents
mucoadhesion, favoring penetration, whereas passage of negatively charged hydrophilic and
lipophilic compounds is hindered. Small NPs also penetrate more easily than large ones.
Mucin interaction with adhesive NPs and larger particulates can disrupt the ‘bottle-brush’
architecture of mucus, possibly enabling penetration upon subsequent exposures (McGill
and Smyth, 2010; Wang et al., 2011). This is dependent upon particle type.Jachak et al.
(2012) found that metal oxide NPs and two types of SWCNTSs were trapped in human mucus
by adhesive interactions, not steric obstruction. In contrast, ZnO NPs rapidly penetrated
airway mucus layers, which may account for ZnO’s general toxicity.

2.2.4 Protein corona—Whether in the GIT or a culture microenvironment, NP will
develop a corona of adsorbed proteins, small molecules, and ions (Cedervall et al., 2007;
Faunce et al., 2008; Lundgvist et al., 2008; Monopoli et al., 2011). This association can
sequester nutrients, etc., complicating interpretation of cell culture results (Guo et al., 2008),
and create an ‘epitope map’, or complex biologically active entity that influences the /in vivo
response (Lynch et al., 2007; Monopoli et al., 2011). The effects of the protein corona are
variable. In some cases, cytotoxicity is reduced, perhaps by decreasing cellular NP uptake
(Jiang et al., 2010; Casals et al., 2011; Ge et al., 2011; Safi et al., 2011) or mitigating cell
membrane damage (Hu et al., 2011).Lundqvist et al. (2008) found that the protein corona on
50 nm carboxyl-modifed polystyrene NPs varied in relation to particle size and surface
modification. Highly abundant plasma proteins such as inter-alpha-trypsin inhibitors, serum
albumin, clusterin, and vitronectin were common to all coronas, while many less abundant
proteins varied across NP size and surface. In one study of polystyrene NPs in human
plasma,Zhang et al. (2011) were able to classified the NPs with respect to protein coating
based on size and surface properties of the parent particles. In addition, the protein corona
was demonstrated to be at equilibrium within 5 minutes of NP exposure. In an important /n
vitro study, citrate-capped Au NP-protein complexes formed in Roswell Park Memorial
Institute (RPMI) media were internalised in HeLa and U937 cells to a greater extent than
those from Dulbecco’s Modified Eagle’s (DMEM) media, resulting in higher cytotoxic
effects (Maiorano et al., 2010). Thus, variable coronal protein composition may lead to some
of the different biological effects of NPs that are otherwise identical (Lai et al., 2012). The
above studies emphasise the need for adequate characterisation of NPs, both before and after
exposure to culture media or biological fluids.
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2.2.5 Dose metrics: in vitro and in vivo—The dose metrics for NP are complex, as
particle number, surface area, and shape, and environmental factors (pH, chemical
complexity, protein corona) all complicate traditional mass- or concentration-based metrics
for /n vitro studies. Unlike soluble chemicals, NP can settle, diffuse, and aggregate,
significantly affecting the cellular dose. Defining and measuring ‘dose’ (e.g., dosimetry) for
NP in /in vitro systems is thus more complicated, and less comparable across NP types
compared to soluble chemicals (Teeguarden et al., 2007). Furthermore, this critical aspect
has been largely ignored (Teeguarden et al., 2007; Hinderliter et al., 2010), making the
extrapolation from /n vitro effects to /n vivo studies problematic in pharmacokinetic
modeling (Hinderliter et al., 2010). In most culture systems, NP deposition and consequent
cellular interaction is a function of gravity and NP diffusion, both of which are influenced
by NP size and density, concentration, and exposure duration (Teeguarden et al., 2007;
Hinderliter et al., 2010). In their /in vitro sedimentation, diffusion and dosimetry (ISDD)
model, Teeguarden et al. (2007) demonstrated that, for liquid-based /in vitro systems, the
dose-rates and target cell doses for all NPs were not equal. In fact, differences between
media NP concentrations on a ug/mL basis and actual target doses on the cell surface area
were three to six orders of magnitude. Accordingly, /n vitro hazard assessment using mass-
based exposure metrics may be highly inaccurate. Accurate NP dosimetry for /n vitro
toxicology studies thus requires direct experimental quantitation of NPs interacting with the
cultured cells. As an example, the cell dose of ZnO NP to alveolar type Il epithelial cells
was measured as NP aggregates per unit area using scanning electron microscopy to image
EM grids placed randomly over the cells before exposure (Xie et al., 2012). In this case, the
dose metric used for ZnO NPs was landed-aggregates per 20 um?, the size of a typical cell
(similar to counting red blood cells on a hemocytometer). Presumably, this clever approach
for accurate dosimetry could be adapted to intestinal epithelial cell culture studies to
improve Jn vitro hazard assessment.

In contrast, in vivotoxicity studies for ingested NP currently remain fairly traditional in the
use of mass-based dosimetry (e.g., mg/kg). Although the appropriate dose-metric for
ingestion studies is not yet clear, discrepancies between individual studies may become less
significant when dose is compared on the basis of surface area, charge, or particle number
(Drake and Hazelwood, 2005; Oberdorster et al., 2005b, 2007; Maynard et al., 2010).
Knowledge of delivered NP dose on a target cell or tissue basis is also lacking in most /n
vivo studies. Although inductively coupled mass spectrometry (ICP-MS) can be used
quantitatively, this technique does not discriminate between particulate and soluble forms.
Recently, a combination of particle-induced X-ray emission (PIXE) spectroscopy and
inductively coupled mass spectrometry was used to identify intracellular deposits of ingested
TiO,NP in the digestive epithelium of a terrestrial isopod (model invertebrate) (Novak et al.,
2012). This experiment showed cytotoxicity (membrane destabilisation) on an individual
cell basis but no toxicity at an organism level. Further application of this and similar
techniques to mammalian NP ingestion studies might be beneficial in reconciling in vitro
and /n vivo findings and offer better estimation of the true delivered dose /n vivo. The recent
application of sedimentation field flow fractionation (sdFFF) to quantification of NP in
tissue also represents a step forward in measurement of delivered dose in tissue, however
this technique is not yet widely available for /n vivotoxicology (Deering et al., 2008).

2.2.6 Functional genomics and proteomics—Comprehensive analysis of differential
gene and protein expression can be used to derive molecular profiles indicative of exposure
or effect (Lemos et al., 2010; Van Hummelen and Sasaki, 2010; Kienhuis et al., 2011;
Veenstra, 2011). ‘Omic approaches to the 7n vitro assessment of NPs on Gl epithelial cells
have been limited to only a few investigations. Using a unique Caco-2 cell/M-cell co-culture
system,Bouwmeester et al. (2011) investigated the effect of Ag NP exposure on human
whole-genome gene expression. Despite the absence of overt cytotoxicity, 97 genes were
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significantly up-regulated by at least one treatment while none were down-regulated. Up-
regulated genes pertained to oxidative stress, AP1 activation, proliferation, (mitochondrial)
apoptosis, unfolded protein response and ER stress, cell structure, and response to chemical
stimulus. Nine metallothionein genes and genes encoding proteins essential to GSH
synthesis were also up-regulated. The authors concluded that Ag NP exposure resulted in a
generalised stress response and that Ag+ dissolution, not the Ag NPs, triggered the observed
effects. In another study (Moos et al., 2011), SiO,, Fe;03, Zn0O, and TiO, NP effects on
RKO and Caco-2 cell monolayers were investigated using whole human genome
oligonucleotide microarrays. Only ZnO NP (which underwent significant dissolution)
exposures were significantly cytotoxic with up-regulation of genes related to protein folding,
chaperone, and stress responses. Other up-regulated genes included those involved in
transition metal binding and Zn-finger containing proteins, suggesting an overlap between
transcriptional modulation and metal metabolism. When the Caco-2 cells were exposed to
soluble Zn, the genes involved in metal metabolism were induced but the genes involved in
protein folding were unaffected. Using CuO NP exposure in Caco-2 monolayers,Piret et al.
(2012), found increased 1L-8 (rod-shaped NP greater than spherical), heme oxygenase 1
(indicative of oxidative stress), and chemokine receptor CCR4, along with several other
chemokines and pro-inflammatory cytokines indicating a proinflammatory effect.

Protein expression analysis has been a staple tool for toxicologists for many years, due to the
well-known disconnect between gene expression (MRNA) and corresponding cellular
protein abundance (Maier et al., 2009; Yeung, 2011). Generally speaking, proteomics has
been used to generate differential protein expression profiles that explain the mechanism of
cellular responses to NP exposure. Most nano-related toxicoproteomic applications have
used two-dimensional gel electrophoresis (2-DE) (Rabilloud et al., 2010). Due to the
numerous limitations of the 2-DE approach, namely labour intensity and limited scope,
innovative mass spectrometry-based techniques (Helsens et al., 2011; Xie et al., 2011) have
emerged that enable broad-based relative and absolute quantitative comparisons of protein
expression. Furthermore, proteomic platforms using stable isotope label-free quantitative
mass spectrometry (LFQMS) (Neilson et al., 2011) have turned out to be proficient and
reliable. LFQMS has recently been applied to the assessment of NP effects (Blazer-Yost et
al., 2011; Teeguarden et al., 2011; Lai et al., 2012). Using an LFQMS approach,Lai et al.
(2012) reported the first extensive proteomic description of biological responses to
functionalised carbon nanotubes (f-CNT) in intestinal cells, where 2,282 unique proteins
were identified, quantified, and statistically compared. They found that exposure to even
very low levels of f-CNT (500 pg/mL) resulted in significant concentration-dependent
alterations in specific pathways and molecular/cellular functions.

3 Ingested NPs: Metals and metal oxides, carbon-based, and polymer/
dendrimers

3.1 Metals and metal oxides

3.1.1 Silver (AgNP)—Among the potentially ingested engineered NPs, much focus has
been placed on nanosilver. Silver salts and colloidal silver suspensions were commonly used
to combat infection prior to the development of modern antibiotics (CASRN, 1988; Drake
and Hazelwood, 2005; El-Ansary and Al-Daihan, 2009; Varner et al., 2010). With rising
concerns about antibiotic resistance, there has been a resurgent utilisation of silver as a
topical antiseptic and in wound dressings and medical products (Silver, 2003; Drake and
Hazelwood, 2005). Additional potential oral exposures could arise from water
contamination due to run-off and accumulation within food fish (Shaw and Handy, 2011).
AgNP and other metal NP are being considered as alternatives to therapeutic or growth-
promoting antibiotics in animal agriculture (Fondevila et al., 2009). There is very little
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information available on the efficacy, safety, and environmental or human health impact of
this proposed application.

3.1.2 Gold (AuNP)—Colloidal and nanoscale gold are increasingly utilised in medical
applications as imaging and therapeutic agents, particularly as anti-inflammatories and drug
delivery agents (Khlebtsov and Dykman, 2011). Gold has been used parenterally, topically,
and enterically in medicine as an anti-inflammatory in the treatment of rheumatoid arthritis
(Khlebtsov and Dykman, 2011). Currently, parenteral (injectable) administration of colloidal
gold is utilised infrequently due to immune sensitisation, dermatitis, and gastrointestinal
disturbance attributed to gold salts (Schuhmann, 1990; Epstein et al., 1991). Clinical
improvement without toxicity was reported with an orally administered tablet form of
colloidal gold (Abraham and Himmel, 1997). Over-the-counter oral preparations for
nanoscale or colloidal gold intended for human consumption are currently available (http://
www.nanotechproject.org/) although the true particle size parameters of these products are
not clear.

3.1.3 Titanium dioxide (TiO,NP)—TiO, NP are components of pigments, with a vast
array of consumer applications including cosmetics, sunscreens, paints, printing, plastics,
and food colorants (Trouiller et al., 2009; Weir et al., 2012). With the exception of food
colorants, these materials are not intended for direct ingestion, however, small amounts of
these products are likely to be ingested accidentally. Experimental evidence of pulmonary
carcinogenicity in rats led to classification of TiO, classification as a group 2B (“possibly
carcinogenic”) substance for humans, although epidemiological evidence has yet to support
this classification (Trouiller et al., 2009; Weir et al., 2012). TiO,NP are comprised of
varying proportions of different crystalline structures-namely rutile, anatase, or brookite. /n
vitro cytotoxicity depends on size (smaller particles being more toxic) and crystal structure,
with anatase having 100-fold higher cytotoxicity than rutile (Weir et al., 2012). The reported
total dietary intake of TiO, NP, in food varies with dietary habits and the assumptions used
in modeling. Some estimates of likely TiOoNP exposure are fairly low at 0.035 mg/kg/d (2.5
mg/person/day) (Frohlich and Roblegg, 2012). Others arrive at higher estimates with Weir et
al recently calculating TiOoNP intake in hard-coated candies and gums as 1-2 mg/kg/d for
children and 0.2-0.7 mg/kg/d for adults in the USA (Weir et al., 2012). For this reason,
public and regulatory attention is likely to increasingly focus on TiOoNP consumption, and a
shift of experimental emphasis to food-grade rather than the more experimentally available
industrial-grade TiOoNP has been recommended (Weir et al., 2012).

3.1.4 Other metallic NPs: silica (silicon dioxide, SiO5), CuNP, QDs—Other metals
also have potential for gastrointestinal exposure. The most prevalent is probably silica
(silicon dioxide, SiO,). Food-grade silica has traditionally been synthetic amorphous silica
produced in a variety of forms (pyrogenic, gel, sol, precipitate) and used as an additive for
clearing alcoholic beverages or as an anti-caking agent (Dekkers et al., 2012). Since this
material encompasses primary particles in the range of 10-100 nm, with likely aggregation
or agglomeration to larger sizes, some information on the likely properties of SiO,NP may
be extrapolated from studies of synthetic amorphous silica (Dekkers et al., 2012). The major
difference with engineered SiO,NP is the potential for production as a well-dispersed
preparation of nanoscale particles. Whether such preparations actually have different
pharmacokinetics or distribution /7 vivo compared to traditional food-grade SiO is not
known. In addition to their application as food additive, SiOoNP have been proposed as drug
conjugates for improved efficacy or delivery of therapeutically active compounds,
particularly for intestinal inflammatory conditions (Moulari et al., 2008).

Similarly to AgNP, copper nanoparticles (CuNP) have shown /n vitro antimicrobial efficacy
and have been proposed as antibiotic alternatives in human health and agriculture. CUNP are
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produced as industrial additives for lubricants, plastics, and metallic coatings, inks, and as
part of the anodes of lithium batteries (Chen et al., 2006). They purportedly have
antimicrobial properties when used as part of a coating (Chen et al., 2006).

QD semiconductors have been applied for research purposes as bioimaging and drug
delivery vehicles (Mohs et al., 2009). QDs typically consist of a crystalline core of metals or
metal complexes surrounded by a protective shell that conveys bioavailability. They can be
surface functionalised to improve solubility or other properties (Mohs et al., 2009). Most
literature involves /n vitro systems or parenteral administration (Hardman, 2006). Due to
quenching in an acidic environment, ingestion has not been a major route, although
improved stability by surface polymerisation is beginning to show promise in this area
(Mohs et al., 2009). Little is known about potential toxicity specific to ingestion.

3.2 Carbon-based nanomaterials (multi- or single-walled carbon nanotubes [MWCNTSs,

SWCNTSs])

Carbon-based nanotubes (CNTSs) have multiple electronics, aerospace, and computer
technology applications and investigationally as drug delivery vehicles (Bianco et al., 2005;
Lam et al., 2006). Ultrashort (< 80 nm), single-walled carbon nanotubes have potential for
imaging or radiotherapeutic applications (Kolosnjaj-Tabi et al., 2010). Carbon nanotubes
have been proposed for antimicrobial or antiparasitic therapeutics, some of which involve
oral administration (Prajapati et al., 2012). Additionally, there is potential for indirect or
accidental ingestion secondary to other exposures. Because inhaled, aggregated CNTs have
been associated with granulomatous inflammation in the lung and multiple organs, their
utilisation in biomedical applications has met with some concern. By manipulation of their
length and surface characteristics, it is hoped that adverse effects may be avoided. For
example, functionalisation of the surface of CNTSs increases their solubility and decreases
manifestations of cytotoxicity (Lam et al., 2006).

3.3 Polymer/dendrimers

Engineered polymeric or dendrimeric NPs hold promise as drug delivery devices and have
been the subject of recent reviews (Patri et al., 2002; El-Ansary and Al-Daihan, 2009; Malik
et al., 2011). These applications differ from environmental exposures in that they are likely
to have a smaller exposed population and are less likely to represent a chronic exposure.
Furthermore, because particles intended for biomedical use will need to undergo formal
regulatory evaluation and approval, they represent a lower overall risk to the general public.
Nevertheless, questions remain as to whether traditional toxicology and safety assessment
protocols for investigational new drugs or medical devices are suitable for the evaluation of
nanodevices as therapeutics (DeJong and Borm, 2008).

4 Study selection criteria for in vivo and in vitro toxicity

In light of the previous information, pertinent toxicology-related studies of NP oral exposure
were identified in the recent literature, focusing on metal NPs, carbon-based NPs, and
polymeric NPs. Available data from /n vitroand /n vivo studies were compiled after
exhaustive searches of publicly available databases including PubMed, Web of Science, and
the European Commission’s Nanohealth and Environmental Commented Database
(NHECD) using the names of the nanomaterials discussed above and the keywords
ingestion, gastrointestinal, oral, toxicity, nanotoxicity, /n vitro, in vivo, and NP. Names of
particular /n vitro cell culture systems were also queried. Criteria for study inclusion were
toxicity-focused studies using /n vivo or in vitro mammalian systems.

The primary selection criterion was a focus on toxicity and tissue distribution with respect to
ingested NP. A few efficacy studies were included where the endpoints were pertinent to
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toxicology (i.e., effects on gut microbiome). Most information was available for AgNP and
this material will accordingly be given most coverage. Other NP will be represented to the
extent permitted by the existing literature. For polymeric NP, most literature focused on
therapeutic efficacy, therefore for these materials only studies pertaining to toxicity were
included. Significant findings are presented below by study type (in vivo or in vitro) and
class of material.

5 In vivo studies of NP toxicity by ingestion
5.1 Metal NPs

5.1.1 AgNP—Ten studies in rodents using AgNP exposure by the oral route were identified
(Table 1). Nine of the rodent studies assessed tissue distribution and/or toxicity in healthy
animals (Cha et al., 2008; Kim et al., 2008, 2009a, 2010b; Jeong et al., 2010; Park et al.,
2010a, 2011; Loeschner et al., 2011; Hadrup et al., 2012) and one focused on modulatory
effects on inflammation in a colitis model (Bhol and Schechter, 2007). Six additional studies
of AgNP in domestic livestock (poultry and pigs) from agricultural science literature
focused specifically on AgNP as an alternative to growth-promoting antibiotics (Ahmadi,
2009; Ahmadi et al., 2009; Fondevila et al., 2009; Ahmadi and Kurdestany, 2010; Ahmadi
and Kordestany, 2011; Ahmadi and Rahimi, 2011). These were included because alterations
of the gut microbiome have toxicological implications due to their effects on host health and
xenobiotic metabolism (Bjorkholm et al. 2009). There are many reports on AgNP in non-
mammmalian species (Griffitt et al., 2008, 2009; Gaiser et al., 2009; Bilberg et al., 2010;
Hinther et al., 2010; Bilberg et al., 2011; Cowart et al., 2011; Croteau et al., 2011; Posgai et
al., 2011; Bilberg et al., 2012; McLaughlin and Bonzongo, 2012). These studies are
informative for environmental risks and accumulation in food species (e.g., food fish),
however, these studies were not directly analogous to ingestion exposures in mammals and
will not be discussed here.

The experimental animal data for AgNP ingestion should be considered in light of the
considerable historical information on ingested colloidal Ag [reviewed byVarner et al.
(2010)]. Colloidal silver generally ranges, on average, from 250-500 nm but consists of
aggregated smaller particulate Ag, some of which may be in the ultrafine range (< 100 nm)
(\Varner et al., 2010). Historically, bioavailability of ingested colloidal Ag has been
estimated at 10%, with retention of < 2% to 3% in body tissues. Elimination of the majority
of ingested material is via the faces, either directly or following biliary excretion (Armitage
et al., 1996; Drake and Hazelwood, 2005). Urinary excretion is typically very low (< 1%),
except at exceedingly high doses (Drake and Hazelwood, 2005). The adverse effects
classically associated with excessive Ag ingestion in humans are argyria and argyrosis.
Argyria refers to a bluish-grey pigmentation of the skin associated with absorption of
soluble Ag and its reduction and precipitation in skin and connective tissue. Argyrosis is a
similar pigmentation of the ocular tissues. Argyria has been associated with a calculated
total dose retention of between 1-8 g of Ag in tissue (CASRN, 1988; ATSDR, 1990; Brandt
et al., 2005; Varner et al., 2010). With consideration of bioavailability, this translates to a
lifetime oral exposure of 0.014 mg/kg/day as the lowest dose associated with argyria
(CASRN, 1988). This lifetime dose was used by the EPA to extrapolate an oral reference
dose (RfD) of 0.005 mg/kg/day (CASRN, 1988; ATSDR, 1990; Varner et al., 2010). The
oral RfD represents the maximal tolerated amount of silver that can be ingested on a daily
basis over a lifetime without adverse effects (argyria/arygyrosis). It should be noted that,
although argyria and argyrosis are considered ‘adverse’ effects, in most cases their clinical
implications are primarily cosmetic, as no major disease or functional deficits have been
convincingly associated with their occurrence. In a recent case report and literature review
of clinically evident argyria among users of over-the-counter dietary Ag supplements, there
were 15 case reports of argyria associated with ingestion of colloidal Ag or Ag salts
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(Bowden et al., 2011). Since these were clinical case reports involving over-the-counter
products, information about size, dispersion, or even an accurate dose level was typically
unavailable. Interestingly, the median onset of argyria in cases stemming from colloidal
silver was 20 months, while in a case arising from soluble Ag (AgNO3), the time of onset
was only 8 months (Bowden et al., 2011). This is consistent with experimental evidence
from animal studies that highly soluble Ag has higher bioavailability.

AgNP: tissue distribution: There are multiple AgNP ingestion studies focused on tissue
distribution (Kim et al., 2008, 2009a, 2010b; Park et al., 2010a; Loeschner et al., 2011).
Only one study (Park et al., 2011) was specifically designed to assess bioavailability, or the
fraction of administered dose reaching the systemic circulation. Additionally, these studies
are really assessing distribution or bioavailability of silver, as standard methods cannot
distinguish between Ag and AgNP in tissue. Nevertheless, the weight of evidence suggests
that both tissue distribution and bioavailability of ingested AgNP are low. There is indirect
evidence that AGNP may have lower bioavailability than ionic Ag. In a 28 day study of 14
nm PVP-coated AgNP administered at 12.6 mg/kg, 63% of the daily dose was eliminated in
the faces, compared to 49% of the daily dose of ionic Ag in the form of silver acetate
(AgOAC) (Loeschner et al., 2011). The one study designed to assess bioavailability found
that the majority of a one-time dose of citrate-capped AgNP (7.9 nm) in rats was eliminated
via the feces (Park et al., 2011). Bioavailability assessed directly using blood levels was
found to be < 5% of the daily dose. In both of these studies, there was evidence for biliary
excretion of AgNP.

With respect to distribution, Jeong, Kim, and Loeschner found histochemically detectable
Ag in the lamina propria of the intestine and along the small intestine surface using
autometallographic techniques (Jeong et al., 2010; Kim et al., 2010b; Loeschner et al.,
2011). This intestinal distribution corresponded to the highest Ag concentrations detectable
by ICP-MS (Loeschner et al., 2011). Thus, a portion of enterically absorbed Ag may
actually remain in the submucosal tissue of the intestine and never reach the systemic
circulation or visceral organs. This is a significant observation since intestinal
concentrations are not typically measured in most standard toxicity-focused distribution
studies. Distribution of ingested AgNP in extraintestinal tissues was very low in all studies
(ppb levels). The most common target tissues for accumulation in repeated dose studies
were kidney and liver. Although absorption seemed inversely proportional to particle size
(Park et al., 2010a), no studies directly compared particles of the same size with different
coatings. In studies using PVP or carboxymethlycellulose (CMC)-coated AgNP ranging
from 14 to 60 nm, kidney levels were slightly higher than levels in liver (Kim et al., 2008,
2009a, 2010b; Loeschner et al., 2011). Conversely, 7.9 nm citrate-capped AgNP showed
slightly higher accumulation in the liver, although all tissue levels were low (Park et al.,
2011). Of interest, Kim et al. (2008, 2009a, 2010b) repeatedly demonstrated that kidney
accumulation in female rats was higher than that in males, although the mechanism of this
finding is uncertain. Notably, in all studies the Ag detection methods used (ICP-MS,
autometallography) cannot distinguish the physical state of Ag, so whether it is absorbed
predominantly as intact AgNP or as ionic or molecular Ag is unknown.

In studies of tissue distribution in chickens administered up to 15 ppm AgNP in feed, the
highest tissue Ag concentrations were in muscle, at low concentrations (ppb range) (Ahmadi
and Kordestany, 2011; Ahmadi and Rahimi, 2011). A similar experiment in poultry given up
to 25 ppm of AgNP in water had comparable low Ag concentrations in muscle and liver
(Ahmadi and Kurdestany, 2010). Percent retention of total administered dose was not
evaluated. In contrast, in pigs administered up to 40 ppm AgNP in feed for 5 weeks there
was no retention in muscle and only minimal retention in liver (Fondevila et al., 2009). The
possibility of muscle retention in chickens is an important consideration, given that
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distribution into muscle is not typically evaluated in rodent toxicity studies and is a potential
source of human exposure in food animal species. Whether this finding is specific to avian
species and whether it is repeatable or relevant to human health risk bears further
investigation (Hadrup et al., 2012).

AgNP: toxicity: Adverse effects reported in AgNP oral dosing studies were mild and were
only evident at doses of 125 mg/kg and above. A lowest observed adverse effects level
(LOAEL) of 125 mg/kg in one 90d study using 60 nm AgNP in 0.5% CMC corresponded to
elevated cholesterol and cholestatic enzymes (alkaline phosphatase) and was accompanied
by biliary hyperplasia (Kim et al., 2010b). The same group found similar cholestatic enzyme
effects and slight hemoconcentration at 300 mg/kg with the same material in a 28d study in
rats (Kim et al., 2008). This suggests that the biliary system may be a target for Ag
accumulation or metabolism. The significance of these results is difficult to determine as the
elevated enzymes may simply represent increased biliary excretion activity (i.e., an adaptive
physiological response). Only one study evaluated adverse effects at a lower, more
physiologically relevant dose (Park et al., 2010a). In mice given 0.25-1 mg/kg citrate-
capped AgNP for 28 days, there were mild, dose-dependent increases in both serum pro-
inflammatory (IL-1, IL-6, IL-12) and anti-inflammatory (IL-10, TGFR) cytokines. B-cells
and IgE were also mildly increased. No histological alterations were found in this study and
the biological significance of these cytokine alterations is uncertain. No evidence of
genotoxicity was detected using micronucleus assay on bone marrow cells in rats
administered up to 1,000 mg/kg of 60 nm AgNP in 0.5% CMC over 28d (Kim et al., 2008).

Overall, evidence suggests that the likelihood for adverse effects on host tissues caused by
acute or subchronic oral administration of AgNP is quite low. This was true even in studies
using doses up to 100-1,000 mg/kg/d, which are 20,000-200,000x the EPA oral reference
dose (recommended maximal ingestion) of 0.005 mg/kg/day. Evidence of biliary
hyperplasia (Kim et al., 2010a) and distribution studies suggesting biliary secretion support
that, where adverse effects are present, the hepatobiliary system may be a focus. No adverse
renal effects were noted, despite the renal accumulation found in female rats as discussed
under tissue distribution (Kim et al., 2008, 2009a, 2010b).

Of note, only one rodent study evaluated effects of ingested AgNP on the gut microbiota.
Hadrup et al. showed 28 days gavage administration of 14 nm Ag-PVP or silver acetate did
not alter the balance and number of the two major bacterial phyla in the gut (Bacteroidetes
and Firmicutes), as determined by quantitative PCR of bacterial 16S rRNA genes (Hadrup et
al., 2012). In contrast, pigs fed a polydisperse mixture of 60—-100 nm AgNP at up to 40 ppm
for 14 days, showed decreased intestinal coliforms, as measured by culture (Fondevila et al.,
2009). This correlated with an increased rate of weight gain. Since the particles in the pig
study were larger, a possible explanation for these disparate results are that comparatively
more Ag remained within the digestive tract, in contact with the luminal bacteria, than in the
rat study which used 14 nm Ag. This bears further investigation in a single study with the
same species. Additional studies exploring selection pressure for Ag resistance in the face of
environmental exposure or direct ingestion of AgNP would also be helpful, particularly
considering that AgNP are being suggested as an alternative to antibiotics in some human
health (Percival et al., 2005) and animal agricultural applications (Fondevila et al.,
2009).Hadrup et al. (2012) found that the plasmid-borne silver resistance genes siRS, siP,
and s/ICBA were not altered in bacteria from silver-fed or control rats. Nevertheless, given
that this was a 28 day study and ‘real-world’ silver exposures are likely to be of longer
duration, additional investigation into this area is warranted.

Growth promotant and anti-inflammatory effects: Seven /n vivo studies specifically
addressed efficacy of AgNP with respect to growth rate or inflammation. These consisted of
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several food animal studies (Ahmadi, 2009; Ahmadi et al., 2009; Fondevila et al., 2009;
Ahmadi and Kurdestany, 2010; Ahmadi and Kordestany, 2011; Ahmadi and Rahimi, 2011)
and one rodent study (Bhol and Schechter, 2007). In chickens, there was no effect on growth
when AgNP were administered in feed and either no effects (Ahmadi, 2009; Ahmadi et al.,
2009) or a negative effect (decreased body weight, feed intake, lymphoid organ weight)
when AgNP were administered in water (Ahmadi and Kurdestany, 2010; Ahmadi and
Rahimi, 2011). In a study using a rat model of chemically induced colitis, there was
decreased inflammation and decreased gut inflammatory cytokines in rats given 40 mg/kg of
AgNP orally (Bhol and Schechter, 2007). This is in contrast with toxicity studies in rodents
showing serologically elevated levels of both pro- and anti-inflammatory cytokines (Park et
al., 2010a). Since serological cytokine levels may be quite variable and may not reflect local
activity in the gut, additional targeted studies may contribute to determining whether and
under what conditions ingested AgNP may have a net pro- or anti-inflammatory effect.

5.1.2 AuNP—Only a few studies have evaluated toxicity or tissue distribution of orally
administered AuNP (Table 2) (Hillyer and Albrecht, 2001; Dhar et al., 2010; Zhang et al.,
2010b). None of the identified studies specifically addressed bioavailability. One study
(Hillyer and Albrecht, 2001) extensively evaluated tissue distribution and identification of a
potentially novel means of NP entry into the body. AUNP were administered to mice in
drinking water at concentrations of 200 ug/ml over 7 days. Particles were visualised by TEM
and quantified by ICP-MS to determine distribution. Distribution was inversely related to
size, as the smallest particles (4 nm) were retained in the highest amounts and the largest (58
nm) were not detectable in any evaluated tissues. There were some differences in the
distribution between the smaller sizes (4-10-58 nm). For the 4 nm particles, the highest
amount was in the kidneys, for the 10 nm particles, the highest amount was in stomach, and
for the 28 nm particles, in stomach and small intestine. This suggests that the smallest
particles were better able to transit the intestinal mucosa while particles of increasing size
became adherent to or entrapped within the mucus layer or intestinal wall. TEM supported
these findings as 4 nm particles were observed transiting the mucosa at the sites of dead or
dying extruded enterocytes. Enterocyte apoptosis and extrusion is a normal part of
enterocyte turnover and it was posited that this route represents a unique paracellular uptake
mechanism by which the smallest NPs (or at least nanoAu) may be able to bypass
endocytosis. This was not observed for the 10 and 28 nm particles, although some
proportion must have transited the mucosa as evidenced by detectable levels in other tissues.
This study was also notable for the detection of particles in the brain albeit in very low
levels, which were again inversely proportional to size. Whether entry into the brain
involved paracellular routes, endocytosis, or another mechanism was not evident. The tissue
retention of AUNP was at very low levels, ranging from 4-75 ng/g in the tissues of the 4 nm
treated animals. This could not be directly assessed as a percent of total administered dose
since the AUNP were administered via ad /ibitum water consumption.

Two studies specifically evaluated adverse effects of oral administration of AUNP (Dhar et
al., 2010; Zhang et al., 2010b). AuNP were administered to mice or rats at doses ranging
from 0.138-2.2 mg/kg for 14-28 d (Zhang et al., 2010b). Adverse effects in mice included
decreased body weight and enlarged spleens with decreased peripheral red blood cells
beginning at 1.1 mg/kg. Gold NPs were also visualised by TEM in the red blood cells of the
high dose group (other tissues not evaluated). No significant differences in other organ
weight indices were noted and no deaths were reported. In this particular study, the finding
of AuNP in red blood cells coupled with decreased peripheral red cells suggests AuNP-
related hemolysis, particularly since hemolysis is a recognised off-target effect of
therapeutically utilised solubilised gold compounds (e.g., gold 111 dithiocarbamate) (Ronconi
et al., 2006). Rodents typically respond to red cell destruction by increasing extramedullary
hematopoietic activity in the spleen and an enlarged spleen was observed in this study,
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although this was not evaluated by histology or hematological parameters related to
hemolysis. In contrast to these findings, in a 28 day study of gum-stabilised AuNP oral
administration in rats at doses up to 300 mg/kg, there were no detectable adverse effects
(organ/body wt, histology, hematology, clinical chemistry) (Dhar et al., 2010). Red blood
cell or other tissue uptake were not evaluated /n7 vivoin the rats, although the gellan gum
particles were taken up /in vitro by fibroblast and glioma cell lines. The difference between
this study and Zhang’s results in mice could have several causes. Both studies used AuNP of
similar size as manufactured (13.5 and 14 nm) but the size as dosed was not clear. The dose
ranges were overlapping but different coatings were used — of note, the Zhang study, which
showed toxicity, used uncoated gold particles while the Dhar study, showing no toxicity,
used gum-stabilised particles.

All told, the limited current /n vivo information suggests that the toxicity of orally ingested
AUNP at therapeutic or biologically relevant doses is low, with only one study showing
adverse effects suggestive of hemolysis in one species (mouse) at doses of 1,100 ug/kg (1.1
mg/kg) (Zhang et al., 2010b). Nevertheless, given the demonstrated ability of small gold NP
to enter cells (Hillyer and Albrecht, 2001; Zhang et al., 2010b) and the known toxicity of
solubilised gold therapeutic agents (Ronconi et al., 2006), hemolysis should be kept in mind.
Tissue quantification, measurement of particle size as dosed, and correlation of tissue or cell
distributions with adverse hematological or histological findings would be helpful in better
defining risk or uptake mechanisms. Both /n vivo and in vitro approaches would greatly
benefit from direct comparison of AuNP with similar dose ranges of soluble gold controls.
This is necessary to determine whether the NP form decreases, increases, or has no impact
on toxicity of the parent element.

5.1.3 Titanium dioxide nanoparticles (TiOoNP)—Eight studies that experimentally
evaluated distribution or toxicity of ingested TiO,NP were identified (Table 2) (Wang et al.,
2007; Warheit et al., 2007; Duan et al., 2009; Trouiller et al., 2009; Bu et al., 2010; Zhang et
al., 2010a; Cui et al., 2011; Gui et al., 2011). These studies vary considerably with respect to
dose and characterisation of TiO,NP. Of note, not all identified the crystal composition
(anatase, rutile) of the dosed compound. Since the anatase crystalline form has higher
cytotoxicity than the rutile (Weir et al., 2012), this is a potentially significant omission. Two
studies used very high doses (up to 5,000 mg/kg) to identify potential target organs for
adverse effects (Wang et al., 2007; Warheit et al., 2007). One of these found no evidence of
cytotoxicity using 130 nm TiO,NP in single doses of up to 5,000 mg/kg in rats (Warheit et
al., 2007). The other cited liver and kidney toxicity in female mice only when dosed with 25
nm TiO, at 5,000 mg/kg (Wang et al., 2007). However, this claim was based predominantly
on minor elevations of ALT (liver enzyme) and BUN (urea nitrogen-renal biomarker)
(Wang et al., 2007). Although statistically different from control animals, the degree of
elevation does not appear biologically significant. Combined with the lack of elevation of
other liver parameters (AST, bilirubin, ALP), the lack of elevation of other renal parameters
(creatinine), and the lack of correlation between maximal tissue accumulation and reported
histological alterations, the occurrence of true renal or hepatic toxicity in this study is
uncertain. Studies of 5-6 nm TiO,NP orally administered to mice for 60-90 d at low doses
(2.5-50 mg/kg) reported dose-dependent accumulation in the kidney (Gui et al., 2011) and
liver (Cui et al., 2011) with elevation of some pro-inflammatory cytokines (Cui et al., 2011).
These lower dose studies are difficult to reconcile with the lack of alterations in the 5,000
mg/kg Warheit study. Potential explanations for the discrepancies in these studies could
include decreased absorption in very high doses (increased potential for aggregation in the
gut lumen). Additionally, the histological evidence of hepatotoxicity depicted in the images
of several of the studies is not convincing, nor are the nomenclature and diagnostic criteria
described (Wang et al., 2007; Duan et al., 2009).
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Several TiO,NP utilised interesting approaches to potential metabolic or genotoxic aspects
of TiO,NP toxicity. One study evaluated urinary and serum metabolite alterations in rats
dosed with TiO,NP of < 50 nm at 1,000 mg/kg (Bu et al., 2010). Several altered urinary
metabolites were detected. These included compounds indicative of a ketogenic state
including elevated ketone bodies (3-D-HB) and ketone body metabolites (acetate).
Additionally, there were elevated gut microbe-derived metabolites (PAG, hippurate) similar
to those seen in studies using antibiotic-treated animals. This suggests that gut microbes may
be affected. Since TiO,NP have been investigated as a solid-phase extraction agent for
removal of lead or other heavy metal contaminants from water (Zhang et al., 2010a), TiO,
and lead acetate (PbAC) in saline suspension were evaluated for individual and potential
synergistic toxicity (Zhang et al., 2010a). There was synergistic elevation of reactive oxygen
species in liver in combination with liver necrosis. Although tissue retention with respect to
total dose was not calculated, the highest distribution was to the liver and was highest for the
combined dose (TiO, and PbAC) group in comparison to the individually dosed groups. In
light of the recent classification of microscale TiO, as a potential carcinogen, an in vivo
genotoxicity study was performed using industrial-grade (P25) TiO,NP in drinking water
(Trouiller et al., 2009). This compound was supplied during gestation to mice genetically
engineered for mutagen-induced instability in the pink-eyed dilute gene (C57BL/6Jp!"/un)
(Trouiller et al., 2009). The offspring of these mice were found to have elevated DNA
deletion events and DNA oxidative damage in the high dose group. DNA strand breaks were
increased in a dose-dependent manner. DNA instability in /n vitro assays has been variable,
and this /n vivo study is difficult to interpret with respect to human health risk. Nevertheless,
it suggests that potential for genotoxic effects in sensitive populations, such as foetuses in
the period of organogenesis.

5.1.4 Other metal or metal oxide NPs: SiO,NP, CuNP, and QDs

SiOoNP:_/n vivo studies focused on toxicity of ingested of nanoscale silica were not
available. One study focused primarily on silica NP efficacy as a drug carrier for 5-
aminosalicylate (5-AS) in a chemically-induced mouse model of colitis (Moulari et al.,
2008) (Table 2). The dose of silica was not defined in this efficacy-focused study, although
the complex 5-AS-SiO,NP was well toleratedat doses up to 100 mg/kg for 6 days. The
complex deposited in inflamed tissue but further distribution was not reported (Moulari et
al., 2008). Some information can be extrapolated from earlier work on synthetic silica in
food.Dekkers et al. (2012) used information from the limited studies of SiO, and
extrapolated information from studies of synthetic amorphous silica to suggest that less than
1% of the mass dosed is recoverable from tissues. Insufficient information is available to
determine whether there is a significant difference in toxicity between orally administered
SiO,NP and traditional forms of food-grade SiO,, or whether there is size-dependence for
absorption as with Au or TiO,. From the colitis efficacy study, there is evidence that SiO,
may have lumenal effects and may target to sites of inflammation (Moulari et al., 2008).

CuNP: Three toxicity-focused studies of CUNP were found (Chen et al., 2006; Han et al.,
2010, 2011) (Table 2). In a maximum tolerated dose study of 23.5 nm copper orally
administered to mice, the oral LDsg for CuNP was 413 mg/kg, as compared to 5,610 mg/kg
for microCu (17 um) and 110 mg/kg for ionic Cu (from CuCly,) (Chen et al., 2006). The
physical findings associated with CuNP were similar to those of classical Cu toxicosis in
mammals and included renal tubular necrosis accompanied by dark brown to black renal
pigmentation. The latter is typically associated with hemoglobinuric casts arising from
intravascular hemolysis in Cu toxicosis, although hemolysis was not assessed in this study.
These results indicates that ionic Cu and CuNP are most bioavailable and have similar
adverse effects while micro-Cu is much less bioavailable than either CuNP or ionic Cu.
Disparities in tolerated dose between microCu and ionic or CUNP may be less pronounced
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when compared in terms of other relevant metrics such as the proportion of ionised Cu in
CuNP vs. microCu. The proportion of ionic Cu in the nanoscale prep on an as-fed basis or in
the GIT is not known.

Cu has been advocated as an /n7 vivo antimicrobial. One group evaluated microbial
populations using Cu complexed to chitosan NPs and administered to rats in feed (Han et al.,
2010, 2011). This combination was found to decrease cecal pathogenic bacteria (e.g.,
Salmonella, E. coli, Clostridium), increase beneficial bacteria (e.g., Lactobacilli) and,
potentially, facilitate nutrient utilisation by increased secretion of digestive enzymes (Han et
al., 2010, 2011). The specific dimensions of the Cu-chitosan NP were not given and is
unknown if the complex remained intralumenal or was absorbed, as tissue residues were not
determined. No clinically evident adverse effects were noted in the rats in this study.

Quantum dots: Only one toxicity or distribution-focused study of ingested QDs was found
(Loginova et al., 2012) (Table 2). QDs, consisting of CdSe-cored particles with ZnS caps
were evaluated for stability in the GIT. Standard coatings of thiol groups (polyT) or
mercapto residues (MPA) resulted in rapid degradation and loss of surface characteristics.
Interestingly, when coated with a combination of polythiol groups and silica (PolyT-APS),
the particles were protected from degradation (Loginova et al., 2012). No adverse effects
were noted (single administration) and the particles were detected only within the GIT.

5.2 Carbon-based NPs: MWCNTs, SWCNTs

Five toxicity-focused studies of ingested carbon-based NPs were identified (Table 3)
(Szendi and Varga, 2008; Folkmann et al., 2009; Kolosnjaj-Tabi et al., 2010; Lim et al.,
2011; Philbrook et al., 2011). In inhalation studies and in cell culture experiments, CNTs
have been associated with granulomatous inflammation, oxidative damage, and
mutagenicity, and the ingestion studies used one or more of these parameters as endpoints.
In rats with gestational oral exposures (d6-d19) to MWCNT (10-15 nm diameter, 20 um
long), the NOAEL was determined as 200 mg/kg/d (Lim et al., 2011). At higher doses, there
were slight decreases in thymic weights (which can be a direct lymphoid effect or a non-
specific indication of stress). No altered reproductive parameters (foetal resorption, litter
sizes, malformations) were noted and there was no detection of oxidative damage markers in
urine. In contrast, reproductive parameters were altered in a study of functionalised
(hydroxylated) SWCNT (1-2 nm diameter, 5-30 um length) administered to mice on
gestation d9. Here there were increased foetal resorptions and increased foetal skeletal and
ocular anomalies at 10 mg/kg (Philbrook et al., 2011). In the same study, there were no
adverse effects on reproductive parameters in mice administered a higher dose of 100 mg/kg
(Philbrook et al., 2011). A postulated cause for this seemingly anomalous result was that
higher concentrations might be more likely to aggregate or agglomerate in the intestine,
impeding absorption (Philbrook et al., 2011). This highlights the difficulty in comparing
standard mass-based (as dosed orally) dose metrics to CNT toxicity studies, since the ideal
parameter to measure would be dose delivered to target cells. The potential for different
effects in the intestinal and extraintestinal compartment is illustrated in another study using
much smaller doses (0.064 and 0.64 mg/kg) of SWCNT (0.9-1.7 nm, < 1 um length)
administered as a one-time dose to rats (Folkmann et al., 2009). Here, there was
significantly elevated oxidative DNA damage, assessed as tissue levels of 8-o0xo-dG, in liver
and lung but not colon. In the same study, rats given were given the same doses of C60
fullerenes (234 to 3,124 nm), resulting in elevated levels of 8-0x0-2’-deoxyguanosine(8-
0x0-dG) in the liver at both doses but in the lung only at the high dose. Colon 8-oxo-dG was
not observed. Of note in this study, the primary particle lengths were lower (< 1 pm) in
comparison to those of the previously described studies (up to 30 um), which may have
influenced absorption. In contrast, no mutagenicity (measured by Salmonella mutagenicity
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test on urinary adducts) was detected in rats given higher doses (50 mg/kg) of SWCNT or
MWCNT up to 30 um diameter and 15 um long (Szendi and Varga, 2008). Finally, an
extremely high dose (1,000 mg/kg) of SWCNT administered to orally to mice showed no
toxicity irrespective of fibre length (20 nm up to > 1 pm) (Kolosnjaj-Tabi et al., 2010). The
same study showed granuloma formation in multiple organs when SWCNTs of all fibre
lengths were administered by intraperitoneal injection. In the orally dosed mice, absorption
was not measured, but the lack of histological lesions in comparison to the IP dosing
suggests that absorption was very low. Although not specifically measured in this study, this
would be consistent with the studies describing increased aggregation or agglomeration (and
hence decreased absorption) with increasing dose concentration.

These studies suggest that oral absorption of carbon-based NPs may be facilitated by low
doses, low particle length, and potentially, functionalisation. These properties could perhaps
be differentially exploited in situations where absorption is desirable (certain biomedical
applications) and in those where it is undesirable (environmental or technological
applications). With respect to traditional toxicology testing of ingested materials, it will be
challenging to precisely define the dose-responsiveness of measured endpoints for CNTSs,
since aggregation/agglomeration of the dosing suspension were reported in all studies.
Aggregation or agglomeration depends on functionalisation, vehicle, nanomaterial, and
concentration, as well as variable characteristics of the Gl tract (pH, ingesta, microbiota).
Additional studies directly comparing varying particle parameters (e.g., functionalised vs.
non-functionalised, or 1 pm length vs. 20-30 um length) and administered at different
concentrations would be helpful.

5.3 Polymer, dendrimer NPs

There has been an explosion of studies exploring the feasibility of dendrimers as drug
delivery devices (reviewed by Malik et al., 2011; Patri et al., 2002; EI-Ansary and Al-
Daihan, 2009; Malik et al., 2011).Much of the evaluation of these NPs in the academic
literature is focused on efficacy, with toxicity, adverse effects, or the lack thereof remarked
upon only secondarily. While safety evaluation of these NPs is conducted in the contract
research and pharmaceutical arenas, these results are typically not published. An efficacy
study in a mouse model of exocrine pancreatic cancer included toxicity parameters and is
included here (Bisht et al., 2008) (Table 3). Experimentally, polymer-based delivery of
rapamycin by the oral route was well-tolerated in mice at doses up to 500 mg/kg with no
adverse effects and apparent therapeutic efficacy (Bisht et al., 2008). The safety and efficacy
of orally-administered polymeric delivery systems will depend greatly on the physical
properties such as surface charge and surface functional groups [reviewed byPatri et al.
(2002), and DeJong and Borm (2008)]. Although /n vivo dosing studies in intact animals
focused on toxicity were scarce, in an everted intestinal sac explant system from rat, anionic
PAMAM dendrimers had rapid trans-serosal absorption and deposit in tissue at low levels
that correlate with increasing molecular diameter (larger dendrimers depositing at higher
levels than smaller) (Wiwattanapatapee et al., 2000). This is an interesting contrast to the
metallic NPs and the CNTSs, which have greater absorption of smaller diameter particles.
Cationic PAMAM dendrimers have lower absorption due to adherence to negatively charged
cell membranes of the gut epithelium (Wiwattanapatapee et al., 2000). In a similar rat gut
explant study using lipid core NP for delivery of indomethacin, the NP was degraded and
the core exposed in the gut lumen, indicated by metabolic conversion of indomethacin in the
lumen prior to absorption into blood (Cattani et al., 2010). Thus, for compounds in which
toxicity or activity is dependent on metabolic activation, the bioavailability may be variable
depending on the NP carrier and the microbial composition of the gut, which includes
organisms capable of phase | and Il drug metabolism.
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6 In vitro studies of NP toxicity

6.1 In vitro model systems

In vivo studies have given us some sense of the possible target organs and potential effects
of ingested nanomaterials. Nevertheless these consequences remain uncertain and
impossible to predict without some investigation of mechanism, which requires relevant /n
vitro models. /n vitro models for simulating the effects of NP ingestion will be presented
here. Relevant studies are listed in Table 4. /n vitro models do have their limitations.
Because cells in isolation suffer from reduced survival, disrupted metabolic competence,
reduced cell-cell interaction, disrupted organ topology, and absence of tissue
communication, /n vitro exposure systems may fail to accurately reflect /n vivo responses
(Eisenbrand et al., 2002).

To overcome these limitations and improve physiological relevance with respect to the
gastrointestinal system, multicell cultures that incorporate mucosa-resident cells in addition
to barrier epithelia, e.g., mucus secreting goblet cells (Walter et al., 1996; Mahler et al.,
2009), M cells (Bouwmeester et al., 2011), and even immunocompetent macrophages and
dendritic cells (Leonard et al,. 2010) are available. These developments significantly
increase the utility of the /n vitro intestinal model (Liebsch et al., 2011).

Thirty-one studies whose primary aim was to assess the potential toxicity of many different
types of NPs in intestinal cell culture models were identified in the literature and are
summarised in Table 4. A limited number of /n vitro toxicology studies of NP exposure in
GI models have been identified that utilise the above approaches and other methods.
Additionally, other potentially relevant studies focused on intestinal absorption and transport
functions but also monitored cell viability, paracellular permeability, and/or monolayer
integrity as evidence of cytotoxicity.

6.2 Metals and metal oxide NPs

With respect to nanometals, /n vitro Ag NP exposures have been studied using
concentration-based dose metrics no greater than 50 pg/mL and durations no greater than 24
h. Metal ion toxicity associated with metal NP exposure was observed for spherical Ag NPs
(Bouwmeester et al., 2011) where 6% to 17% of the silver NPs were found to be dissociated
into silver ions.Lamb et al. (2010) used luciferase reporter-engineered Caco-2 (MDR1.C)
cells and found Ag NP to exert cytoxicity with an LDsg of 5 pg/mL, though Ag ion
dissolution was not determined. By contrast,Gaiser et al. (2012) observed no Ag NP-related
cytotoxicity in Caco-2 monolayers and Ag ion dissolution < 1%. This supports speculation
from /n vivo studies that toxicity increases with increasing dissolution.

Alkilany et al. (2009) found that Au nanorods capped with the surfactant
cetyltrimethylammonium bromide (CTAB) were cytotoxic to HT29 cells. However, this
effect was found to be due to free CTAB, rather than the NPs, in a manner similar to the
contribution of metal catalyst contaminants in unrefined carbon nanotube toxicity. When
micron-sized vanadium oxide (VO) powder and ethylene diamine intercalated vanadium
oxide were compared to VO nanotubes, only the nanotubes caused a significant loss in
Caco-2 cell viability.

In contrast to AgNPs or other particles where toxicity corresponded with increased ion
dissolution (De Berardis et al., 2010; Piret et al., 2012), Moos et al. (2010, 2011) found that
ZnO toxicity related to particle contact with the cell surface independent of soluble Zn. In
other metal oxide studies, significant cytotoxicity was observed, but the contribution of free
metal ions was not considered (Gerloff et al., 2009; Koeneman et al., 2010; Rhoads et al.,
2010; Rodriguez-Luccioni et al., 2011).
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In many of the studies mentioned above, metal NPs were found to be internalised readily by
the intestinal cells. Intracellular dissolution of metal and metal oxide NPs, after
internalisation, with resulting intracellular release of ions also may account for observed
cytotoxic effects through a so-called “Trojan horse effect’ (Navarro et al., 2008; Johnston et
al., 2010; Park et al., 2010b; Frohlich and Roblegg, 2012). Whereas metal ion quantitation in
culture media is readily feasible and frequently determined, cytosolic levels may be more
difficult to assess and largely have been ignored.

Two studies have investigated the effect of CdSe QDs on Caco-2 monolayers. In the first of
these (Wang et al., 2008), acid treatment simulating QD exposure to gastric juice increased
the toxicity of PEG coated QDs, by removing the coating and enabling dissolution. In the
other study (Koeneman et al., 2009), QDs coated with hydrophilic thioglycolate capping
ligands caused Caco-2 monolayer disruption and cell death at 0.1 pg/mL. The authors
concluded that cytotoxicity was caused by the 15 nm QDs rather than the Cd++ or sodium
thioglycolate. Large aggregated QDs (500 nm) had no adverse effects.

Zha et al. (2008) compared the absorption efficiency of chromium NPs, chromium
picolinate, and chromium chloride in Caco-2 cells. Monolayer integrity was monitored by
trans-epithelial electrical resistance (TEER) measurements and transcellular mannitol flux.
Measurable decreases in TEER reflect reversible opening of tight junctions in intestinal
epithelia and have been used to indicate impaired cell barrier. Using a concentration range of
0.2-20 umol/L, the authors found that while the transport of chromium NP, picolinate, and
chloride across the Caco-2 cell monolayers occurred mainly via passive transport, chromium
NPs exhibited significantly higher absorption efficiency. None of the materials altered
monolayer integrity.

6.3 Carbon-based NPs

As listed in Table 4, several studies investigated the effects of various carbon-based
nanomaterials, including carbon black (CB), single-walled carbon nanotubes (SWCNT), and
multi-walled carbon nanotubes (MWCNT). The nanotube exposures also included those
with or without functionalisation, all with very different dimensions, and some using
dispersants. The carbon nanomaterials were used to treat either Caco-2, SW480, and HT29
cells or Caco-2/HT29-MTX cells in co-culture. In general and in contrast to the nanometals,
oxides, and QDs mentioned above, carbon nanomaterial exposure had little adverse effect in
Caco-2 cells or co-culture. Using an HT29 cell monolayer,Pelka et al. (2011) dispersed
SWCNTSs with sodium cholate (0.02%) resulting in finely dispersed exposures. Significant
cytotoxic effects were noted at low-level exposures (pg and ng/mL), although in many
assays, cells were exposed after only a day or two after plating. Typically, these cells (as
well as other intestinal epithelial cells such as Caco-2) require at least 14-21 d to fully
polarise and form tight junctions (Chantret et al., 1988; Cohen et al., 1999), essential for
TEER measurement.

At 48 h, HT29 cells form a multilayer of non-polarised cells that display an undifferentiated
phenotype and are thus not representative of an intestinal epithelial barrier. It may be for this
reason that they were susceptible to the effect of SWCNTSs. A similar approach was taken in
other studies using Caco-2 cells (Chiaretti et al., 2008; Kulamarva et al., 2008; Zhang et al.,
2008; Ponti et al., 2010). Only two studies investigated fully differentiated and polarised,
post confluent Caco-2 cells (Jos et al., 2009) and Caco-2/HT29-MTX co-cultures (Lai et al.,
2012) where no toxic effects were observed below 100 pg/mL exposures. Studies of other
NPs where fully differentiated cell monolayers were used have been indicated as such in
Table 4.
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Coyuco et al. (2011) explored the potential of functionalised carbon nanomaterials for
potential oral drug delivery in Caco-2 cell monolayers, using polyhydroxy small-gap
fullerenes (OH-fullerenes), carboxylic acid functionalised single-walled carbon nanotubes
(SWCNT-COOH) and poly(ethylene glycol) functionalised single-walled carbon nanotubes
(SWCNT-PEG) in a concentration range of 15.6-1,000 pg/mL and 24 h of exposure. Of the
three carbon NPs studied, SWCNT-COOH was associated with greatest inhibition of efflux
pump activity through inhibition of the P-glycoprotein (P-gp) efflux system, resulting in
increased cellular accumulation of the pump substrate, rhodamine-123. SWCNT-COOH also
caused the greatest modulation of the tight junctions through perturbation of zonulin-1
distribution, a tight junction marker protein,as indicated by fluorescence imaging,
significantly reduced TEER and enhanced Lucifer Yellow flux. These findings were viewed
as evidence that SWCNT-COOH NPs could be useful modulators for oral drug delivery by
enhancing paracellular permeability via disruption of tight junctions. However, these
alterations could also be viewed as significant breaches in monolayer integrity — a potential
adverse effect. However traditional cytotoxic endpoint measurements, LDH leakage and
MTT assay, showed no cellular effects at any dose.

6.4 Polymeric NPs

Most /n vitro studies of polymeric NPs have focused on NP-assisted absorption and systemic
drug delivery of orally administered therapeutics. The majority of these studies have used
the Caco-2 cell monolayer model. For example, polyamidoamine (PAMAM) ‘dense star’
dendrimers are a class of hydrophilic polymers with both anionic and cationic surface
charge, nanometer diameters, and potential as drug carriers for transepithelial transport and
delivery of therapeutics. El-Sayed et al. (2002) investigated the effect of 3.5 h exposures to
neutral surface charge PAMAM-OH or anionic PAMAM-COOH at concentrations of 0.1,
1.0, or 10 mM on junctional integrity as measured by TEER, paracellular permeability
(mannitol permeance), and viability (membrane integrity via LDH leakage) in Caco-2 cell
monolayers. TEER decreased in a dendrimer concentration- and diameter-dependent manner
for only large diameter, anionic dendrimers. This apparent decline in monolayer integrity
was also reflected by increased mannitol permeability and cytotoxicity as indicated by loss
of cell membrane integrity and LDH leakage.

Surface modifications were evaluated in a similar study (Jevprasesphant et al., 2003). Here,
PAMAM dendrimers and surface-modified cationic PAMAM dendrimers were compared
with respect to cytotoxicity, permeation, and transport mechanisms in Caco-2 monolayers.
After 3 h of exposure to concentrations ranging from 0 to 1 mM, permeation of dendrimers
and cytotoxicity (measured by the metabolic activity assay MTT) increased with both
concentration and generation (diameter). They found that the cytotoxicity of cationic
dendrimers was greater than that of anionic dendrimers and was significantly reduced by
conjugation with lauroyl chloride. In terms of Caco-2 barrier integrity, cationic dendrimers
decreased TEER and significantly increased the paracellular permeability of mannitol.
Modified dendrimers also reduced TEER and caused a greater increase in mannitol
permeation. The authors concluded that lipidmodification of PAMAM dendrimers may
improve the safety and efficacy as drug delivery systems. Cytotoxicity attributable to surface
modifications were also detected in a study of ornithine and arginine conjugated PAMAM
(200 ug/ml) in a porcine intestinal primary cell line (IPEC-J2) (Pisal et al., 2008). Here,
surface modified PAMAM were more permeant, decreased TEER, and were slightly more
toxic in terms of percent cell viability than unmodified PAMAM.

Other therapeutic strategies under investigation include mucoadhesive polysaccharide
chitosan-based micro/nanoparticulate drug delivery systems. Chitosan ([1-4]2-amino-2-
deoxy-B-D-glucan) is an abundant natural polycationic polymer, an N-deacetylated product
of chitin. Chitosan derivatives stabilise and improve delivery of therapeutic peptides in the
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GIT. Several studies have investigated various chitosan NP formulations in Caco-2 cells
with similar conclusions (Thanou et al., 2000; Silva et al., 2006; Korjamo et al., 2008;
Kowapradit et al., 2008; Kudsiova and Lawrence, 2008; Martien et al., 2008; Sadeghi et al.,
2008; Jia et al., 2009; Sonaje et al., 2009; Kowapradit et al., 2010; Saremi et al., 2011,
Zheng et al., 2011). Using various cell viability measures, all of these studies documented
chitosan particle-mediated decreases in TEER, increases in tight junction permeability, and
enhanced absorption without evident adverse effects on the intestinal monolayers. Chitosan
nanocapsules associate with the apical side of both Caco-2 and HT29 model cell cultures,
with preference for the mucus-secreting HT29 cells (Prego et al., 2006). The physiological
implications of this phenomenon are unclear. When trimethyl chitosan chloride (TMC) and
TMC-goblet cell targeting peptide (0.125 to 2 mg/ml) were studied independently in Caco-2
and HT29-MTX cells (Jin et al., 2012), both exhibited dose-dependent cytotoxicity (via
MTT assay). The results also indicated that modification of TMC with the targeting-peptide
was associated with lower zeta potential and lower cytotoxicity suggesting that the
conjugated form was less cationic. The studies cited above form a general consensus that
variably modified chitosan has the potential to be used as an intestinal absorption enhancer
of therapeutic macromolecules with toxicity mediated by positively charged surfaces.

In many of the studies mentioned above, enhanced absorption of therapeutics was the goal.
To this end, alterations such as decreased tight junctional integrity, decreased TEER, and
increased paracellular flux can be viewed as favorable. However, such alterations of
intestinal membrane permeability also carry the potential for adverse effects, including
enhanced absorption of pathogenic organisms, drugs, or harmful compounds (e.g.,
endotoxin) from the GIT lumen. This bears further investigation in models (both /n vivo and
in vitro) utilising a pathogen, drug, or endotoxin challenge.

7 Discussion: relevant factors for NP ingestion studies

It is clear that the GIT is a highly complex environment. Accurate understanding of the fate
of ingested NPs requires consideration of multiple factors. A number of features have been
identified that are important to interpretation of NP ingestion studies. These include
physicochemical characterisation of NPs and reporting of metadata from /7 vivo studies.
Additionally, a feature somewhat unique to the ingestion route is the potential for toxic
effects related to interactions with the gut microbiome. Finally, although doses higher than
‘typical’ exposures are a standard and necessary part of toxicity studies for establishing dose
range parameters, these doses should be logically based and critically compared to likely
exposure levels,.

7.1 Physicochemical parameters and metadata

For physicochemical characterisation, a readily available guideline exists in the MINChar
Initiative (2008). In addition to basic criteria of material, size and size range, shape, charge,
coatings, and surface functionalisation, this should include baseline characterisation of the
degree of aggregation or agglomeration and percent of available ion in the material as dosed.
This permits correlation of NP properties to biological effects. For example, for metal NPs,
increasing percent dissolution, smaller size, and higher dose appeared to facilitate
absorption. For CNTSs, higher dose decreased absorption, possibly by facilitating aggregation
(Philbrook et al., 2011). For CNTSs, larger size (longer axis ratio) also decreased absorption
(Philbrook et al., 2011). In contrast, for dendrimers, greater diameter (later generation) and
negative surface charge correlated with greater absorption (Wiwattanapatapee et al., 2000).
It has been beneficial to include a non-NP control within NP toxicity studies. For example,
the description of CuNP toxic effects in a rodent model was consistent with hemoglobinuric
nephrosis. This is the same toxic effect as elemental Cu toxicity, but occurred as a lower
dose with NP dosing, perhaps due to higher percent dissolution (Hillyer and Albrecht, 2001,

Int J Biomed Nanosci Nanotechnol. Author manuscript; available in PMC 2013 November 11.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Bergin and Witzmann Page 22

Chen et al., 2006). Of note, in the metal studies reviewed here, there was no evidence of
toxicities unique to the nanoscale version of the material. Thus, the toxicity contribution of
nanoscale metals might actually be enhanced (or diminished) absorption rather than unique
pathology.

With respect to absorption, a knowledge gap still exists in defining whether NP are absorbed
as particulate material or predominantly in ionic form. Newer visualisation and
quantification techniques such as sedimentation field flow fractionation analysis (Deering et
al., 2008) or particle-inducd x-ray emission in combination with inductively coupled mass
spectrometry (Novak et al., 2012) may be helpful in this arena. The importance of a non-NP
control is critical in such studies, however, as demonstrated by the finding in an ex vivo
digestion model that dosing with ionic silver, in the form of AgNO3, resulted in NP
formation following exposure to low pH and chloride ions (Walczak et al., 2012). Thus, the
observation of NP retained within tissue does not necessarily mean that the particles were
absorbed in NP form.

Important requirements for metadata with respect to /7 vivo studies include specification of
animal species, age, sex, strain, housing, and husbandry practices. For ingestion studies it is
particularly important to report whether animals were dosed in the fasting vs. fed state and
what time of day dosing took place. Although no specific guidelines for NP ingestion studies
exist, the ARRIVE or Metabolomics metadata standards are a good starting point (Griffin et
al., 2007; Kilkenny et al., 2010a, 2010b; Griffin et al., 2011).

7.2 NPs and the gut microbiome

A feature that bears additional scrutiny is the potential interaction of ingested NP with the
gut microbiome. It is uncertain from the existing literature whether these interactions occur
and whether they are detrimental, positive, or inconsequential. For ingested NPs, even
particles that are not absorbed may have toxic effects if they induce alterations of the normal
microbiome. Additionally, there is the possibility that a pre-existing altered microbial state,
such as gram negative bacterial overgrowth, can affect NP absorption, perhaps by adherence
of NP to LPS. This may result in enhanced delivery of either LPS or the NP themselves.
Finally, lumenal NP may affect gut microbial metabolism, potentially influencing nutrient
absorption or xenobiotic metabolism (Bu et al., 2010; Cattani et al., 2010). Targeted studies
using single and co-administration of NP in combination with either a bacterial toxin (e.g.,
LPS) or a xenobiotic would be informative in this area. The limited studies that have been
done concerning microbes and NP ingestion predominantly relate to agricultural animals and
use indirect endpoints of gut microbial alteration (e.g., growth rate or feed conversion)
(Ahmadi, 2009; Ahmadi et al., 2009; Fondevila et al., 2009; Ahmadi and Kurdestany, 2010;
Ahmadi and Kordestany, 2011; Ahmadi and Rahimi, 2011). It would be informative to
assess the effects of administered NP on gut microbes with a DNA-based technique like
pyrosequencing that eliminates culture-bias and allows more sensitive detection of rare
members of the microbiome (Zoetendal et al., 2004; Young and Schmidt, 2008; Hadrup et
al., 2012; Young, 2012).

7.3 Relationship of observed toxicities to likely health risk

A major barrier to assessing relevance of experimental NP toxicity and ‘real world’ human
health risk is the difficulty in relating experimental exposures to likely realistic human
exposures. For many materials, accurate information about environmental exposures is
lacking. It is also difficult to extrapolate findings from the higher, shorterterm doses typical
of /n vivotoxicity studies with the likely outcome of chronic, minimal dose exposures.
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Overall, for the /in vivo studies reviewed here, ingested NP appeared to have low toxicity.
For AgNP, no adverse effects were reported at doses lower than 125 mg/kg (Kim et al.,
2010a). For TiOoNPs, up to 5,000 mg/kg were tolerated with no adverse effects (Warheit et
al., 2007) and no effects were noted at up to 1,000 mg/kg for oral administration of
SWCNTSs (Kolosnjaj-Tabi et al., 2010).Gottschalk et al. (2006) predicted environmental
concentrations for AgNP, CNTs, and TiO,NPs in surface water in Switzerland, considering
current manufacturing and production volumes and likely environmental fates (Gottschalk et
al., 2006). They predicted concentrations of 30-80 ng/L for AgNP, 0.5-0.8 mg/L for CNTSs,
and 0.7-16 ug/L for TiO,. Considering a daily water intake of 3 L of water per day (0.04 L/
kg/d for a 70 kg individual), this would correlate to a maximal intake of 1 x 10~6 mg/kg/d
for AgNP, 0.024 mg/kg/d for CNTs, and 6 x 10~4 mg/kg/d for TiO,. Clearly environmental
levels will vary and there are likely to be other sources of exposure or even intentional
ingestion (e.g., AgNP). Nevertheless, considering that daily doses in the range of 102 to 103
mg/kg range were well tolerated for these materials in the experimental studies, these
substances are unlikely to be highly toxic at current levels of environmental exposure.
Factors such as the apparent higher absorption of low dose, shorter aspect ratio CNTs
(Philbrook et al., 2011) bear scrutiny with respect to potential accumulation in tissue with
low level environmental or occupational exposures, particularly in sensitive periods of life

(e.g., pregnancy).

Finally, a striking difference in reported toxicity is evident between the /n vivoand in vitro
studies, with the majority of /n vitro studies reporting effects by at least some parameters
(cytotoxicity, altered membrane permeability) while the majority of /n vivo studies reported
no effects except at very high dose levels. Better methods of determining the delivered dose
at the cellular or organ level for /n vivo studies would assist in rational comparison with /n
vitroresults [Deering et al., (2008), #245; Novak et al., (2012), #265]. Additionally,
improved /n vivo methods of measuring more subtle functional parameters with respect to
metabolism, immune function, oxidative stress, or other physiological aspects would be
helpful.

Based on these findings, ingested NPs appear unlikely to have acute or severe toxic effects
at typical levels of exposure, however more subtle or chronic effects bear further
investigation. This is particularly true with respect to intestinal permeability or oxidative
stress, and host-gut microbial balance, which have not been adequately explored. With
increasing recognition of the importance of adequate materials characterisation and adequate
metadata, future investigations of these and other areas may be more easily applied to risk
assessment and human health.
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