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Positive and Negative Design for Nonconsensus Protein-DNA Binding
Affinity in the Vicinity of Functional Binding Sites
Ariel Afek and David B. Lukatsky*
Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
ABSTRACT Recent experiments provide an unprecedented view of protein-DNA binding in yeast and human genomes at
single-nucleotide resolution. These measurements, performed over large cell populations, show quite generally that
sequence-specific transcription regulators with well-defined protein-DNA consensus motifs bind only a fraction among all
consensus motifs present in the genome. Alternatively, proteins in vivo often bind DNA regions lacking known consensus
sequences. The rules determining whether a consensus motif is functional remain incompletely understood. Here we predict
that genomic background surrounding specific protein-DNA binding motifs statistically modulates the binding of sequence-spe-
cific transcription regulators to these motifs. In particular, we show that nonconsensus protein-DNA binding in yeast is statisti-
cally enhanced, on average, around functional Reb1 motifs that are bound as compared to nonfunctional Reb1 motifs that are
unbound. The landscape of nonconsensus protein-DNA binding around functional CTCF motifs in human demonstrates a more
complex behavior. In particular, human genomic regions characterized by the highest CTCF occupancy, show statistically
reduced level of nonconsensus protein-DNA binding. Our findings suggest that nonconsensus protein-DNA binding is fine-tuned
around functional binding sites using a variety of design strategies.
INTRODUCTION
Genomewide measurements of protein-DNA
association

Understanding the rules determining transcription-factor
(TF) binding preferences toward genomic DNA is the key
toward understanding design principles of transcriptional
regulation (1–9). The answer to this fundamental question
is hampered by the fact that DNA binding proteins recog-
nize a wide variety of related sequences, and paradoxically,
only a small fraction of specific motifs are usually bound
in vivo (4,10). A specific consensus motif is a short DNA
sequence, usually 6–20-bp long, possessing an enhanced
binding affinity for a specific TF. For example, TTACCCG
represents a specific consensus motif for a yeast transcrip-
tion regulator, Reb1 (1). It has been recognized in a seminal
work of Iyer and Struhl (3), performed in yeast, that
genomic context surrounding factor-specific motifs signifi-
cantly influences protein-DNA binding and gene expression.
However, the general rules responsible for such influence
remain unclear. Recent genomewide, in vivo measurements
of protein-DNA binding preferences in yeast (2,11),
Caenorhabditis elegans (12,13), Drosophila (14–16),
mouse (17), and human (18) genomes demonstrate that
hundreds of transcription regulators collectively bind low-
complexity genomic regions, where few specific binding
motifs are identified. The understanding of these striking
findings is further complicated by the fact that several
competing mechanisms, in addition to the direct protein-
DNA sequence specific binding, are operational in vivo.
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These include histone-DNA binding leading to nucleo-
some and higher-order chromatin formation, ATP-depen-
dent chromatin remodeling enzymes, and a variety of
transcriptional cofactors influencing protein-DNA binding
indirectly (19,20).

A recent ChIP-exo method developed by Rhee and Pugh
(1,2) allowed genomewide measurements of protein-DNA
binding preferences at the unprecedented singe-nucleotide
resolution. These high-resolution, in vivo measurements
performed for several sequence specific transcription regu-
lators, such as Reb1 from yeast and CTCF from human,
provide a genomewide snapshot of the eukaryotic cis-regu-
latory code (1). These measurements confirm that, surpris-
ingly, a large fraction of specific binding motifs, even the
Reb1 motifs located in the nucleosome-free promoter re-
gions, remain unbound in vivo. This observation is remark-
ably interesting because Reb1 is known as being one of the
most specific TFs, and it is often used as a benchmark for the
experimental TF-DNA binding motif discovery (6).

Using an equilibrium statistical mechanics model without
fitting parameters, in this work we suggest that genomic
background surrounding specific consensus motifs statisti-
cally modulates the binding of sequence-specific TFs to
such motifs. In particular, we suggest here that two quite
different design strategies for nonconsensus protein-DNA
binding might be operational in the genome:

The first design strategy (positive design) enhances the
level of nonconsensus protein-DNA binding in the vicinity
of binding sites. Such an enhancement might guide
sequence-specific TFs toward their specific binding sites,
greatly speeding up their diffusion (21,22). The existence
of an optimal strength for nonspecific protein-DNA binding
has been demonstrated theoretically in the past (23), and
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once such an optimal strength is exceeded, the diffusion of
TFs slows down (23).

The second design strategy (negative design) is quite the
opposite: it reduces the level of nonconsensus protein-DNA
binding in the vicinity of binding sites. Such strategy might
statistically reduce the competition of CTCF with other,
nonspecific TFs, near specific CTCF binding sites, thus
facilitating specific binding.

We now define, in detail, the notions of nonspecific and
nonconsensus protein-DNA binding.
von Hippel-Berg definition of nonspecific
protein-DNA binding

The notion of nonspecific protein-DNA binding was intro-
duced and explored in seminal works of von Hippel and
Berg et al. (21,22,24–27). Schematically, von Hippel and
Berg (26) suggested splitting the definition of nonspecific
protein-DNA binding into two related mechanisms:

The first mechanism is entirely DNA sequence-indepen-
dent, and it assumes that DNA exerts an electrostatic attrac-
tion upon DNA-binding proteins, modulated by the overall
DNA geometry (26). It has been suggested that DNA bind-
ing proteins use different conformations in specific and
nonspecific binding modes (21–26).

The second mechanism assumes that imperfect (mutated)
specific DNA consensus motifs retain some residual affinity
for sequence specific TFs (26). Because the statistical prob-
ability of having such motifs in many genomic locations by
random chance is high, nonspecific protein-DNA binding
might become significant (26,28).

The significance of nonspecific protein-DNA binding has
been experimentally demonstrated for a number of systems
both in vivo (29,30) and in vitro (31–36). One of the key
remaining questions: what is the functional significance of
nonspecific protein-DNA binding in a living cell? The cen-
tral working hypothesis, since the appearance of seminal
works by von Hippel and Berg (21), Berg et al. (22), and
von Hippel (27), is that such nonspecific binding speeds
up the search process of TFs toward their specific binding
sites. This hypothesis has been recently supported experi-
mentally (30), and further developed and refined theoreti-
cally (23,37–43).
Definition of nonconsensus protein-DNA binding

We have recently suggested the mechanism of nonconsensus
protein-DNA binding (44–47). Such nonconsensus protein-
DNA binding represents an extension of the von Hippel-
Berg’s mechanism of nonspecific binding as described in
von Hippel and Berg (26). In particular, we showed quite
generally that DNA sequence repeats possessing particular
symmetries and length-scales of DNA sequence correlations
exert an effective, statistical potential on all DNA binding
proteins (44). This statistical potential can be attractive or
Biophysical Journal 105(7) 1653–1660
repulsive, depending on the DNA sequence repeat symme-
try. For example, repeated homo-oligonucleotide tracts,
such as poly(A)/poly(C)/poly(T)/poly(G), lead to the stron-
gest nonconsensus protein-DNA attraction. The longer the
homo-oligonucleotide stretches, the stronger the predicted
attraction (44). This is unlike DNA repeats where nucleo-
tides of different types alternate (44).

We use the term ‘‘nonconsensus protein-DNA binding’’ to
emphasize the fact that nonconsensus protein-DNA binding
free energy is computed without any experimental knowl-
edge of the high-affinity protein-DNA binding sites, known
as ‘‘specific protein-DNA binding motifs’’ (44–46). The pre-
dicted nonconsensus effect is entropy-dominated, and it is
nonlocal, meaning that the statistical protein-DNA binding
free energy at any location along the DNA is influenced by
the DNA sequence surrounding this location (44). We have
demonstrated that such nonconsensus protein-DNA binding
free energy is in excellent agreement with statistical, exper-
imentally determined binding preferences of nearly 200
yeast transcription regulators (46), with nucleosome binding
preferences (45), and with genomewide binding preferences
of the yeast preinitiation complex (47). Below we explain in
detail the procedure that we use to compute the nonconsen-
sus protein-DNA binding free energy.
Synopsis of obtained results

Our article is organized as follows:
First, we analyze the strength of the nonconsensus pro-

tein-DNA binding within the genomic background sur-
rounding the experimentally determined binding sites of
the yeast transcription regulator Reb1 (1). In particular,
we compute the free energy of nonconsensus protein-DNA
binding for these DNA sequences, and we show that func-
tional (i.e., bound) Reb1 specific motifs are surrounded by
DNA sequences with statistically lower free energy of non-
consensus protein-DNA binding, as compared to nonfunc-
tional (i.e., unbound) motifs (Figs. 1 and 2). The lower
free energy represents the enhanced level of nonconsensus
protein-DNA binding.

Second, we perform a similar analysis for a human tran-
scription regulator CTCF, and strikingly, we show that free
energy of nonconsensus protein-DNA binding is increased
around strongly bound CTCF binding sites (characterized
by the high CTCF occupancy), as compared toweakly bound
CTCF sites (Figs. 3 and 4). The higher free energy represents
the reduced level of nonconsensus protein-DNA binding.
RESULTS

Calculation of the free energy of nonconsensus
protein-DNA binding

We begin with the definition of nonconsensus protein-DNA
binding free energy. To compute the free energy, we first



FIGURE 1 The example, from the ChIP-exo

measurements of Reb1-DNA binding in Rhee and

Pugh (1), illustrates the key hypothesis of this

work. It was measured in Rhee and Pugh (1) that

the transcription regulator Reb1 is bound to the

specific Reb1 binding motif TTACCCT (red)

(shown in the left panel), yet it is unbound to the

identical specific motif (shown in the right panel).

This result is obtained as the average in a cell pop-

ulation, and it is therefore highly statistically sig-

nificant. Our key hypothesis here is that genomic

background, surrounding the specific TF binding

site, exerts the nonconsensus protein-DNA binding

potential (free energy) that acts, statistically, on

all DNA-binding proteins. The computed free

energies of nonconsensus protein-DNA binding

per bp (in units of kBT), f¼ hFiTF/M, for two actual

DNA sequences are shown in the bottom plots

(note that the range where the free energy is shown,

(�200,200) around the center of the binding motif, is much larger than the length of the shown sequences). The specific binding motif that was bound by

Reb1 (left) is surrounded by the sequence with the lower free energy of nonconsensus binding, as compared to the case when Reb1 was unbound (right). We

hypothesize, therefore, that the predicted nonconsensus protein-DNA binding modulates TF binding to specific (consensus) motifs along the genome,

genomewide. To see this figure in color, go online.
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compile a set of DNA sequences surrounding experimen-
tally detected protein-DNA binding sites (Fig. 1). In partic-
ular, Rhee and Pugh (1) measured 762 binding sites of Reb1
in the entire yeast genome, where each binding site contains
a specific Reb1 consensus-binding motif, TTACCCG/T.
These measurements were performed at the unprecedented
single-nucleotide resolution, using the ChIP-exo method
(1). We therefore have a collection of 762 DNA sequences,
such that for each sequence, we analyze the nonconsensus
free energy in the interval (�200,200) around the center
of the specific binding motif (Fig. 1).

To compute the free energy of nonconsensus protein-
DNA binding at any given location along each DNA
sequence, we position the center of the sliding window of
width L ¼ 50 bp in this location. We generate an ensemble
of random DNA binders as a proxy for the phenomenon of
nonconsensus protein-DNA binding in a crowded cellular
environment (44). We do not use any experimentally prede-
termined protein-DNA binding preferences to model pro-
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error bars are defined as one standard deviation of hfi between subclusters. To
tein-DNA binding. The actual DNA sequence constitutes
the only experimental input parameter for our model. In
particular, we assume that a model protein makes contacts
withMDNA basepairs, and the model protein-DNA interac-
tion energy at each genomic position i is

UðiÞ ¼ �
XMþi�1

j¼ i

X
a¼fA;T;C;Gg

KasaðjÞ; (1)

where sa(j) represents the elements of a four-component
vector of the type (daA, daT, daC, daG), with dab ¼ 1 if a ¼
b, or dab ¼ 0 if a s b. For example, if the A nucleotide
is positioned at the coordinate j along the DNA, then this
vector takes the form (1,0,0,0). To generate each model pro-
tein, we draw the values of KA, KT, KC, and KG from the
Gaussian probability distributions, P(Ka), with the zero
mean, hKai ¼ 0, and the standard deviation, sa ¼ 2 kBT,
where T is the temperature and kB is the Boltzmann
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FIGURE 2 Specific, functional Reb1 binding

sites are surrounded by the genomic background

with enhanced nonconsensus protein-DNA binding

free energy. (A) The computed average free energy

per bp, hfi ¼ hhFiTFiseq/M, in the interval

(�200,200) at ~762 bound specific Reb1 motifs

(black), as compared with the corresponding hfi
for 1315 unbound specific Reb1 motifs (gray)

genomewide, measured in Rhee and Pugh (1).

The second averaging is performed over the

sequences aligned with respect to the center of

the specific Reb1 binding motif (TTACCCG/T);

and M is the motif length. We used M ¼ 8 and

L ¼ 50 in our calculations. The computed p-value

umulative Reb1 occupancy for 1029 bound sequences (blue), compared with

e sequences into five subclusters, and computed hfi in each subcluster. The

see this figure in color, go online.
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BA FIGURE 3 Specific, functional binding sites

of human transcription regulator CTCF, are sur-

rounded by the genomic DNA background with

statistically modulated nonconsensus protein-

DNA binding free energy. The genomewide

ChIP-exo measurements of CTCF binding are

taken from Rhee and Pugh (1). (A) The computed

average free energy per bp, hfi, in the interval

(�400,400) around specific, experimentally bound

CTCF motifs genomewide, as compared with the

corresponding hfi computed around the control

set of unbound motifs. In our calculations we

used 5000 model TFs, M ¼ 8 and L ¼ 50. See

Materials and Methods for the description of the

control set of unbound motifs and for the calculation of the p value. To compute the error bars, we randomly divided the control set of sequences into

five subclusters, and computed hfi in each subcluster. The error bars are defined as one standard deviation of hfi between subclusters. (B) The average

free energy per bp, hfi, for the 10% highest CTCF occupancy and the 10% lowest CTCF occupancy subgroups of sequences. The Kolmogorov-Smirnov

p values are computed within the interval (�50,50). The notation, PKS
(U,L), defines the Kolmogorov-Smirnov p value between the free energy distributions

of the subgroup of unbound sequences and the subgroup of sequences with the lowest CTCF occupancy, respectively. The additional Kolmogorov-Smirnov

p values are defined analogously. To see this figure in color, go online.
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constant. We have previously demonstrated that the result-
ing free energy is qualitatively robust with respect to the
choice of model parameters (44). An energy scale, 2 kBT
x 1.2 kcal/mol, is chosen to represent a typical strength
of one hydrogen bond, or one electrostatic bond that a pro-
tein makes with a DNA bp (24,26).

For each model protein, we define the partition function
of protein-DNA binding within the chosen sliding window
of width L ¼ 50 bp,

Z ¼
XL

i¼ 1

exp

��UðiÞ
kBT

�
; (2)

and the corresponding free energy of protein-DNA binding
in this sliding window as

F ¼ �kBT ln Z: (3)

We then assign the computed F to the sequence coordinate
in the middle of the sliding window. For example, for the
chosen sliding window size, L ¼ 50 bp, 50 protein-DNA
binding events contribute to the partition function (Eq. 2)
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around each experimentally determined CTCF binding site and the measured

into 10 bins. (B) Similar to panel A, however, the average free energy per bp, hfi
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in each sliding window, for each random binder. We move
the sliding window along the DNA sequence and we
compute F at each sequence location. This procedure allows
us to assign the free energy of nonconsensus protein-DNA
binding to each DNA bp within each DNA sequence.

Next, we repeat the described procedure for an ensemble of
250 model random binders (where each random binder is
uniquely characterized by four random numbers, KA, KT,
KC, and KG), and compute the average free energy, hFiTF,
with respect to this ensemble, in each sequence location.
Two examples of the resulting free energy landscapes, hFiTF,
are shown in Fig. 1. The lower the hFiTF in a given sequence
location, the stronger the statistical attraction that DNA-bind-
ing proteins experience (on average) toward this location.We
note that the predicted effect is nonlocal, meaning that the
magnitude of the free energy in each sequence location is
influenced by the DNA sequence surrounding this location.

We stress the point that the resulting free energy is qual-
itatively robust with respect to the choice of the sliding
window size, L, within a wide range of values (see Fig. S1
in the Supporting Material). The free energy profiles are
also statistically robust with respect to a moderate variation
6 7

TCF)>

)05, FIGURE 4 The free energy of nonconsensus

protein-DNA binding correlates with the experi-

mentally measured CTCF occupancy. Both

positive and negative design strategies for non-

consensus protein-DNA binding are observed.

Genomewide, on average, genomic regions with

the enhanced CTCF-DNA binding occupancy are

characterized by the statistically lower free energy

of nonconsensus protein-DNA binding. However,

in a narrower interval around the CTCF binding

sites, genomic sequences characterized by the

high CTCF occupancy show an opposite trend.

(A) The correlation between the average value of

the free energy of nonconsensus protein-DNA

binding per bp, hfi, in the interval (�350,350)

peak CTCF occupancy for the same binding site (1). The data are binned

, is computed in the interval (�50,50). To see this figure in color, go online.
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of the value of M, within a typical range of the TF binding
site size in yeast (see Fig. S1). The reason for a relative
insensitivity of the predicted effect with respect to the
choice of model parameters stems from the fact that DNA
sequence symmetry is the key factor regulating the magni-
tude of the nonconsensus protein-DNA binding free energy
(44). In particular, homo-oligonucleotide sequence repeats,
such as repeated poly(A)/poly(C)/poly(T)/poly(G) tracts,
universally lead to a wider spectrum of protein-DNA bind-
ing energies, P(U), as compared with DNA repeats, in which
nucleotides of different types alternate.

Intuitively, the widening of the energy spectrum for the
homo-oligonucleotide enriched DNA sequences can be
understood in the following way: In each sequence location,
for a given random TF binder, the protein-DNA binding
energy, U, is simply the sum of M random numbers, Ka,
where the nucleotide identities, L ¼ 50, are uniquely deter-
mined by the DNA sequence. Despite the fact that all Ka

come from the Gaussian distribution with zero mean and
fixed standard deviation, s, their sum will be a function of
the DNA sequence. This sum will be sensitive to a variation
of the local nucleotide composition in the window of width
M, with homo-oligonucleotide tracts producing the stron-
gest fluctuations of U. A wider energy spectrum universally
results in a statistically lower average free energy, hFiTF
(44,48). We use the term ‘‘sequence correlations’’ to
describe the symmetry and the length-scale of DNA
sequence repeats (44). We also note that the predicted
nonconsensus protein-DNA binding free energy is en-
tropy-dominated, and it is influenced exclusively by DNA
sequence correlations, and not by the average nucleotide
composition (see Fig. S2).
Free energy of nonconsensus protein-DNA
binding is statistically reduced in the vicinity of
functional Reb1 binding motifs in yeast

As a result of the procedure described above, we obtain the
average profile of the nonconsensus protein-DNA binding
free energy, hhFiTFiseq, at ~762 functional, specific motifs
for Reb1 (Fig. 2 A), where the second average, hiseq, is
performed at each sequence position with respect to the
sequences aligned by the center of the specific motif. The
observed minimum of the free energy around the location
of the specific motif suggests that nonconsensus binding is
statistically enhanced around functional, specific motifs
genomewide in yeast. We use the term ‘‘positive design’’
to describe this design strategy.

To estimate the statistical significance of this effect, we
also compiled a control set of nonfunctional sequences
containing exactly the same specific motifs, TTACCCG/T.
However, in all those control sequences Reb1 was not bound
to the motifs (1). The average free energy of nonconsensus
binding around functional motifs shows a more pronounced
minimum compared with the control set of nonfunctional
motifs (Fig. 2 A), with a highly statistically significant
p-value, p x 10�5 (see Materials and Methods). To further
test the statistical significance of our results, we have
restricted the sets of bound and unbound specific motifs to
only those motifs, which are located in the vicinity of anno-
tated Transcription Start Sites (TSSs) in yeast. The average
free energies computed for those sets containing 415 bound
and 271 unbound sequences, respectively, confirm that
bound specific motifs are surrounded by sequences with
the reduced free energy of nonconsensus protein-DNA bind-
ing, as compared with unbound motifs (see Fig. S3).

Fig. 2 B shows the comparison between the entire exper-
imentally measured profile of Reb1 occupancy (1) and
the computed average free energy of nonconsensus pro-
tein-DNA binding. This includes experimentally measured
Reb1 occupancy for 1029 bound sequences, including
sequences containing mutated Reb1 motifs (1). The
sequences were aligned with respect to the center of the
Reb1 binding site. The minimum of the free energy is posi-
tioned exactly at the maximum of the Reb1 occupancy
(Fig. 2 B). We conclude therefore that nonconsensus pro-
tein-DNA binding is fine-tuned around functional, specific
Reb1 motifs genomewide in yeast in a way that increases
nonconsensus protein-DNA attraction in the immediate
vicinity of these motifs.
Free energy of nonconsensus protein-DNA
binding in the vicinity of functional CTCF binding
motifs in human demonstrates alternative design
strategies

The CTCF binding profiles measured using the ChIP-exo
method in HeLa cells represent the first example obtained
at the single-nucleotide resolution for the entire human
genome (1). Although CTCF is known to be a sequence-spe-
cific DNA-binding transcription regulator, its consensus
sequence is not well defined, and it is still a matter of dispute
(1,49–52). Here we show that the predicted free energy of
nonconsensus protein-DNA binding shows both positive
and negative design strategies in the vicinity of experimen-
tally detected CTCF binding sites (1).

We followed a procedure similar to the one described
above. In particular, we collected DNA sequences at
~35,000 experimentally detected CTCF binding sites. Strik-
ingly, we observe that although the computed average non-
consensus free energy shows an overall minimum (Fig. 3
A), it shows a pronounced local maximum for a subgroup
of the strongest bound sequences in the vicinity of binding
sites (Fig. 3 B). To verify the statistical significance of the
observed effect, we have also collected a controlled set of
nonfunctional (unbound) sequences containing exactly the
same binding motifs as functional (bound) CTCF sites, and
we computed the free energy around such unbound CTCF
motifs (see Materials and Methods). Because of this proce-
dure, we confirmed that, overall, the average nonconsensus
Biophysical Journal 105(7) 1653–1660
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free energy is more significantly reduced in the vicinity of
functional (bound) CTCF specific motifs as compared with
unbound CTCF motifs (Fig. 3 A). However, for a subgroup
of sequences characterized by the highest CTCF occupancy,
the free energy is increased in the vicinity of binding sites
(Fig. 3 B). We verified that the predicted effect stems from
DNA sequence correlations and it is not affected by the over-
all nucleotide composition of DNA sequences (see Fig. S4).
We also verified that the predicted effect is qualitatively
robust with respect to the variation of themicroscopic param-
eters of the model, such as the sliding window width, L, and
the size of the TF binding site, M (Fig. S5).

The discussed case of genomewide binding preferences
of the human transcription regulator CTCF represents a
considerably more complex system than the yeast transcrip-
tion regulator Reb1. In the case of CTCF, we observe that
the nonconsensus protein-DNA binding landscape might
be shaped by using quite different strategies (Fig. 3 B).
One strategy (positive design) enhances the level of noncon-
sensus protein-DNA binding in the vicinity of the binding
site. Such an enhancement might guide sequence-specific
TFs toward their specific binding sites, greatly speeding
up their diffusion (21,23). Yet, as the level of nonspecific
binding becomes too high, the competition with other TFs
might obstruct the specific binding, and slow down the
diffusion (23). Another strategy (negative design) is quite
the opposite: it reduces the level of nonconsensus protein-
DNA binding in the vicinity of the binding site (Figs. 3 B
and 4). Such strategy might statistically reduce the compe-
tition of CTCF with other, nonspecific TFs, in the vicinity
of specific CTCF binding sites, thus facilitating specific
binding. From our analysis it follows that the latter strategy
is operational in the vicinity of CTCF binding sites charac-
terized by the highest CTCF occupancy (Figs. 3 and 4 B).
Our genomewide analysis suggests that the predicted posi-
tive and negative design strategies are quite general
(Fig. 5), and most likely they represent the statistical law
rather than the exception.
DISCUSSION AND CONCLUSION

In this article, we attempted to rationalize design principles
for nonconsensus protein-DNA binding in genomic regions
speeding up their diffusion. The second design strategy (negative design) reduce

sites (i.e., increased free energy in the vicinity of binding sites). Such strategy mig

in the vicinity of specific CTCF binding sites, thus facilitating specific binding.
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surrounding specific transcription factor DNA binding sites.
In both cases of Reb1 and CTCF, for our statistical analysis
we used the genomewide binding preferences measured at
the unprecedented single-nucleotide resolution (1). In
particular, we showed that nonconsensus protein-DNA bind-
ing free energy is statistically reduced around functional
specific motifs for the yeast transcription regulator Reb1
(Fig. 2). We use the term ‘‘functional specific motif’’ to
describe those specific motifs that were experimentally
detected in Rhee and Pugh (1) as being bound. This is in
contrast to the case of nonfunctional specific motifs that
were experimentally detected in Rhee and Pugh (1) as being
unbound.

For the human transcription regulator CTCF, the land-
scape of the nonconsensus protein-DNA binding free energy
is found to be more complex (Fig. 3). Whereas genomewide,
on average, we observed that the nonconsensus free energy
is statistically reduced around CTCF binding sites (Fig. 3
A), a subgroup of genomic sequences characterized by the
highest CTCF occupancy demonstrated a different design
principle (Fig. 3 B). In particular, the free energy is
increased in the vicinity of such highly occupied binding
sites (Fig. 3 B). This striking observation suggests that
two quite-opposite design strategies for nonconsensus pro-
tein-DNA binding might be operational in the genome
(Fig. 5). The first design strategy (positive design) enhances
the level of nonconsensus protein-DNA binding in the vicin-
ity of binding sites. Such an enhancement might guide
sequence-specific TFs toward their specific binding sites,
greatly speeding up their diffusion (21,23). It has been
shown, theoretically, that there exists an optimal strength
of nonspecific protein-DNA binding, and once such an
optimal strength is exceeded, the diffusion of TFs slows
down (23). The second design strategy (negative design) is
quite different; it reduces the level of nonconsensus pro-
tein-DNA binding in the vicinity of binding sites. Such a
strategy might statistically reduce the competition of
CTCF with other, nonspecific TFs, in the vicinity of specific
CTCF binding sites, thus facilitating specific binding. We
suggested here that both of these design strategies might
be operational in the human genome.

Despite the simplicity of our equilibrium biophysical
model for protein-DNA binding, we suggest that the
FIGURE 5 Schematic cartoon demonstrating the

concept of positive and negative design strategies

for nonconsensus protein-DNA binding free energy

in the vicinity of functional protein-DNA binding

sites. The first design strategy (positive design)

enhances the level of nonconsensus protein-DNA

binding in the vicinity of binding sites (i.e.,

reduced free energy in the vicinity of binding sites).

Such an enhancement might guide sequence-spe-

cific TFs toward their specific binding sites, greatly

s the level of nonconsensus protein-DNA binding in the vicinity of binding

ht statistically reduce the competition of CTCF with other, nonspecific TFs,
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predicted design principles for nonconsensus protein-DNA
binding are quite general. We expect that such principles
should be operational in different eukaryotic organisms,
for different transcription regulators. The functional sig-
nificance of nonconsensus protein-DNA binding for tran-
scriptional regulation remains an open question. Here, we
suggested that such nonconsensus binding landscape pro-
vides a background surrounding specific DNA motifs, and
possibly regulating the kinetics of transcription regulators
in their search for such specific motifs (21,23,38). We sug-
gest, therefore, that the predicted nonconsensus protein-
DNA binding mechanism represents yet additional layer
of transcriptional regulation operating in vivo, and it influ-
ences genomewide protein-DNA binding preferences in a
eukaryotic cell.

It is important to note that the highly nonequilibrium
nature of chromatin dynamics in vivo might significantly
modify the predictions of our purely equilibrium, statistical
mechanics model. One additional factor, critically impor-
tant in vivo, is the competition between transcription fac-
tors and histones for nucleosome formation (45,53,54).
To test the predictions of our model directly, one possibility
would be to use a whole-cell, nucleosome-free extract, to
remove the competition of TFs with histones for noncon-
sensus binding to DNA. It would be interesting to observe
how genomewide TF binding preferences and gene expres-
sion vary in a nucleosome-free system upon insertion
of low-complexity DNA sequences in different promoter
regions.
MATERIALS AND METHODS

p-value calculations

To compute the p value in Fig. 2 A, we compiled 105 randomized pairs of

datasets, each set containing 762 and 1315 sequences, respectively, where

each sequence is drawn randomly from the actual, unified, and reshuffled

sets of 762 bound and 1315 unbound sequences, respectively, as measured

genomewide in Rhee and Pugh (1). Each sequence is in the interval

(�200,200) around the specific Reb1 binding motif, TTACCCG/T. We

then computed the average free energies of nonconsensus protein-DNA

binding for each pair of these randomized sets, and we computed the

average free energy difference (in the interval (�20,20) around the motif

center) between the two sets within each pair. Finally, we defined the

p value as the probability that the observed free energy difference in the ran-

domized sets is equal to or larger than the actual free energy difference.

To compute the p value in Fig. 3 A, we searched the entire human genome

sequence for specific CTCF binding motifs that were not bound by CTCF in

the experiment (1). We then compiled the control dataset of sequences sur-

rounding such not bound motifs, in the interval (�400,400) around the cen-

ter of the motif. The average free energy of this dataset is also shown in

Fig. 3 A. Next, we compiled 105 pairs of randomized datasets, by randomly

selecting the pairs of sequences from both bound and unbound datasets.

Finally, we computed the probability that the average free energy difference

in the interval (�100,100) between the randomized pairs of datasets is equal

to or larger than the actual free energy difference. This probability is taken,

then, as the p value. We defined specific motifs as 10-bp sequences, taken in

the interval (�5,5) around the experimentally determined (at single-nucle-

otide resolution) CTCF-DNA binding peaks (1).
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