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ABSTRACT: Robust estimates of hypoxic extent (both area and volume) are
important for assessing the impacts of low dissolved oxygen on aquatic
ecosystems at large spatial scales. Such estimates are also important for
calibrating models linking hypoxia to causal factors, such as nutrient loading
and stratification, and for informing management decisions. In this study, we
develop a rigorous geostatistical modeling framework to estimate the hypoxic
extent in the northern Gulf of Mexico from data collected during midsummer,
quasi-synoptic monitoring cruises (1985−2011). Instead of a traditional
interpolation-based approach, we use a simulation-based approach that yields
more robust extent estimates and quantified uncertainty. The modeling
framework also makes use of covariate information (i.e., trend variables such
as depth and spatial position), to reduce estimation uncertainty. Furthermore,
adjustments are made to account for observational bias resulting from the use
of different sampling instruments in different years. Our results suggest an increasing trend in hypoxic layer thickness (p = 0.05)
from 1985 to 2011, but less than significant increases in volume (p = 0.12) and area (p = 0.42). The uncertainties in the extent
estimates vary with sampling network coverage and instrument type, and generally decrease over the study period.

1. INTRODUCTION

A large hypoxic zone has formed nearly every year in the
northern Gulf of Mexico over at least the last few decades.1−3 It
is the largest human-caused coastal hypoxic zone in the western
hemisphere and one of the largest worldwide.1,4 Because of its
negative ecological impacts and potential fisheries impacts,5 the
hypoxic zone has received attention from various stakeholders
and policy makers who have developed plans to reduce its
average size.6,7

The hypoxic zone is generally largest in summer due to the
seasonal cycles of phytoplankton production and water column
stratification, which are the two primary factors leading to
dissolved oxygen (DO) depletion.8−10 Both factors are related
to the outflow from the Mississippi River Basin, which typically
peaks in March−May. Nutrient loads from the Basin stimulate
phytoplankton production in offshore waters, and much of the
resulting organic matter eventually settles along the Louisiana−
Texas shelf. Aerobic bacteria decompose the organic matter,
consuming large quantities of DO. At the same time, freshwater
outflows from the Basin promote stratification through a
fresher surface layer, which warms in spring and summer, and
overlays a colder, saltier water layer, inhibiting reoxygenation of
bottom waters.1

The hypoxic extent, operationally defined as the region (area
or volume) where DO concentrations are below 2 mg L−1, is
often assessed using data from “shelfwide” sampling cruises.
The cruises are considered “quasi-synoptic” because changes in
weather conditions (e.g., tropical storms) preceding or during
the cruises can disrupt typical seasonal patterns in hypoxia.
Cruises to document the occurrence of hypoxia, as well as
related physical and biological parameters, have been
performed by the Louisiana Universities Marine Consortium
(LUMCON) beginning in 1985.1,2 The estimated bottom-
water hypoxic area2 has been determined by interpolating
between sampling locations and hand-contouring parallel to
isobaths over a calibrated (planimeter) grid. These estimates
have been used in multiple modeling studies linking hypoxia to
nutrient loads from the Mississippi River basin and other
environmental factors11−14 and for setting policy goals to
reduce the severity of hypoxia.6,7 However, these estimates are
generally conservative in that the most inshore, most offshore,
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and most western extents of hypoxia are not always captured
because of logistical constraints.15,16 Also, these estimates do
not quantify the uncertainty inherent in making estimates from
limited observations.17,18 Quantified uncertainties are useful for
assessing the adequacy of existing sampling programs and for
improving models that link hypoxic extent to environmental
causes and effects.
Hypoxic area estimates only partially characterize the hypoxic

extent. The thickness and volume of hypoxia are also important,
as they relate to how hypoxia affects pelagic organisms.19,20 In
addition, hypoxic volume, rather than area, should be more
closely related to the total oxygen deficit of the system,
potentially making it a more useful metric for biogeochemical
modeling studies.4 While hypoxic volume measurements are
available for other systems, such as Chesapeake Bay,21,22

estimates for the Gulf have only been available for a subset of
years, using an unpublished methodology.4

The primary goal of this study is to improve our knowledge
of the Gulf’s hypoxic extent over the 27-year study period
(1985−2011) by systematically estimating midsummer hypoxic
area and volume. These are the first Gulf hypoxic extent
estimates to include “instrument bias adjustments” that account
for the use of different sampling instruments, capable of being
lowered to within different proximities of the sea floor, in
different years.23 Our approach also uses trends between DO,
hypoxic fraction, depth, and spatial position to account for
consistent, large-scale spatial patterns in DO, thereby
improving the explanatory power of the model.18 Our extent
estimates are developed using a Monte Carlo-type simulation
approach, rather than traditional interpolation, allowing for
uncertainty quantification (i.e., confidence intervals).17,18 These
confidence intervals reflect the spatial stochasticity of the
system, uncertainties in trends among variables, and un-
certainties in instrument bias adjustments. Hypoxic volume is
estimated using a novel two-step approach where DO is
simulated first, and hypoxic fraction (i.e., the fraction of the
water column that is hypoxic) is simulated second using DO as
a trend variable.

2. METHODS
2.1. Data and Study Boundaries. We use DO data from

LUMCON midsummer sampling cruises conducted between
1985 and 2011. Data for 1998−2008 are retrieved from the
National Ocean Data Center, while data for other years are
obtained directly from LUMCON.24 Sampling locations are
geo-referenced using the Universal Transverse Mercator
(UTM) Zone 15 projection, and bathymetry is determined
from a 3-arc-second digital elevation model obtained from the
National Oceanic and Atmospheric Administration (NOAA).25

During cruises, DO is sampled using one or two types of
instruments (Figure 1): a rosette-mounted DO probe and a
hand-held DO probe, with the latter capable of being lowered
closer to the sea floor.9,23 (Hereafter, we refer to these
instruments as the “rosette sampler” and “handheld sampler”.)
While instrument technology has changed over time, all
instruments were calibrated against Winkler titrations, and
postcruise corrections were made as necessary. For sampling
events where both instruments were used, data are combined
into synthesized profiles.9 (Here, a “sampling event” refers to
the depth profile of data collected at a specific latitude/
longitude and time.)
We extract bottom water dissolved oxygen (BWDO) and

minimum dissolved oxygen (MinDO) concentrations from the

DO profiles. BWDO and MinDO concentrations greater than 7
mg L−1 (less than 1% of total samples), are treated as 7 mg L−1,
because higher concentrations are outliers representing super-
saturation conditions that are not of interest in this study. For
sampling events where hypoxia was present, we also extract the
fraction of the water column that is within the hypoxic bottom
layer (hereafter, bottom water hypoxic fraction, or BWHF) and,
where other hypoxic layers are present, the total hypoxic
fraction (THF) of all hypoxic layers. Bottom and upper layers
of hypoxia are observed at 49% and 12% of sampling events,
respectively. Here, we focus on the models for BWDO and
BWHF because bottom layer results are most comparable to
previous studies.2,16 The models for MinDO and THF are
formulated in the same way and yield comparable results, but
for brevity are discussed only in Supporting Information (SI)
Section S7.
In this study, adjustments are made to address biases that

arise from the use of different sampling instruments. For cruises
when only the rosette sampler was used (Figure 1), one would
expect the hypoxic extent to be underestimated because the
rosette sampler does not reach as close to the sea floor as the
hand-held sampler. We quantify this bias using data from
sampling events where both instruments were used together.
For these cases, observed BWDO and BWHF are calculated for
both the synthesized profile and rosette-only profile. Proba-
bilistic relationships are then developed between the synthe-
sized results and the rosette-only results (Section S1 of the SI).
When performing simulations (described below), we adjust the
rosette-only observations by sampling from these relationships.
A larger bias adjustment is required for the first 38 sampling
events in 1991 because the ship’s fathometer was not properly
calibrated, causing the rosette sampler to be lowered 1.5 m less
than it would have been otherwise (N.N. Rabalais, cruise
records). For these observations, the probabilistic relationships
between synthesized and rosette-only results are again
determined based on sampling events where both instruments
were functioning properly (as described above) but with the
bottom 1.5 m of the rosette-only profiles removed.
Geostatistical modeling is performed on a 5 × 5 km2 grid of

estimation points (Figure 2), covering 342.5−837.5 km UTM
easting and 3122.5−3292.5 km UTM northing, reflecting the
general extent of sampling. The estimation grid is limited to
depths between 3 and 80 m, which are typical of the
Louisiana−Texas shelf region where hypoxia occurs.

2.2. Model Formulation. Geostatistical methods provide
an effective means to model data that exhibit spatial
correlation.17,26 The efficacy of these methods has been
demonstrated in previous environmental analyses of rainfall,

Figure 1. Number of locations sampled during the annual midsummer
shelfwide cruises using hand-held and rosette instruments.
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snow depth, soil phosphorus, and water quality indica-
tors.18,21,27−29 Many of these studies have focused on mapping
through spatial interpolation, and comparison studies have
demonstrated that geostatistical interpolation outperforms
simpler interpolation methods, such as inverse distance
weighting.21,28

In a geostatistical model, the response variable, z, is
represented as a combination of deterministic and stochastic
components:26

β η ε= + +z X (1)

This formulation is similar to linear regression, but includes
an additional term, η, representing spatially correlated
stochasticity, in addition to the more commonly modeled
uncorrelated stochasticity, ε. As in linear regression, Xβ is the
portion of z that can be expressed as a deterministic function of
categorical and/or trend variables (X) and their corresponding
regression coefficients (β). If the X term includes only cruise-
specific categorical variables (vectors of zeros and ones that bin
the data by cruise), then the model can essentially be used to
perform ordinary kriging (OK). If X also includes trend
variables, then it can be used to perform universal kriging
(UK).17

In this study, the stochastic components (η and ε) are found
to be well represented by the commonly used exponential
covariance function with a nugget effect,26 defined as follows:
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where Q is the covariance between two observations (zi and zj)
separated by distance (hi,j); σε

2 and ση
2 are parameters

representing the variances of the stochasticity that is spatially
correlated and is not spatially correlated, respectively; and r is a
range parameter (3r is approximately the distance at which
observations are no longer spatially correlated). We allow for
anisotropy in the covariance model by scaling hi,j using
parameter α, which represents the ratio of east−west to
north−south correlation ranges. Covariance function parame-
ters are estimated using restricted maximum likelihood30,31 and
deterministic component parameters (β) are estimated using
generalized least-squares, as outlined in a previous study by
Obenour et al.9 that used geostatistical methods to explore
biophysical drivers of DO depletion.
Geostatistical models are developed for both BWDO and

BWHF to determine bottom layer hypoxic area and volume,

respectively. The model for BWDO uses all observations, while
the model for BWHF uses only observations from locations
where BWDO is below the hypoxic threshold. Both models use
the UK formulation to take advantage of potential relationships
between the response variables and available trend variables.18

The deterministic components of the models include two
types of trends. First, “constant trends” represent relationships
between response and trend variables using regression
coefficients that are the same for all cruises. For the BWDO
model, potential constant trends include linear and quadratic
trends with depth (Depth and Depth2), easting (Easting and
Easting2), and northing (Northing and Northing2). On the
basis of an examination of model residuals, it was noted that the
overall trend between depth and BWDO does not continue for
depths greater than 40 m, and so depths of greater than 40 m
are treated as 40 m in the final BWDO model development.
This approach is justified because model residuals are evenly
distributed across all depths when depths greater than 40 m are
modified as described here (see Figure S3 of the SI). For
BWHF, potential constant trends include linear and quadratic
trends with easting, northing, and BWDO.
Second, “cruise-specific trends” (with cruise-specific regres-

sion coefficients for Easting) represent relationships that are
specific to individual cruises. Allowing these trends was
motivated by previous studies16,23 that indicate the east−west
distribution of hypoxia is influenced by alongshore current
velocity, which can vary interannually in response to prevailing
winds. When selected, these cruise-specific trends modify the
constant trend.
To prevent overparameterization of the model, we use only

trend variables selected through a geostatistical adaptation of
the Bayesian information criterion (BIC),9,32,33 wherein models
with different subsets of trend variables are compared based on
their BIC score, and the model with the lowest BIC score is
optimal in terms of its explanatory power relative to its
complexity. Because of the large number of variables considered
in this study, an initial optimal model is first selected among
those formed from constant trend variables only. Cruise-
specific trend variables are then individually tested relative to
that model, and only cruise-specific trends that improve the
BIC score are included in the final model.
The deterministic portion of the model also includes

categorical variables that bin data by cruise, reflecting the fact
that the mean BWDO varies from cruise to cruise. In UK, the
categorical variables essentially allow for different “intercepts”
(as in linear regression), that shift the trend up or down to best
fit the observations from each cruise. In OK, these categorical
variables simply allow for a different mean for each cruise.
The covariance model, selected deterministic variables, and

categorical variables are used to determine a set of geostatistical
weights, Λ, that are applied to observations when performing
geostatistical interpolation and simulation. For each cruise, y, a
unique set of weights, Λy, are determined by solving a system of
linear equations:
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where Qoo is an n × n covariance matrix for the n observation
locations (all cruises), with elements determined from eq 2.
Because we did not assume correlation among stochasticity
from different cruises, intercruise covariances are assigned a

Figure 2. Study area bathymetry, sampling, and estimation locations.
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value of zero. Similarly, Qoe,y is an n × m covariance matrix of n
observation locations and m estimation locations, and the rows
of Qoe,y that correspond to observations from cruises other than
cruise y are assigned a value of zero. The matrix Xo is n × p and
includes the p deterministic variables (trend and categorical)
for the observation locations, and the matrix Xe (m × p)
includes the same variables for the estimation locations. The
trend variables are normalized to a mean of zero and variance of
one. Note that terms with a “y” subscript are cruise-specific.
In eq 3, Λy is an n × m matrix of cruise-specific weights that

reflect both the spatial correlation structure and the
deterministic trends. Also, Gy is a p × m matrix of Lagrange
multipliers that can be used with Λy to determine location-
specific estimation uncertainties. Using the weights, along with
the observations zo (an n × 1 vector), one can develop
estimates of the response variable across the estimation grid:

Λ=z ze y y
T

o,
0

(4)

where ze,y
0 is an m × 1 vector of interpolated BWDO or BWHF

values for cruise y.
Although we use a UK model formulation, hypoxic area and

volume are not determined by kriging (i.e., spatial interpola-
tion), but instead by developing “spatially consistent Monte
Carlo simulations”17 which are often referred to as conditional
realizations (CRs). While both kriging and CRs provide
equivalent information for individual estimation locations,
CRs are necessary to estimate spatially aggregated quantities
(e.g., area and volume) probabilistically. A CR is performed by
first creating an “unconditional realization” and then “con-
ditioning” it to the observed data and deterministic trend.17

Unconditional realizations (eq 5) include simulated values at
the estimation locations (ze,y

u ) as well as at the observation
locations (zo,y

u ):
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Note that the vector zo,y
u includes simulated values correspond-

ing to the observations from all cruises, but only observations
from cruise y have their stochasticity correlated with that of the
estimation locations. Here, Qee is the m × m covariance matrix
between estimation locations, and u is an (m + n) × 1 vector of
random independent samples from the standard normal
distribution. The operator C( ) returns the triangular matrix
resulting from Cholesky decomposition of the subject matrix.
The unconditional realizations are then conditioned to the

observed data and deterministic trends through:

Λ= − +z z z z( )y
T

o o y e ye,y
c

,
u

,
u

(6)

Here, zo is the n × 1 vector of the observed values, and ze,y
c is the

resulting cruise-specific CR, an m × 1 vector of values
corresponding to the estimation locations.
The CRs are performed in two steps. First, BWDO

concentration is simulated across the entire estimation grid.
Then, BWHF is simulated over those locations where the
simulated BWDO is below the hypoxic threshold. At hypoxic
estimation locations, the simulated BWDO values are used as a
trend variable in the BWHF model. Simulated values are
limited to within realistic ranges (determined to be 0−7 mg L−1

for BWDO and 0.001−0.8 for BWHF, based on a review of the
observed data). Without these constraints, the estimated

hypoxic volume would be 6% smaller, on average, as a result
of (unrealistic) negative hypoxic thicknesses.
The two-step CR process is repeated 1000 times for each

cruise, resulting in 1000 realizations of both BWDO and
BWHF. For each realization of BWDO, the hypoxic area is
calculated as the number of estimation locations simulated to
be hypoxic multiplied by the grid cell area (25 km2); and for
each realization of BWHF, the hypoxic volume is calculated as
the vector of simulated BWHF values multiplied by the
corresponding vector of water column depths, all multiplied by
the grid cell area. From this ensemble of results, we determine
the mean and 95% confidence intervals for the hypoxic area and
volume for each cruise.

3. RESULTS
The BWDO and BWHF models include several parameters
that characterize the deterministic and stochastic model
components (eq 1). Regression coefficients for the BIC-
selected trend variables, explaining a portion of the spatial
variability in observed BWDO and BWHF, are provided in
Table 1. The standard errors of these coefficients are low (i.e., p

< 0.05), suggesting these trends are statistically significant. The
coefficients for the cruise-specific categorical variables, account-
ing for year-to-year variability in the responses, are included in
Section S3 of the SI. Overall, the deterministic model
components explain 28% and 32% of the total (spatial plus
interannual) variability in BWDO and BWHF, respectively,
while the stochastic components of the models explain the
remainder of the spatial variability. If trend variables are
omitted (i.e., the OK formulation), then the deterministic
components only account for interannual variability, and only
12% and 11% of the total variability in BWDO and BWHF is
explained, respectively. A check of the linearity assumption
implicit in these deterministic relationships is included in
Section S2 of the SI.
The BWDO model includes trends with easting, northing,

and depth. The trend between BWDO and easting is quadratic
with a minimum at 794 km easting (UTM coordinate, Figure
2), between the Mississippi and Atchafalaya river outfalls, which
is reasonable given that these rivers provide the freshwater
flows and nutrients that are important for hypoxia formation. In
1998, the only year for which a cruise-specific east−west trend
with BWDO is selected, the minimum is shifted to 1111 km
easting, outside of the study area, indicating that BWDO
concentrations decrease monotonically with easting within the
study area. The unique spatial distribution in 1998 has been

Table 1. Regression Coefficients (β̂) with Standard Errors
(σβ̂) for Normalized, BIC-Selected Trend Variables in
BWDO and BWHF Modelsa,b

variable

BWDO (mg L−1) BWHF

β̂ σβ̂ β̂ σβ̂

Easting −0.62 0.09 0.018 0.007
Easting2 0.25 0.07 −0.020 0.006
Northing −0.36 0.09 n.s.
Depth −2.31 0.18 n.a.
Depth2 2.45 0.17 n.a.
BWDO n.a. −0.065 0.005
c.s.E 1998 −1.35 0.45 n.s.

aParameters optimized by generalized least squares. bc.s.E = cruise
specific trend for Easting, n.s.=not selected, n.a.=not available.
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noted previously, and is generally attributed to unusually
persistent eastward currents.16 A similar BWDO pattern has
been noted for 2009,23 but it was not sufficiently strong to
result in a cruise-specific trend in this analysis. The trend
between BWDO and northing is linear, and suggests that
BWDO concentrations are higher to the south. The trend
between BWDO and bathymetry (depth) is quadratic with a
minimum at 22 m. The overall deterministic trends in BWDO
(Figure S7 of the SI) compare well with spatial patterns in
hypoxic frequency, as mapped by Walker and Rabalais.34

Because BWHF is modeled as a function of BWDO, it
effectively inherits the trends from the BWDO model. The
trend with BWDO is linear and suggests that BWHF is larger
where BWDO concentrations are lower. The model for BWHF
also includes a quadratic trend with easting, suggesting a
maximum at 701 km, about 30 km east of the Atchafalaya
outfall location (although the overall trend in BWHF is also
affected by the trends in BWDO). No cruise-specific east−west
trends were selected for the BWHF model.
The models also include covariance parameters that

characterize their stochastic components. For BWDO, σε
2 and

ση
2, commonly referred to as the nugget and partial sill, were

0.39 and 2.33 (mg2 L−2), respectively. Since σε
2 is smaller than

ση
2, the majority of the stochasticity in the model is spatially

correlated. The approximate range of spatial correlation (3r, per
eq 2) is 94 km in the east−west direction and 53 km in the
north−south direction. The greater correlation distance in the
east−west direction was expected due to the dominant east−
west current pattern.35,36 For BWHF, the spatial correlation of
the stochasticity is somewhat weaker with σε

2 and ση
2 similar in

magnitude, having values of 0.009 and 0.011 (unit-less),
respectively. Also, the correlation range was 63 km in all
directions (anisotropy was negligible). Overall, spatially
correlated stochasticity accounts for the greatest portion of
the variability in both BWDO and BWHF. As discussed in
Obenour et al.,9 the spatial correlation of the stochasticity is
consistent with the effects of varying coastal current patterns,
influencing the distribution of hypoxia over the spatial scales
described above. In general, the correlation ranges are
considerably longer than the typical distances between
sampling locations (Figure 2), especially on the eastern shelf,
suggesting that the sampling network is adequate for resolving
the spatially correlated stochasticity of the system.
Using CR, we determined the mean and 95% confidence

intervals for hypoxic area and volume of each cruise (Figure 3).
The largest estimated hypoxic area was for 1996, but it was not
significantly different from 1991, 1993, 1995, 1997, 1999, 2001,
2002, 2007, or 2008 (p > 0.05), given the uncertainty in the
area estimates. The largest hypoxic volume estimate was for
2008, but it was not significantly different from 1993, 1996,
1999, 2004, or 2007 (p > 0.05). Both hypoxic area and volume
were lowest in 1988, a drought year.16

Two sets of hypoxic area estimates, determined by
LUMCON, are also included in Figure 3 for comparison.
The first set are the original LUMCON estimates, determined
by hand contouring, as described above.2,19 The second set are
revised estimates developed as part of this study; also by hand
contouring, but using the updated BWDO values for this study
(which are superior because they reflect postcruise DO
calibrations). In most cases, the original LUMCON estimates
(Figure 3, open squares) overlap the revised estimates (solid
squares), and the majority of the LUMCON estimates fall
within the 95% confidence intervals determined by this study.

However, for the first third of the study period (1985−1993),
the new estimates are consistently higher than the LUMCON
estimates.
LUMCON did not make an estimate for 1989, because only

a portion of the shelf was sampled that year. Our method does
allow for extent estimates for 1989, and the wide confidence
intervals (Figure 3) reflect the relatively large uncertainties.
Even though data for 1989 were limited, the overall spatial
trends (based on the data from all years) help to constrain the
variability in the CRs to within realistic ranges, across the study
area. We note that the 1989 estimate presented here is
consistent with previous estimates developed from nutrient
loading models.37,38

There was considerable interannual variability in the spatial
distribution of hypoxia and in the thickness of the hypoxic
bottom layer (Figure 4). Years with similar hypoxic areas may
have very different average hypoxic thicknesses and thus
volumes. For example, 2002 and 2008 have similar hypoxic
areas, but they are very different in terms of hypoxic thickness,

Figure 3. Bottom layer hypoxic extent estimates with 95% confidence
intervals by year; estimates prior to making adjustments for instrument
bias as triangles; previous LUMCON area estimates as open squares;
revised LUMCON area estimates as solid squares.

Figure 4. Example maps of estimated bottom layer hypoxic thickness
(median values from CRs), 2001−2008; observation locations shown
as white dots.
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such that 2008 has approximately twice the hypoxic volume of
2002. The results indicate that the average bottom layer
hypoxic thickness for the 27-year study period was 3.9 m, with
the thickest average layers of approximately 6.2 and 6.3 m
occurring in 2008 and 2009, respectively. Over the 27-year
study period, hypoxic volume is correlated with area (r2 = 0.77).
Interestingly, hypoxic area and thickness are also somewhat
positively correlated over most years (r2 = 0.37, not including
1998 and 2009, which were subject to unusually strong
eastward currents16,23), such that volume increases exponen-
tially relative to area. Tabulated results and additional maps
showing estimated BWDO, estimated hypoxic thickness,
probability of hypoxia, and example CRs for the entire study
period are included in Sections S4 and S5 of the SI.

4. DISCUSSION

The geostatistical modeling results can be used to assess
temporal trends in hypoxic zone size for the 27-year study
period. Hypoxic volume increased by an average of 2.3% per
year as a linear trend with time (1.4 km3 yr−1, percent increase
determined by dividing by the 27-year mean hypoxic extent),
but this trend was not significant (p = 0.12). Hypoxic area
increased at a lesser rate of 0.9% per year (140 km2 yr−1) and
was also not significant (p = 0.42). However, the relatively large
increase in volume relative to area reflects a significant
increasing trend in hypoxic layer thickness (1.8% per year,
0.069 m yr−1, p = 0.05). Note that trend significance is affected
by the uncertainty in the geostatistical estimates; trend
significance is determined using a Monte Carlo approach
where temporal trend coefficients are developed for each of the
1000 sets of CRs, and an overall probability distribution is
developed by sampling from the uncertainty in these trend
coefficients (note p-values are based on a two-sided test).
Without accounting for uncertainty, the volume, area, and
thickness trends would have p-values of 0.09, 0.38, and 0.01,
respectively.
The new hypoxic area estimates can be compared to the

previous hypoxic area estimates developed by LUMCON.2,16

For the 27-year study period, the previous area estimates
increased at a highly significant rate of 2.6% per year (360 km2

yr−1, p = 0.01), substantially greater than the 0.9% rate for the
new estimates. This dissimilarity is due primarily to differences
in estimates for the earlier years of the study period (Figure 3).
For 1985−1987, the new estimates are consistently higher than
the previous estimates primarily because the geostatistical
methodology accounts for the possibility of hypoxia occurring
outside the envelopes of the cruises, which were relatively small
in these years. For 1990, 1991, and 1993, the new estimates are
also higher because of the instrument bias adjustments
developed in this study. For 1985−1993 (except 1989, for
which there is no previous estimate), the mean geostatistically
determined hypoxic area is 39% (3650 km2) greater than that of
the previous estimates.
For 1994−2011, the new area estimates are in general

agreement with the previous area estimates. Over this time
period, the two sets of estimates are highly correlated (r2 =
0.88), the means of the two data sets are of negligible
difference, and only three of the previous estimates (1996,
2003, and 2010) fall outside the 95% confidence intervals of the
new estimates (Figure 3). This suggests that when the biasing
issues noted above are avoided, there is approximate agreement
between the geostatistical and hand-contouring estimates.

The new extent estimates have implications for our
understanding of how hypoxia is changing over long temporal
scales. Multiple studies using nutrient loads to predict the
previous hypoxic area estimates have suggested the Gulf is
becoming increasingly susceptible to hypoxia, based on
increasing hypoxic area relative to nutrient loading.11,12,39,40

(Nutrient loading increased greatly in the 1970s but remained
relatively stable throughout the study period.)37,41 Increases in
hypoxic susceptibility have also been suggested in other studies
of the Gulf and other coastal systems.42−44 The new hypoxic
area estimates, however, exhibit relatively little increase over
time, especially when compared to the previous estimates,
potentially suggesting less system change during the study
period than previously thought. But, the new hypoxic thickness
and volume estimates do increase to a greater degree,
potentially suggesting a more vertically oriented increase in
hypoxic extent. Future studies could focus on recalibrating
existing nutrient-loading models to these new hypoxic extent
estimates to develop a refined understanding of how Gulf
hypoxia may be changing over time.
Uncertainties in the new hypoxic extent estimates,

represented by the 95% confidence intervals (Figure 3), reflect
the limited spatial scope and resolution of shelfwide cruise
sampling. Uncertainties are generally greatest in the earlier
years when cruises were smaller and did not always use
instruments that reached the sea floor. From 1985 to 1993, the
mean relative standard error for hypoxic area was 23%, but it
decreased to 11% for 1994−2011. Uncertainties also appear to
be larger in years with relatively severe hypoxia (i.e., lower
average BWDO and larger hypoxic area), likely because more of
the estimation grid is subject to the possibility of hypoxia (in
years with higher average BWDO, most of the estimation grid is
determined to be well above the hypoxic threshold, such that
simulated values rarely fall below the hypoxic threshold). In the
future, the modeling framework presented here could be used
to evaluate different sampling designs based on how well they
constrain estimate uncertainty. The modeling approach could
also be used to compare hypoxic extent results and associated
uncertainties using hypoxic threshold choices other than 2 mg
L−1.
Regardless of the precision of the estimates, it is important to

remember that they represent conditions at only certain points
in time (i.e., during the shelfwide cruises), and that hypoxic
extent can vary substantially throughout the summer due to
changes in organic matter production, wind-driven mixing
events, and fluctuating current patterns.10,45,46 As a result, these
estimates do not necessarily reflect hypoxic conditions over the
entire summer (although back-to-back cruises have demon-
strated fairly consistent hypoxic areas under stable weather
conditions).15 More detailed monitoring and biophysical
modeling are needed to better understand the short- and
long-term dynamics of hypoxia formation, and to mechanisti-
cally interpret the temporal variability in the extent estimates
presented here.
The primary feature of the geostatistical approach, when

compared to more traditional, interpolation-based approaches,
is the use of simulations (i.e., CRs).18 The most obvious benefit
is the ability to quantify the uncertainty in extent estimates. A
second benefit is that CRs provide more realistic extent
estimates than can be derived from kriging (or largely
equivalent methods such as Gauss-Markov smoothing47)
alone. In this study, hypoxic area estimates derived from kriged
maps (UK interpolation, Figure S14 of the SI) were
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substantially lower than both our CR estimates and the
LUMCON estimates. This is because the kriged maps (Figure
S9 of the SI) tend to characterize large portions of the
estimation grid as slightly above the hypoxic threshold.
However, due to the stochasticity of the system, these locations
still have some probability of being hypoxic. The CR approach,
which samples from the uncertainty in the system, accounts for
this possibility, and thus results in larger hypoxic area estimates.
This is consistent with Chiles and Delfiner,17 who argue that
CR, rather than kriging, is the more appropriate approach for
determining spatially aggregated quantities. A third advantage
of the CR approach is that it provides a framework for
performing instrument bias adjustments probabilistically, such
that adjustment uncertainty is propagated to the hypoxic extent
estimates. Finally, CR was fundamental to probabilistically
determining hypoxic volume (in addition to area). The two-
step CR approach, developed here, can be compared to other
volume estimation methods, such as multilayer kriging21 and
three-dimensional CR,22 which have been applied in Ches-
apeake Bay. A benefit of our approach is that it allows
uncertainty quantification of hypoxic volume within a relatively
simple (two-dimensional) geostatistical framework.
This study also demonstrates the benefits of including trend

variables within the geostatistical model (i.e., the UK
formulation) because the deterministic trends help reduce
model uncertainty and result in more realistic extent estimates
(Section S6 of the SI). The advantages of UK have been
demonstrated previously for Lake Erie and Chesapeake Bay
hypoxia,18,21 but are perhaps even more salient for an open
system such as the Gulf shelf. When trends in DO are not
modeled, it has been necessary to limit the estimation grid
around the bounds of the sampling cruise,15,48 such that the
size of the cruise can potentially bias the inferred hypoxic area.
By including trend variables that explain the large-scale spatial
patterns in BWDO and BWHF, it is possible to develop
realistic CRs of DO across the entire study area, so the same
estimation grid can be used for all cruises.
Finally, the results confirm that the hypoxic area on the

Louisiana-Texas shelf greatly exceeds the Hypoxia Task Force
goal of 5000 km2 as a five-year running average.6,7 The most
recent five-year period from our study, 2007−2011, has a mean
hypoxic area of 16 600 km2 with a 95% confidence range of 15
100−18 000 km2. Clearly, additional management measures are
required if the hypoxic extent is to be reduced to comply with
the Task Force goal.
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