
REVIEW

Cranberries and Their Bioactive Constituents
in Human Health1,2

Jeffrey B. Blumberg,3* Terri A. Camesano,4 Aedin Cassidy,5 Penny Kris-Etherton,6 Amy Howell,7 Claudine Manach,8

Luisa M. Ostertag,5 Helmut Sies,9 Ann Skulas-Ray,6 and Joseph A. Vita10
3Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA; 4Department of Chemical Engineering, Worcester
Polytechnic Institute, Worcester, MA; 5Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK; 6Department of
Nutritional Sciences, Pennsylvania State University, University Park, PA; 7Rutgers University, Marucci Center for Blueberry Cranberry Research,
Chatsworth, NJ; 8INRA, UMR1019 Nutrition Humaine, Centre de Recherche de Clermont-Ferrand/Theix, Saint-Genes-Champanelle, France;
9Heinrich-Heine-University Dusseldorf, Institute for Biochemistry and Molecular Biology I, Dusseldorf, Germany; and 10Evans Department of
Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA

ABSTRACT

Recent observational and clinical studies have raised interest in the potential health effects of cranberry consumption, an association that appears

to be due to the phytochemical content of this fruit. The profile of cranberry bioactives is distinct from that of other berry fruit, being rich in

A-type proanthocyanidins (PACs) in contrast to the B-type PACs present in most other fruit. Basic research has suggested a number of potential

mechanisms of action of cranberry bioactives, although further molecular studies are necessary. Human studies on the health effects of cranberry

products have focused principally on urinary tract and cardiovascular health, with some attention also directed to oral health and gastrointestinal

epithelia. Evidence suggesting that cranberries may decrease the recurrence of urinary tract infections is important because a nutritional

approach to this condition could lower the use of antibiotic treatment and the consequent development of resistance to these drugs. There is

encouraging, but limited, evidence of a cardioprotective effect of cranberries mediated via actions on antioxidant capacity and lipoprotein

profiles. The mixed outcomes from clinical studies with cranberry products could result from interventions testing a variety of products, often

uncharacterized in their composition of bioactives, using different doses and regimens, as well as the absence of a biomarker for compliance to

the protocol. Daily consumption of a variety of fruit is necessary to achieve a healthy dietary pattern, meet recommendations for micronutrient

intake, and promote the intake of a diversity of phytochemicals. Berry fruit, including cranberries, represent a rich source of phenolic bioactives

that may contribute to human health. Adv. Nutr. 4: 618–632, 2013.

Introduction
The 2010 Dietary Guidelines for Americans recommends an
increase in fruit intake as part of a healthy dietary pattern
(1). These recommendations allow for a broad array of forms

of fruit, including fresh, frozen, and canned, as well as dried
fruit and fruit juices. The published guidelines provide as ex-
amples oranges and orange juice, apples and apple juice, ba-
nanas, grapes, raisins, and berries. Whereas berries are noted
simply as good sources of potassium or fiber, recent research
suggests that berry fruits are a rich source of numerous phy-
tochemicals with a broad array of bioactivity and an impact
on human health (2–6). Several berry fruit, including black-
berries, blueberries, cranberries, raspberries, and strawberries,
have recently received attention as a result of their effects in
vitro and/or associations in observational studies with low-
ered risk of some chronic diseases. Randomized clinical trials
have progressed sufficiently in recent years so that meta-analy-
ses of these results have now been conducted.

Although not usually consumed raw, cranberry intake
can be marked because of its presence in juices and sauces
as well as its use as a dried fruit in cereal bars, cheeses,
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and chocolate and other confectionery. Also, cranberry pow-
ders and extracts are now used in foods products and dietary
supplements. The American cranberry (Vaccinium macrocar-
pon) is a particularly rich source of (poly)phenols, which have
been associated in vitro with antibacterial, antiviral, antimu-
tagenic, anticarcinogenic, antitumorigenic, antiangiogenic,
anti-inflammatory, and antioxidant properties (3,7,8). In vivo,
animal models reveal that cranberry extracts can reduce
C-reactive protein (CRP)11 and proinflammatory interleu-
kins and increase NO synthesis (9); decrease angiotensin-
converting enzyme, angiotensin II, and angiotensin II type
1 receptor (10); suppress Helicobacter pylori infection (11);
and improve pancreatic b-cell glucose responsiveness and
functional b-cell mass (12). Some of these actions may un-
derlie the results from clinical studies showing that cran-
berry products can lower LDL cholesterol (LDL-C) and
total cholesterol (13), increase HDL cholesterol (HDL-C)
while lowering the oxidative modification of LDL-C (14),
improve endothelial function (15,16), lower glycemic re-
sponses (17), elevate plasma antioxidant capacity (18–20),
modulate ulcerogenic gastric H. pylori colonization (21,22),
decrease cariogenic Streptococcus mutans and total bacterial
counts in saliva (23), reduce biomarkers of metabolic syn-
drome (4,24), and protect against urinary tract infections
(UTIs) (5,25).

We review here the phytochemical composition of cran-
berries and several other berry fruit, as well as evidence sug-
gesting the potential of cranberries to promote urinary tract
and cardiovascular health.

Cranberry Bioactive Composition and Content
Proanthocyanidins. American cranberry has a complex and
rich phytochemical composition, particularly flavan-3-ols, A-
type procyanidins (PACs), anthocyanins, benzoic acid, and
ursolic acid. Cranberry flavan-3-ols are present as monomers,
oligomers, and polymers (Table 1) (26). These oligomers and
polymers are also referred to as PACs or condensed tannins
and representw85% of the total flavan-3-ols on a weight ba-
sis (27,28). Cranberry PACs comprise a group of heteroge-
neous chemical structures, characterized by their constitutive
units, types of linkage, and degree of polymerization (DP).
(2)-Epicatechin is the predominant constitutive unit in cran-
berry PACs (Fig. 1), whereas (+)-catechin and (epi)gallocate-
chins are present only in trace amounts. The building blocks
of PACs can be condensed either via a single C-C bond be-
tween C4 of the upper unit and C8 or C6 of the lower unit
(B-type PACs) or with an additional ether-type bond between
C2 of the upper unit and the hydroxyl group at C7 of the lower
unit (A-type PACs) (Fig. 1). PACs with at least 1 A-type linkage
account for 51–91% of total PACs in cranberry (29,30). The

distinction between A- and B-type PAC structures is of impor-
tance because the difference can influence their biological
properties. The A-type PACs exhibit significantly greater inhi-
bition of in vitro adhesion of P-fimbriated Escherichia coli bac-
teria to uroepithelial cells than the B-type PACs, the initial step
of UTI (31). Many plant foods, such as apple, grape, and choc-
olate, contain high amounts of PACs, but only a few (plums,
peanuts, avocados, cinnamon, lingonberry) contain A-type
PACs, and none, except for lingonberry, at the amount found
in cranberries (28,32). Cranberries at 100 g fresh weight (FW)
provide 4196 75 mg total flavan-3-ols, including 706 13 mg
oligomers with DP of 4–6, 636 15 mg oligomers with DPs of
7–10, and 2346 49mg polymers, whereas monomers, dimers,
and trimers are present at lower amounts (7.3 6 1.5, 26 6 6,
and 196 3 mg, respectively) (33). These data are derived from
1 study in which a range of foods were analyzed for their PAC
content (27). A few other quantitative data for cranberries have
been published since this report, with estimates in the same
range (27,34). Importantly, analysis of the heterogeneous fam-
ily of PACs, including numerous stereoisomers for which com-
mercial standards are lacking, is still problematic, and data
obtained with global methods do not address this issue. The av-
erage DP of PACs in cranberry has not been established. Foo
et al. (29) initially reported an average DP of 4.7 for the cran-
berry PACs found to inhibit the in vitro adhesion of E. coli to
uroepithelial cells. Subsequently, higher average DPs in cran-
berry PACs were found (8.5–15.3), and using matrix-assisted
laser desorption-ionization time-of-flight MS, PACs with DPs
as high as 23 were detected (26,35).

Interestingly, cranberry contains a particularly high con-
tent of cell wall–bound PACs that are resistant to conven-
tional methods of extraction (36). Thus, it is probable that
the quantification of cranberry PACs in earlier literature is
underestimated. The bound PACs should be considered as
relevant to health outcomes because they have been shown
to be bioaccessible in the human large intestine (37,38).

Considering the limited data available today for the PAC
content of cranberries, it is difficult to draw a reliable compar-
ison to other berries. However, it is interesting to note that
the qualitative profiles differ substantially. Jungfer et al. (32)
found that 3 A-type trimers and procyanidin A2, identified
as putative active compounds in V. macrocarpon, are present
only in trace amounts in the European cranberry (Vaccinium
oxycoccus L.), and at substantially higher amounts in lingon-
berry (Vaccinium vitis-idaea L.). Other differences were found
in the flavan-3-ol profile of the 3 Vaccinium species, such as a
much higher epicatechin:catechin ratio in American cran-
berry compared with the other berries. As in red wine, cran-
berry anthocyanins and proanthocyanins can be condensed
in complex polymeric pigments at the last ripening stages
or during postharvest storage. These structures have only be-
gun to be characterized (35,39).

Anthocyanins. Amounts of anthocyanins are remarkably
high in cranberry, contributing to the color of the fruit
and derived foodstuffs, as well as the potential effects on hu-
man health. American cranberry is one of the rare foods that
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comprise glycosides of the 6 aglycones of the anthocyanidin
family: cyanidin, peonidin, malvidin, pelargonidin, delphinidin,
and petunidin (Fig. 1) (40). The predominant anthocyanins are

the 3-O-galactosides and 3-O-arabinosides of cyanidin and peo-
nidin; a total of 13 anthocyanins, mainly 3-O-monoglycosides,
have been detected (26,41). Cranberry anthocyanin content

TABLE 1 Phytochemical content of cranberry foods

Food source

Flavan-3-ol
monomers and
dimers (28,49)

Proanthocyanidins
(28,34)

Anthocyanins
(26,34)

Hydroxybenzoic
acids (49,50)

Hydroxycinnamic
acids (49,50)

Terpenes
(51)

Flavonols
(50)

Cranberry fruit
mg/100 g 7–33 133–367 13–171 503–602 73–82 65–125 20–40
mg/serving1 5.6–26.4 106–293 10.4–136.8 402–482 57.6–65.6 52–100 16–32

Cranberry juice
mg/L 6–35 89–230 27–132 64 12–19 Trace 11–58
mg/serving2 7 17.8–46 5.4–26.4 12.8 2.4–3.8 Trace 2.2–11.6

Canned cranberry sauce
mg/100 g 112.8 16–54.4 0.6–11.8 476 47.5 1.1–22.8 —5

mg/serving3 78.9 11.2–38 0.4–8.3 333.2 33.2 0.8–16 —
Sweetened, dried cranberries
mg/100 g — 64.2 10.3 — — 98.5 —
mg/serving4 — 25.6 4.1 — — 39.4 —

1 80 g whole fruit.
2 200 mL juice.
3 70 g sauce.
4 40 g dried fruit.
5 No data available.

FIGURE 1 Cranberry bioactives. R in each structure indicates a point of variation within that class of bioactives, and these variations
are defined underneath each structure.
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increases with ripening and is also dependent on the cultivar
and size of the fruit (42–44). Pappas and Schaich (26) reported
anthocyanin contents ranging from 13.6 to 171 mg/100 g FW.
Anthocyanin profiles vary among berry species. Cranberry was
reported as the main source of peonidin among 100 foods
commonly consumed in the United States (45). However, in
the majority of studies, the total anthocyanin content is re-
ported rather than amounts of individual anthocyanins. This
approach may change because the bioavailability and health ef-
fects of anthocyanins seem to be affected by the structures of
the aglycones or the glycosidic moieties (45–47).

Phenolic acids. Cranberry also contains phenolic acids, in-
cluding hydroxybenzoic and hydroxycinnamic acids. The
former are the most abundant, with very high contents of
benzoic acid at 474–557 mg/100 g FW (48–50) and much
lower contents of 2,4-dihydroxybenzoic, p-hydroxybenzoic,
and o-hydroxybenzoic acids at 2–4 mg/100 g FW (Fig. 1).
The main hydroxycinnamic acids in cranberry are p-couma-
ric, sinapic, caffeic, and ferulic acids, with contents ranging
from 8.8 to 25 mg/100 g FW (48). Of course, these phenolic
acids are not specific to cranberries. A comparison of the
phenolic acid content in cranberries with other berry fruit
is difficult. Ellagic acid and ellagitannins have not been detected
in significant amounts in American cranberry, whereas they are
abundant in berries of the genus Rubus (raspberry, cloudberry)
and Fragaria (strawberry).

Terpenes. Although much less studied than the polyphenol
composition, the presence of potentially active terpenes in
cranberry deserves further attention. Ursolic acid (Fig. 1) is
abundant in American cranberry at 46–109 mg/100 g FW
(51). This triterpene is a constituent of numerous traditional
herbal medicines and has strong anti-inflammatory effects
(52). Ursolic acid is present in a limited range of foods (ap-
ple, guava, olive, several herbs). Cranberry also contains
2 rare derivatives of ursolic acid: cis-3-O-p-hydroxycinnamoyl
ursolic acid (12–16 mg/100 g FW) and trans-3-O-p-hydroxy-
cinnamoyl ursolic acid (42–60 mg/100 g FW) (Fig. 1). The iri-
doids, monotropein and 6,7-dihydromonotropein, have also
been described in cranberry. An analysis of the fractionation
of cranberry juice guided by a bacterial antiadherence assay
revealed the presence of 2 new coumaroyl iridoid glycosides,
10-p-trans- and 10-p-cis-coumaroyl-1S-dihydromonotropein,
as well as a depside, 2-O-(3,4-dihydroxybenzoyl)-2,4,6-
trihydroxyphenylmethylacetate (53).

Flavonols. Flavonols in cranberries consist mainly in glyco-
sides of quercetin, myricetin, and to a lesser extent, kaemp-
ferol (Fig. 1). Quercetin 3-galactoside is the predominant
form, but at least 11 other glycosides are present in lower
concentrations (26,41). Some of these, such as quercetin-3-
acetylrhamnoside are rare in berries (54). As shown in the
PhenolExplorer database, the flavonol content of plant foods
is usually <3 mg/100 g FW (55), although bilberry, black-
berry, and blueberry contain 3.2–17 mg/kg (54,56,57). In
comparison, American cranberries have been described in

several surveys as the richest fruit source for flavonols, con-
taining 20–40 mg/100 g FW (26,56). A comprehensive study
in which flavonols were quantified in 28 wild and cultivated
berry species revealed that elderberry and a few other berries
that are consumed only in processed forms are richer in fla-
vonols, at 23–57 mg/100 g FW, than cranberry (54).

Effect of food processing on cranberry bioactives. Cran-
berry is rarely consumed fresh, due to its tart and astringent
taste. It is chiefly consumed as processed juice (60%) and to
a lesser extent as sauce and sweetened, dried fruit (48,58).
Multiple-step processing for juice production leads to a sub-
stantial loss of phytochemicals through elimination of rich
fractions (skin, seeds), thermal degradation, as well as oxida-
tion by polyphenol oxidase and peroxidase, so that com-
pounds are retained to varying extents in processed foods.
Anthocyanins are the most affected, with losses of >50%.
Flavonols and PACs are somewhat heat-stable and resistant
to the clarification and pasteurization steps but can be af-
fected by high heat, which is sometimes used when cran-
berries are processed into powders. However, losses of 30–
40% can occur during pressing, through removal of skin
and seeds. In addition, the juice is often diluted or blended
with other fruit juices, which diminishes or modifies the
beverage phytochemical content. Nonetheless, cranberry juice
can still contribute significantly to the intake of PACs and
flavonols and, to a lesser extent, anthocyanins. Interestingly,
the content of ursolic acid in sweetened, dried cranberries
was found to be comparable to that measured in the fresh
fruit (51).

Metabolomic approach to composition of fruit bioactives.
Because phytochemicals comprise an extraordinary diversity
of structures, few studies have analyzed a wide range of cran-
berry phytochemicals at once. The emergence of nontargeted
metabolomics opens a new avenue for the comprehensive
description of plant food composition. A metabolomics ap-
proach allowed the identification of phytochemicals in toma-
toes and strawberries, which had never been previously
reported (59,60). A nontargeted metabolomics analysis has
been performed on 5 cranberry cultivars to compare their
phytochemical diversity. Between 4477 and 6330 compounds
were detected in each cultivar, with a large majority conserved
in all cultivars (44).

Cranberries in Urinary Tract Health
Traditionally, urinary tract health has been managed through
infection-prevention practices, including use of low-dose an-
tibiotics. However, this approach carries a serious potential
for the development of antibiotic resistance, so alternative
strategies could have an important consequence for public
health (61). Increasing fluid intake and acidifying the urine re-
vealed inconsistent results in research trials (62,63), although
an early study reported increased urinary acidity “by eating
prunes and cranberries” (64). Historically, plants (especially
their polyphenols) have been used in herbal and traditional
medicines (65). Because their antimicrobial activity is based
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on a number of different mechanisms of action, and the com-
pounds responsible for the effects are often complex, it is un-
likely that bacteria will develop resistance to them (66). The
most widely studied alternative treatment is cranberry, which
has been shown to be effective at preventing UTIs in a number
of human intervention trials.

Mechanisms of action
Several mechanisms have been proposed for the actions of
cranberry in the prevention of UTIs, with attention espe-
cially on the interference with bacterial adhesion in the uri-
nary tract (67). An antiadhesion response is elicited in urine
after cranberry consumption, preventing uropathogenic
P-fimbriated E. coli from adhering to bladder cell receptors
(68). If the bacteria cannot adhere to cells, they will not
grow and cause infection. The reduction in adhesion forces
(69) may be due to changes in bacterial morphology (70)
and/or genetically based decreases in P-fimbrial expression
(70,71). In addition, a beneficial effect of cranberry bioac-
tives on gut microbiota has been proposed, especially for
the larger oligomer polyphenols (72). However, these puta-
tive mechanisms found in vitro have not been demonstrated
in clinical efficacy trials.

Clinical trials
Whereas the effects of cranberry bioactives on bacterial-
epithelial cell binding and pilus expression have been demon-
strated in laboratory models, clinical evidence of a beneficial
effect on human health has been difficult to elicit consistently.
Observational studies associating cranberry consumption
with UTIs have not been undertaken. A number of human in-
tervention studies have been conducted with cranberry pro-
ducts, but synthesizing the information from these studies
remains challenging, partly because different study designs
and clinical conditions have been examined, different end-
points or effect markers have been measured, and different
and unstandardized products have been used. The choice of
study participants is particularly important because the path-
ogenesis of UTI is specific to different patient groups. Young,
sexually active women often develop UTI after intercourse be-
cause bacteria can be introduced into the bladder during sex.
Young children may develop UTI as a result of structural ab-
normalities in the urinary tract that predispose them to tur-
bulent urinary flow and introduction of bacteria from the
periurethral area to the bladder, renal pelvis, and/or kidney.
Older women with recurrent UTIs differ from these other
groups. Thus, to fully evaluate the potential of cranberry to
prevent or treat UTIs, one must consider the individuals, pro-
duct used, the dose and method of administration, length of
exposure, compliance with regimen, and choice of compara-
tor agent. Given these variables, it is not surprising that the
results of individual studies and meta-analyses have been in-
consistent (25).

In the first randomized double-blind study examining
whether cranberry juice consumption could prevent the re-
currence of UTI, women in a nursing home consumed 300
mL/d of artificially sweetened cranberry juice for 6 mo (73).

After 1 mo, the prevalence of bacteriuria with pyuria was sig-
nificantly lowered for the women who had consumed cran-
berry juice.

Although several subsequent studies have been conducted,
the results have not been easy to interpret in all cases. One is-
sue may be that compliance is easier to monitor in participants
in a long-term care facility than in free-living participants in
the general population. With the exception of 2 studies in el-
derly persons in hospital or long-term care facilities (73,74),
most other studies have been performed in participants living
in the community, where monitoring of compliance is more
difficult. Differences in the size of the study, study design
(crossover vs. parallel, double-blinded and/or placebo-controlled),
type of cranberry product and source (juice, tablet, supplier,
etc.), dose, duration, washout period, and control of the par-
ticipants’ diets (or absence thereof) during the intervention
period all may affect study outcome.

Illustrating these challenges, 2 recent comprehensive re-
views and a meta-analysis of the effect of cranberry con-
sumption on UTIs each drew different conclusions. Wang
et al. (5) initially examined 13 trials with a total of 1616
participants and subsequently performed a more detailed
analysis of 10 trials (1494 participants) using quantitative
methods. They concluded that consumption of cranberry
products protected against UTIs and that an enhanced posi-
tive outcome was seen particularly among certain subgroups,
namely womenwith recurrent UTIs and individuals who con-
sumed cranberry products more than twice daily. In contrast,
Jepson et al. (75) collected data from all randomized con-
trolled trials or randomized controlled trials of cranberry pro-
ducts for the prevention of UTIs. Their analysis included 24
studies with a total of 4473 participants. They concluded
that cranberry products did not significantly alter the occur-
rence of UTIs in the overall population or in any subgroups
(women with recurrent UTI, pregnant women, children with
recurrent UTI, cancer patients, or people with neurogenic
bladder or spinal injuries). However, the calculated relative
risk of developing UTIs in the treated versus control groups
was <1.0. Risk ratios of <1.0 were interpreted as positive out-
comes by Wang et al. (5) but not by Jepson et al. (75) In addi-
tion, different CIs were reported in each study.

Clinical trials in adult women and in women with recurrent
UTIs. Women, who have a higher risk of UTIs than men,
and particularly women with recurrent UTIs have been
studied most frequently in cranberry interventions. An early
case report considered a 66-y-old woman who had chronic
pyelonephritis that was not treatable with antibiotics (76).
After 8 wk of treatment with 180 mL cranberry juice twice
daily, there was an improvement in her urine (determined
by albuminuria and pyuria), and the infection was almost
completely cleared after 9 mo. She did not require antibi-
otics again for 2.5 y.

Placebo-controlled trials have examined womenwith a his-
tory of recurrent UTIs to determine whether cranberry con-
sumption can prevent outbreaks and included both cross-over
(77) and parallel (78–80) designs. Different cranberry products
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and placebos were administered in these trials, with only 1 study
(80) using the placebo specifically designed for cranberry juice
by theNIHNational Center for Complementary and Alternative
Medicine.

Walker et al. (77) used 400mg/d of encapsulated cranberry
solids or placebo for 3 mo in a group of 19 patients and found
a diminution in the recurrence of UTIs during the active
treatment period. In a trial in 150 women with recurrent
UTI, Stother (79) tested pure cranberry juice, concentrated
cranberry extract, and placebo and found the UTI incidence
to be 30%, 39%, and 72% in each group, respectively. In con-
trast, Barbosa-Cesnik et al. (78) demonstrated no diminution
in the recurrence of UTIs with cranberry treatment (240 twice
daily) compared with placebo in 319 college women but ob-
tained recurrence rates of 19.3% and 14.6%, respectively, that
were much lower than the 30% rate anticipated, so the statis-
tical power of the study appeared to be compromised. Staple-
ton et al. (80) randomly assigned 176 young women to receive
either 120 or 240 mL/d of cranberry juice or a placebo bever-
age. The overall result showed a nonsignificant decrease of
32% in the risk of UTI for women who consumed the cran-
berry beverages compared with placebo. Notably, this study
directly found a correlation between the clinical outcomes
and the in vitro determination of P-fimbriated E. coli, consis-
tent with the mechanism proposed by Howell et al. (67) of
prevention of recurrent UTIs via interference by cranberry bi-
oactives of the binding of P-fimbriated E. coli to bladder ep-
ithelial cells.

There are other studies in women that have shown positive
results, although there are weaknesses in the study designs.
Testing 150 women with previous UTIs, Kontiokari et al.
(81) examined 50 mL of cranberry-lingonberry juice versus
100 mL of Lactobacillus GG using a “no treatment” control.
Absent a placebo and a standardized cranberry product, they
reported a 20% lowering in UTIs for the women who con-
sumed the cranberry-lingonberry beverage. Foxman et al.
(82) evaluated the relation between UTIs and sexual behavior
in sexually active women with no prior UTI history, a unique
population among cranberry studies. Data on cranberry juice
and carbonated soft drink consumption were collected as part
of the study, but these were not prescribed treatments. They
found that although vaginal intercourse increased the risk of
UTIs, adjusting for this increase revealed that cranberry juice
was protective against UTI, whereas carbonated soft drinks
were associated with an increased risk of UTIs.

Clinical trials in children. Ferrara et al. (83) examined 84
girls aged 3–14 y who had experienced >1 UTI in the past 12
mo in a placebo-controlled parallel design study. Partici-
pants were given 50 mL of cranberry-lingonberry concen-
trate daily, 100 mL of Lactobacillus GG administered 5 d/mo,
or a “no treatment” control for 6 mo. The UTI rate was
18.5% for the group that consumed cranberry-lingonberry
juice, 42.3% for the Lactobacillus group, and 48.1% for the
control group.

Foda et al. (84) enrolled children with an average age of
9.4 y and neuropathic bladders undergoing intermittent

catheterization in a crossover trial and tested 15 mL/(kg $ d)
of cranberry juice cocktail or water for 6 mo. No difference
was seen in either asymptomatic bacteriuria or UTI recur-
rence between the 2 groups. However, 19 of the 40 partici-
pants withdrew during the study period, limiting the study
power to show a statistically significant effect. By using a par-
allel trial design, Salo et al. (85) tested 255 childrenwith a pre-
vious UTI diagnosis with cranberry juice [5 mL/(kg $ d); up
to 300 mL] or a placebo juice for 6 mo. Whereas cranberry
treatment did not decrease the number of children who expe-
rienced a recurrent UTI, there was a trend showing a lowering
in the number of recurrent UTIs and a reduction of 34%
in the number of days per patient-year of antibiotic treat-
ment. These investigators also found that compliance was bet-
ter for the placebo group (80% of doses consumed) than for
the treatment group (64% of doses consumed), showing the
critical importance of using products and dosing regimens
that are palatable for the participants and carefully monitor-
ing participant compliance. In a randomized controlled trial,
Afshar et al. (86) treated 39 girls and 1 boy (median age of 7 y)
with at least 2 documented nonfebrile UTIs in the calendar
year before enrollment with cranberry juice containing either
a high PAC content (37%) or with no PAC. After 1 y of follow-
up, the average incidence of UTIs was 0.4 and 1.15 in the
treatment and placebo groups, respectively, representing
a statistically significant 65% lowering of the risk of UTI.
Thus, to date, there are now 3 independent randomized
trials demonstrating a beneficial effect of cranberry juice
in children with recurrent UTIs.

Effects from other Vaccinium berry fruit bioactives
on urinary tract health
As discussed above, there is some overlap in the bioactives
profile between cranberry and other Vaccinium species, par-
ticularly highbush blueberry (Vaccinium corymbosum L.),
lowbush or “wild” blueberry (Vaccinium angustifolium Aiton),
and lingonberry (V. vitis-idaea L.) (87,88). For example,
the polymerized PACs in blueberry (89) and lingonberry
(32,90) have been found to contain A-type linkages, albeit
with different profiles and amounts than those found in
cranberries.

Schmidt et al. (88) reported a significant positive cor-
relation between the oligomeric PAC content of different
fractions of wild blueberry and in vitro bioactivity, with frac-
tions containing higher molecular weight PACs inhibiting
the adhesion of P-fimbriated E. coli most effectively. Simi-
larly, Ofek et al. (91,92) found that polyphenols from blue-
berry but not grapefruit, guava, mango, orange, or pineapple
prevented P-fimbriated bacterial adhesion in vitro. Clinical
trials of the effect of blueberry urinary tract health have
not been performed to date.

Cranberries in Cardiovascular Health
Mechanisms of action
Avariety of mechanisms might account for a favorable effect
of cranberry consumption on cardiovascular disease (CVD),
including effects on CVD risk factors such as dyslipidemia,
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diabetes, hypertension, inflammation, oxidative stress, endo-
thelial dysfunction, arterial stiffness, and platelet function. Such
effects might slow atherogenesis, lesion progression, plaque
rupture, thrombosis, myocardial infarction (MI), and the
subsequent development of ischemic cardiomyopathy.

Dyslipidemia. Animal and human studies suggest that con-
sumption of cranberry juice and cranberry anthocyanins
lowers LDL-C and increases HDL-C. For example, consump-
tion of cranberry bioactives improved lipid profiles in Golden
Syrian hamsters fed a high-fat diet (93), ovariectomized rats
(94), and hypercholesterolemic swine (95). With regard to
clinical studies, a placebo-controlled clinical trial involving
150 participants with hypercholesterolemia showed that con-
sumption of a purified mixture of anthocyanins (320 mg/d)
lowered LDL-C and increased HDL-C (96). Favorable effects
of cranberry juice on blood lipids have also been demon-
strated in other populations, including in obese men (14),
patients with diabetes mellitus (13), and patients with low
HDL-C and hypertriglyceridemia (97). Other studies examin-
ing healthy volunteers and patients with CVD failed to show
significant effects of cranberry juice consumption on plasma
lipids (15,16,18,19,24), but these discrepant results likely re-
late to differences in study populations, baseline lipids, and
background medications, including lipid-lowering therapy.

The precise mechanism that might account for an im-
proved lipoprotein profile after consumption of cranberry
bioactives is incompletely understood. Studies with cultured
hepatocytes indicate that a cranberry extract can increase the
surface expression of LDL receptors and uptake of LDL-C
(98), which would be expected to lower plasma LDL-C con-
centrations. A clinical study in patients with dyslipidemia
suggests that anthocyanin supplementation inhibits choles-
terol ester transfer protein (CETP) (97), which would be ex-
pected to increase HDL-C concentrations and enhance
reverse cholesterol transport, although it currently remains
controversial whether CETP inhibition actually lowers car-
diovascular risk (99).

Diabetes and hypertension. The data supporting an effect
of cranberry bioactives on other CVD risk factors such as
diabetes mellitus and hypertension are less strong. There is
evidence that an intravenous infusion of dilute buffered
cranberry juice lowers blood pressure in anesthetized rats
(100). Cranberry extract also prevented an increase in blood
pressure associated with consumption of a high-fat diet in
Golden Syrian hamsters (93). An in vitro study suggested
that cranberry extracts inhibit angiotensin converting en-
zyme and thus might be expected to lower blood pressure
(101). To date, clinical studies in patients with diabetes mel-
litus and CVD have failed to show blood pressure–lowering
effects after the consumption of cranberry juice (13,15,16).
A study examining the effects of anthocyanin supplementa-
tion (320 mg/d for 4 wk) also showed no effect on ambula-
tory blood pressure in untreated hypertensive patients (102).

Diabetes is a potentially modifiable risk factor for CVD
that might be affected by cranberry bioactives. Animal studies

have demonstrated that cranberry powder or cranberry-
derived flavonoids lower blood glucose and improve insulin
sensitivity in models of diabetes mellitus (103,104). Cran-
berry supplementation, however, had no effect on glycemic
control in patients with type 2 diabetes mellitus (13,105).

Oxidative stress. Increased oxidative stress and oxidative
modification of lipids, proteins, and nucleic acids contribute
to the pathogenesis of atherosclerosis and other forms of
CVD (106). These data are convincing, despite the findings
of randomized clinical trials that showed no benefit of rela-
tively high doses of a few antioxidant vitamins. This apparent
discrepancy has been attributed to the important physiologic
signaling role played by reactive oxygen species (ROS) in the
vasculature as well as the potentially harmful effects of indis-
criminant ROS scavengers. It also has been suggested that in-
hibiting enzymatic sources of ROS is a more effective strategy
to lower oxidative stress, providing a partial explanation for
the proven benefits of certain interventions, including statins
and angiotensin converting enzyme inhibitors (107). There
is a large body of work showing that cranberry bioactives
have antioxidant effects in vitro and in vivo in experimental
models, and it seems plausible that such effects might con-
tribute to benefits from cranberry consumption (7,108).

Although (poly)phenols are often defined as dietary anti-
oxidants, their principal mechanisms of action appear to be
unassociated with directly reducing ROS (109). Nonetheless,
there is reasonable evidence that consumption of cranberry
juice or cranberry bioactives diminishes blood markers of
oxidative stress in healthy volunteers and in patients with
cardiovascular risk factors. For example, Duthie et al. (19)
showed that consumption of cranberry juice (750 mL/d for
2 wk) improved plasma antioxidant capacity in healthy fe-
male volunteers. Increases in plasma antioxidant capacity
and a decrease in circulating concentrations of oxidized
LDL-C have been reported in healthy men (18) and in sed-
entary men (110). Basu et al. (24) observed a similar effect of
cranberry juice on antioxidant capacity and circulating oxi-
dized LDL-C in women with metabolic syndrome. However,
most studies to date have failed to provide evidence for
an actual decrease in oxidative damage to lipids or nucleic
acids, as reflected by biomarkers such as F2-isoprostanes or
8-hydroxydeoxyguanosine. Thus, it remains uncertain whether
the beneficial effects of cranberry bioactives on vascular
function or CVD can be attributed simply to their ability
to scavenge ROS.

Inflammation. Atherosclerosis is an inflammatory disease,
and there is growing appreciation that intervention-induced
changes in CRP and other biomarkers of inflammation pro-
vide surrogate information about cardiovascular risk (111).
For this reason, there is considerable interest in the possibility
that consumption of cranberry bioactives will have anti-
inflammatory effects and decrease concentrations of inflamma-
tory cytokines. Several in vitro studies suggest that cranberry
bioactives suppress the activation of macrophages and T
cells exposed to relevant proinflammatory stimuli (112,113).
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Notably, this mechanism has also been suggested to contribute
to the favorable effects of cranberry juice against periodontal
disease (114). Cranberry anthocyanins have a similar effect
on microvascular endothelial cells and act to blunt expression
of intercellular adhesion molecule 1 (ICAM-1) and monocyte
chemotaxic protein 1 after exposure to proinflammatory cyto-
kines (115). Anthocyanins also prevent hyperoxia-induced ac-
tivation of nuclear factor k-light-chain-enhancer of activated
B cells (NF-kB) and other proinflammatory pathways in cul-
tured endothelial cells (116).

Several human studies provide evidence for an anti-
inflammatory effect of cranberry bioactives. Ruel et al.
(110) showed that consumption of cranberry juice reduced cir-
culating adhesion molecules in sedentary middle-aged men
with risk factors. Zhu et al. (96) reported that consumption
of a purified mixture of anthocyanins (320 mg/d) led to
significant decreases in CRP, soluble vascular cell adhesion
molecule 1 (sVCAM-1), and plasma IL-1b in patients with hy-
percholesterolemia. In contrast, several studies failed to dem-
onstrate significant effects on CRP, adhesion molecules, and
other plasma markers of inflammation (13,15,16,24). As for
studies of plasma lipids, differences in participant population
and background medications may account for the lack of a de-
tectable anti-inflammatory effect in some studies, but further
studies are needed to explain these discrepant findings.

Endothelial dysfunction. The vascular endothelium main-
tains homeostasis via production of many factors that act lo-
cally in the vascular wall and lumen to control vasomotor
tone, thrombosis, inflammation, and angiogenesis (117). En-
dothelium-derived NO plays a particularly important role by
acting as a vasodilator, an antiplatelet and anti-inflammatory
factor, and by inhibiting the proliferation of vascular smooth
muscle cells and promoting angiogenesis. Loss of NO contrib-
utes to atherogenesis, lesion progression, and risk of cardio-
vascular events (117,118). Many interventions that restore
the bioavailability of NO are known to lower cardiovascular
risk, including cholesterol-lowering drugs, angiotensin con-
verting enzyme inhibitors, behavioral interventions such as
weight loss and exercise, and dietary interventions such as
flavonoid-containing foods and beverages.

Experimental studies have shown favorable effects of
cranberry bioactives on endothelial function and NO bio-
availability. Exposure of isolated rat arterial rings to cranberry
juice extract enhanced endothelium-dependent vasodilation
(100). Treatment of ovariectomized rats with cranberry juice
improved endothelium-dependent dilation and increased
concentrations of activated endothelial NO synthase (eNOS)
in isolated aortic tissue (94). These changes were associated
with decreased expression of NADPH oxidase, a source of su-
peroxide production, suggesting that improved endothelial
vasodilator function in this setting might be related to a de-
crease in oxidative stress. A cranberry juice extract was shown
to induce phosphorylation of eNOS at serine 1177 via PI3 kinase/
Akt signaling in cultured endothelial cells, a modification
associated with increased NO production (119). Anthocyanins
found in cranberries also improve endothelial vasodilator

function. For example, malvidin-3-glucoside was reported to
enhance expression of eNOS and NO production and to
have anti-inflammatory effects in cultured endothelial cells
(120).

Clinical studies of cranberry bioactives and endothelial
vasodilator function have provided mixed results. In a cross-
over study comparing the effects of anthocyanins to placebo,
Zhu et al. (12) observed an acute improvement in endothe-
lium-dependent dilation 1–2 h after consumption in pa-
tients with hypercholesterolemia. In contrast, Dohadwala
et al. (15) observed no effect of cranberry juice consumption
(480 mL/d providing 835 mg/d total polyphenols for 4 wk)
on brachial artery flow-mediated dilation or fingertip pe-
ripheral arterial tonometry [measured by EndoPAT (Itamar
Medical, Caesarea, Israel)] in patients with coronary artery
disease. That study examined vasodilation over 12 h after
the last cranberry juice consumption, a time when cranberry
polyphenols would be expected to be low or undetectable in
plasma (121). Consistent with the acute study by Zhu et al.
(12), Dohadwala et al. (15) observed improved endothelial
vasodilator function 2–4 h after cranberry juice consump-
tion in an uncontrolled pilot study, but a placebo-controlled
trial would be required to confirm those findings. Flammer
et al. (16) also observed no significant improvement in en-
dothelial function measured by EndoPAT after consumption
of double-strength cranberry juice (460 mL/d) in patients
with risk factors and endothelial dysfunction at baseline. How-
ever, cranberry juice consumption was associated with a
favorable effect on the phenotype of circulating endothe-
lial progenitor cells, which play a role in restoring vascular
function after vascular injury. As with other polyphenol inter-
ventions, favorable effects of cranberry juice on endothelial va-
sodilator function appear to be evident a few hours after acute
consumption, at a time that corresponds to peak plasma con-
centrations of cranberry bioactives (122,123).

Arterial stiffness. Stiffness of the central aorta is increas-
ingly recognized as an important aspect of vascular function
relevant to the pathogenesis of hypertension and heart fail-
ure (124,125). Arterial stiffness is influenced by structural
factors, including the relative amounts of elastin and
collagen in the arterial wall, and by dynamic factors such
as arterial tone and the balance of vasodilators and vaso-
constrictors produced locally (126). Measures of arterial
stiffness, particularly carotid-femoral pulse wave velocity
(PWV), predict cardiovascular events and incident hyper-
tension and respond to dietary and pharmacologic interven-
tions (124–126).

In a placebo-controlled crossover clinical trial involving
44 patients with coronary artery disease, Dohadwala et al.
(15) demonstrated that consumption of cranberry juice
(480 mL/d of 54% juice providing 835 mg total polyphe-
nols/d) for 4 wk significantly decreased central aortic stiff-
ness as measured by carotid-femoral PWV. In contrast,
Ruel et al. (127) observed no effect of cranberry juice con-
sumption (500 mL/d of 27% juice providing 400 mg total
polyphenols/d) for 4 wk on augmentation index in obese
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men, although there was a trend for an effect in the subgroup
with metabolic syndrome. Although differences in study pop-
ulation and amount of juice might explain the discrepant re-
sults, it is notable that PWV relates strongly to cardiovascular
events, whereas augmentation index does not (124), suggest-
ing that PWV has greater clinical relevance.

Platelet function. The importance of platelet aggregation
for acute cardiovascular events, such as unstable angina and
acuteMI, is well recognized; antiplatelet agents such as aspirin
and clopidogrel lower cardiovascular risk. Other polyphenol-
containing beverages are known to inhibit platelet aggre-
gation, including tea and grape juice (128,129), and there is
interest in the possibility that cranberry bioactives might
have similar effects. Although no clinical study has examined
the effects of cranberry juice consumption on platelet func-
tion, Yang et al. (130) showed that delphinidin-3-glucoside,
an anthocyanin found in cranberry juice, significantly in-
hibited platelet activation in isolated platelets and inhibited
thrombosis in a mouse carotid injury model.

Clinical trials
As discussed above, a growing body of clinical research has
examined whether cranberry phenolics may lower the risk
of CVD via modulation of multiple risk pathways using
doses of these bioactives that are achievable with daily con-
sumption of most cranberry products (Supplemental Table
1). Most studies have examined commercially available juice
containing 27% cranberry juice at doses of #750 mL/d or
54% cranberry juice at doses of ~500 mL/d (131,132). No
studies conducted to date have used a 100% cranberry juice
intervention. Lee et al. (13) used a powdered cranberry juice
concentrate but did not provide equivalency information to
the whole fruit or juice. A 240-mL glass of 100% pure cran-
berry juice (70 kcal) daily approximately would provide a
dose of cranberry juice that is equivalent or greater than
the doses examined in clinical studies to date.

Oxidized LDL-C was not improved in a crossover study
in 35 overweight men after consuming 500 mL/d of cran-
berry juice for 4 wk (127). However, in a placebo-controlled
study in individuals with metabolic syndrome (15–16/
group) given 480 mL/d of cranberry juice for 8 wk, plasma
antioxidant capacity, oxidized LDL-C, and malondialdehyde
were significantly improved (24). It is possible that a rela-
tively longer supplementation period and/or presence of
modifiable risk factors are needed.

Shidfar et al. (133) reported improvement in apo B, apo
A-1, paraoxonase 1, and glucose concentrations after 240 mL/d
cranberry juice in a randomized trial in 58 men with type
2 diabetes but did not report a traditional lipid panel; Lp(a),
an atherogenic form of LDL-C, was not changed. Thus, there
is inconsistent evidence regarding the effects of cranberry juice
consumption on lipids and lipoproteins. Nonetheless, given
that some studies reported beneficial effects, further studies
are warranted to clarify whether, and the extent to which,
cranberry juice affects lipids and lipoproteins, as well as asso-
ciated blood markers of CVD risk.

Ruel et al. (110,134) reported a reduction in matrix met-
alloproteinase 9, ICAM-1, and sVCAM-1 at the end of their
dose escalation trial coinciding with the 500 mL/d dose of
cranberry juice. However, in the placebo-controlled study
by Flammer et al. (16), ICAM-1 and sVCAM-1 were not
lowered by cranberry juice. In a randomized crossover study,
Ruel et al. (127) tested 480 mL/d unsweetened cranberry
juice for 4 wk in 35 overweight men and found no difference
in augmentation index, blood pressure, or adhesion markers
between groups. However, these researchers highlighted a
significant 14% decrease in augmentation index relative to
baseline after the cranberry juice intervention. Blood pres-
sure results have been inconsistent among studies, with little
emphasis on this endpoint (15,16,24,110,127,134). Further
studies are needed to evaluate whether cranberry juice con-
sumption improves measures of arterial stiffness and func-
tion, as well as blood pressure.

Cranberry juice has been shown to increase plasma and
urinary concentrations of salicylic acid (135), which may affect
enzymatic pathways activated during inflammatory responses,
providing a provocative mechanism for future clinical studies
that make use of an inflammatory stimulus.

Observational studies
In contrast to the absence of observational studies looking at
the association between cranberry intake and urinary tract
health, there is a growing body of such evidence with regard
to the intake of (poly)phenols that are found in cranberries
(and other plant foods) and cardiovascular health.

Anthocyanins. Several prospective cohort studies have
examined the associations between habitual anthocyanin
intakes and CVD outcomes (Supplemental Table 2) or bio-
markers of CVD risk (Supplemental Table 3), predomi-
nantly in U.S. populations. Coronary heart disease (CHD)
and nonfatal MI were examined in 3 studies, with evidence
suggesting that increased anthocyanin intake is significantly
associated with a lowered risk of CHD by 12–32% in multi-
variate analyses (136–138). The magnitude of the protective
effect of increased anthocyanin intake was smaller (12–21%)
in older women and men compared with the 32% risk re-
duction seen in younger and middle-aged women compar-
ing extremes of anthocyanin intake (138). Median intakes
in these younger/middle-aged women were 12 mg/d. When
extreme deciles of intake were compared, those in the top
decile had a 47% lowering in risk of MI; for every 15-mg in-
crease in anthocyanin intake, the relative risk of MI decreased
by 17% in the multivariate model, suggesting a continual
dose-response at higher intakes. The relation between an-
thocyanin intake and CVD mortality was also examined in
several studies, with 1 study showing no association (139),
whereas others observed a 9–14% decrease in risk comparing
higher with lower intakes (136,137). The impact of increased
anthocyanin intake on stroke has been examined, but there is
currently no evidence for an association (136,137,139,140).

In relation to CVD risk biomarkers, prospective studies
and cross-sectional data provide mechanistic support for
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the observed decrease in CHD risk with increased anthocy-
anin intake. Specifically, higher intakes improve arterial stiff-
ness (as assessed by PWV) and blood pressure, but the limited
data on the effects on inflammatory biomarkers are equivocal.
Interestingly, the greatest decrease in hypertension was ob-
served in younger/middle-aged women, supporting the ob-
served decrease in risk of MI in this age group (138,140).
The magnitude of the associations observed between antho-
cyanin intake and systolic blood pressure (24mmHg decrease
with higher intake) was similar to that previously reported
for smoking cessation and 2-fold higher than that observed
after a 1.4-portion increase in fruit and vegetable intake (142).

Flavonols. A meta-analysis of prospective cohort studies
published before 2002 suggests that increased intake of flavo-
nols was associated with a 20% decrease in CHD mortality
(143). However, a more recent systematic review of studies
published through January 2012 observed no significant asso-
ciation when all the prospective cohort data were combined,
when analyses were restricted to the 5 most recent studies,
and when a dose-response analysis was conducted (144).
The earlier studies had relied on less comprehensive flavo-
noid compositional databases, which have improved signif-
icantly over the past decade. In several of these studies, a
distinction was not made between flavonols and another
subclass, flavones, although flavones do not contribute
significantly to habitual dietary intake of total flavonoids
(<5 mg/d) (145). Since the 2012 publication of the system-
atic review by Wang et al. (144), 2 other studies have exam-
ined the associations between habitual flavonol intake in U.
S. populations and risk of CHD, with adjustment for CHD
risk factors showing trends toward a decrease in risk but
without statistical significance (137,138).

In relation to risk of stroke, a meta-analysis that included
all prospective cohort data through August 2009 provided
evidence to suggest a protective effect of increased flavonol
intake on risk of stroke (145). However, 2 more recent U.S.-
based population studies do not support this observed decrease
in risk (137,140). Interestingly, in the 2 studies that examined
CVDmortality, 1 observed no effect (139), whereas a more re-
cent study observed a 16% decrease in risk with increased
flavonol intake (Supplemental Table 2) (137).

In relation to biomarker studies, in older women there was
a small decrease in risk of hypertension with increased flavo-
nol intake (4%) but no association in middle-aged women or
in men (141). In a cross-sectional study, Mursu et al. (146)
observed a small trend toward a decrease in intima-media
thickness (IMT), an indicator of the presence of carotid ath-
erosclerosis and an independent predictor of CVD, inmiddle-
aged men with high habitual flavonol intake. However, in
another study, increased flavonol intake was not associated
with IMT, PWV, blood pressure, or other measures of vascu-
lar health (142). In 2 studies that assessed inflammatory
biomarkers, 1 observed a reduction in CRP concentrations
(147) whereas the other observed no effect on CRP or a
number of other biomarkers but did report a significant de-
crease in sVCAM-1 concentrations (148).

Flavan-3-ols. Five prospective cohort studies have exam-
ined the associations between habitual flavan-3-ol intake
and CHD risk (136–138,149,150), but only 1 study showed
a significant association between increased flavan-3-ol in-
take and a 51% decrease in risk of CHD mortality compar-
ing the highest with the lowest tertile of intake (150).
However, in the same study, a higher flavan-3-ol intake
was not inversely associated with CHD incidence. In 2001,
because no comprehensive database for assessing the flavo-
noid content of the habitual diet was available, analyses of
>120 commonly consumed plant foods and beverages
from the Dutch diet were used to construct one (149,150).

CVD mortality was investigated in 3 prospective cohort
studies (136,137,139) and only the most recent one, using re-
cent USDA flavonoid values (151), observed a 17% decrease
in risk comparing the highest to the lowest quintile of fla-
van-3-ol intake (137). The impact of increased flavan-3-ol in-
take on stroke risk has been examined in 5 studies with no
evidence of a protective effect (136,137,139,140,150).

With regard to biomarkers for CVD risk, the prospective
and cross-sectional studies conducted to date do not show
any significant associations between flavan-3-ol intake and
blood pressure, inflammatory markers, PWV, or augmenta-
tion index (141,142,147,148). Two studies examined the as-
sociations between flavan-3-ol intake and IMTwith 1 study
observing no association (142) and another observing a sig-
nificant decrease in IMT in Finnish middle-aged men (146).

Proanthocyanidins/polymers. Polymeric flavan-3-ols in-
clude PACs, as well as theaflavins and thearubigins. How-
ever, PACs are the main contributors to total flavonoid
intake in American and European populations, but data
on either the bioavailability or bioactivity of these com-
pounds are limited (27,37,152–154). The main dietary sour-
ces of PACs in the U.S. habitual diet are tea, legumes, and
wine (153), whereas thearubigins and theaflavins are mainly
consumed with black tea (37,155).

Of the 3 studies that have examined the effects of high pol-
ymer (138) or proanthocyanidin (136,137) intake on CHD
mortality or incidence, none showed any significant associa-
tions. Cassidy et al. (138) reported a 17% decrease in incident
CHD comparing extremes of polymer intake in young/middle-
aged women, which almost reached statistical significance.
CVD mortality has only been investigated in 2 prospective
cohort studies (136,137). By using the most up-to-date ver-
sions of the USDA flavonoid database (32,151), McCullough
et al. (137) observed a 13% decrease in risk in participants
consuming the highest proanthocyanidin intake. There was
no observed association between high intakes of polymeric fla-
van-3-ols or PACs and risk of stroke (136,137,140).

Summary
Cranberries are a rich source of dietary phenolic bioactives, in-
cluding, in particular, flavan-3-ols, A-type PACs, anthocyanins,
benzoic acid, and ursolic acid and a unique profile of all 6
members of the anthocyanidin family. These compounds to-
gether with the very low natural sugar content of cranberries
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are responsible for their characteristic tart taste and astrin-
gency. For these reasons, sugar is often added to cranberry pro-
ducts to an amount found in other fruit juices and dried-fruit
products: e.g., the total sugar content of sweetened cranberry
juice is 11.7 g/100mL compared with 100% purple grape juice,
apple juice, and orange juice at 16.5, 11.1, and 10.5 g/100 mL,
respectively (156). Nonetheless, cranberry products can fit
readily within the calorie, total fat, saturated fat, trans fat, and
sodium recommendations of the 2010 Dietary Guidelines for
Americans (1). Indeed, these guidelines state that the best use
of calories from added sweeteners is to increase the palatability
of nutrient-dense foods, e.g., the addition of sugar to fruit. In
addition, artificial sweeteners are used to produce low-calorie
versions of cranberry products.

To date, several studies and 2 meta-analyses indicate a
benefit of cranberry intake in lowering the recurrence of
UTIs. However, the number of studies finding null results
on this outcome reveals the complexity in studying the rela-
tion between cranberry consumption and health outcomes.
Specifically, interventions testing the efficacy of cranberry
juice are confounded by poor compliance, dropout rates as
high as 50%, and variable doses of bioactives from the use
of different products. Another confounding factor is the ap-
parent difference in compliance among cranberry products
versus placebo. When dropout rates are high and/or the de-
gree of compliance is unknown, the accurate interpretation
of study results is seriously compromised. Furthermore, the
optimal dose of cranberry bioactives has not been deter-
mined for urinary tract or cardiovascular health. For exam-
ple, there appears to be an increasing trend in the reduction
in UTIs with higher cranberry juice intake, but very few
studies have addressed such dose-response relations in a
systematic way. Another major issue with the evaluation of
existing clinical studies is the lack of quantification of cran-
berry bioactives in the product or assessment of their con-
centration in blood or urine. Although the NIH developed
a standardized cranberry juice placebo in 2003, very few
published studies have made use of the product.

There is strong experimental evidence that cranberry
bioactives have favorable effects on blood pressure, glucose
metabolism, lipoprotein profiles, oxidative stress, inflamma-
tion, and endothelial function. However, the currently avail-
able data from human studies provide mixed results about
the clinical significance of these actions on cardiovascular
health. The evidence for in vivo effects on oxidative stress
and inflammation is not convincing at this stage. Favorable
effects on endothelial function appear to be limited to
acute responses after consumption of cranberry juice or
cranberry anthocyanins. One well-controlled study sug-
gests a chronic benefit on carotid-femoral PWV, which
is emerging as an important measure of arterial function
with relevance to the risk of CVD (15). Thus, there is en-
couraging, but limited, evidence of cardioprotective ef-
fects of cranberries.

As noted, the average daily consumption of fruit by Amer-
icans is substantially less than recommended by the 2010 Die-
tary Guidelines for Americans (1). In part, encouraging a greater

proportion of plant foods, including fruit, to achieve a healthy
dietary pattern is targeted to help us meet the Recommended
Dietary Intakes of micronutrients. Although reference intake
values have yet to be developed for phytochemicals, there is
a growing consensus that these bioactives contribute impor-
tantly to promoting health and reducing the risk of chronic
disease. Berry fruit, including cranberries, represent an espe-
cially rich source of many phenolic acids and flavonoids that
have been associated with these benefits. More specific dietary
guidance to choosing a broad array of types of fruit, including
berry fruit, should help increase our intake of these bioactive
compounds.
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