
Analysis and correction of gradient nonlinearity bias in ADC 
measurements

Dariya I. Malyarenko, Brian D. Ross, and Thomas L. Chenevert
Department of Radiology, University of Michigan, Ann Arbor, MI, United States

Abstract

Purpose—Gradient nonlinearity of MRI systems leads to spatially-dependent b-values and 

consequently high non-uniformity errors (10–20%) in ADC measurements over clinically relevant 

field-of-views. This work seeks practical correction procedure that effectively reduces observed 

ADC bias for media of arbitrary anisotropy in the fewest measurements.

Methods—All-inclusive bias analysis considers spatial and time-domain cross-terms for 

diffusion and imaging gradients. The proposed correction is based on rotation of the gradient 

nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be 

approximated by its Euclidean norm. Correction efficiency of the proposed procedure is 

numerically evaluated for a range of model diffusion tensor anisotropies and orientations.

Results—Spatial dependence of nonlinearity correction terms accounts for the bulk (75–95%) of 

ADC bias for FA = 0.3–0.9. Residual ADC non-uniformity errors are amplified for anisotropic 

diffusion. This approximation obviates need for full diffusion tensor measurement and 

diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of 

the correction on clinical MRI systems.

Conclusions—The proposed simplified correction algorithm appears sufficient to control ADC 

non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most 

efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion 

gradients.
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Introduction

Diffusion weighted imaging (DWI) is a widely used magnetic resonance (MR) modality for 

noninvasive diagnostics (1–3). The most common diffusion quantity of interest in clinical 

oncology applications, such as therapeutic response assessment, is mean diffusivity (4–7). 

This quantity indirectly reflects tissue cellularity via water mobility and has the desirable 

property of being independent of the relative orientation between the applied diffusion 
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gradient directions and directional tissue cytoarchitecture (8,9). Mean diffusivity, commonly 

referred to as “apparent diffusion coefficient” (ADC), may be determined from a variety of 

tissue/media-based models of how DWI signal changes with applied diffusion gradient 

strength (10–12). ADC has been suggested as a potential biomarker for cancer diagnosis and 

treatment monitoring (4–7). To detect clinically significant changes in diffusion 

measurements, the sources of technical variability and bias have to be well-characterized 

separately from biologic and therapy-induced changes (13–15). Ultimately, for diffusion to 

be used as a quantitative biomarker in clinical studies, measurement methodology must be 

standardized across multiple MRI platforms (7,15–17).

Recently, a significant platform-dependent variation has been identified as a source of 

spatial-dependent error in ADC measurement (18,19). Such errors have been demonstrated 

on commercial MRI equipment (19) by using a temperature-controlled (ice water) phantom 

for a precisely known diffusion fluid (18). Testing showed that gradient nonlinearity was the 

primary source of the error leading to a spatially-dependent b-value and subsequent ADC 

bias that can exceed 10–20% over a clinically relevant field-of-view (FOV) on some 

systems (19,20). This platform-dependent bias results in spatial non-uniformity errors that 

substantially deteriorate quantitative DWI measurements. The early accounts of DWI errors 

related to gradient nonlinearity are now a decade old (21,22), but the systematic bias 

problem has clearly persisted for contemporary clinical systems. This is presumable due to 

lack of practical correction procedures for vendor implementation. Gradient nonlinearity is a 

static characteristic of the gradient coil system (23) known to system engineers and 

universally utilized for correction of geometric distortions (24,25) for routine MRI scans.

Previous research on nonlinearity correction for diffusion gradients (26) described an 

approach for correction of diffusion tensor imaging (DTI) that required full spatial-mapping 

of the gradient coil fields (24) as well as collection of at least 6 DWI gradient directions in 

each experiment. This comprehensive approach accounted for both direction and magnitude 

errors in diffusion tensor due to gradient nonlinearity, although the underlying tensor 

diagonalization algorithm can be susceptible to measurement noise (27) and fitting errors 

(28). Optimized sampling of many directions, as required for DTI (29), prolongs image 

acquisition beyond the desired scan time in many clinical applications, when only a measure 

of mean diffusivity is sought (5,6). Full DTI determination becomes more impractical for 

multi-b-value studies (12,30). To streamline correction for background and imaging gradient 

errors in DTI, a simplified empiric calibration algorithm was introduced (31) based on a 

regression model, without reference to the system’s hardware characteristics. Such approach 

is dependent upon specific gradient hardware and waveforms, and may require recalibration 

and error analysis for each clinical scan. Other methods have incorporated the interaction of 

imaging gradients with diffusion gradients in the model (32), but did not account for 

gradient nonlinearity and spatial cross-terms (26). In short, the corrective techniques 

suggested thus far have not been successful in practical implementation of simultaneous 

corrections for spatial gradient nonlinearity and time-domain cross-terms that corrupt ADC 

measurement for conventional (three-direction) DWI scanning.

For clinical studies focused on mean diffusivity and not anisotropy, such as usually is the 

case for body oncology applications (5,6), there is a desire to perform imaging using the 
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fewest number of directional DWIs. This is particularly, true when multiple b-values are 

acquired to separate ADC components (12,30). In the absence of gradient nonlinearity, three 

orthogonal gradient directions are adequate (3,5,33). However, as surmised in Ref.(26), due 

to spatial cross-terms with tissue diffusion tensor, gradient nonlinearity required solution via 

acquisition of at least six directions to derive three eigenvalues of the diffusion tensor from 

which a corrected mean diffusivity was calculated. Our work seeks a practical procedure 

that both builds on comprehensive physical system characteristics (10,23,24,26,32,34) and 

minimizes acquisition and analysis time to achieve quantitative control of spatial bias error.

This work describes the simplified procedure that corrects ADC non-uniformity for 

conventional (three orthogonal direction) DWI acquisition (3,33) by concentrating energy of 

the b-matrix in to a single map (per DW direction) that approximates the spatial nonlinearity 

bias. In this form, the correction scales with effective b-value at isocenter and can be applied 

for an arbitrary diffusion gradient waveform from an orthogonal set, independent of other 

experimental settings. By design, the DWI waveforms include time-compact imaging 

gradients that minimize imaging cross-terms (35). Correction efficiency of the suggested 

procedure as well as residual spatial bias in ADC due to nonlinearity cross-terms are 

evaluated for a range of tissue-like diffusion tensor anisotropies and orientations. Despite 

tissue anisotropy, spatial gradient nonlinearity and imaging gradient cross-terms, the 

proposed correction procedure allows sufficient reduction of ADC bias with only three-

orthogonal gradient measurements as is preferred in clinical oncology practice (5–7). The 

theoretical model and simulation of bias error is verified with actual phantom data for 

isotropic medium. Both correction and residual bias analysis are performed numerically 

excluding random measurement errors. Theoretical formalism is presented to summarize the 

workflow and correction algorithm for implementation by clinical MRI vendors.

Theory

The trace of diffusion tensor, D, is invariant to rotation of coordinate system and is known 

as the mean diffusivity or apparent diffusion coefficient, ADC. Therefore, this property can 

be measured for any three orthogonal DWI directions independent of both overall diffusion 

tensor orientation (8–10) and selected DW-frame ((3,33), see Appendix, Eq.[A7]):

[1]

Here,  is measured signal intensity ratios for any image pixel of zero to non-zero 

diffusion gradient conditions for each of three kth orthogonal measurements, and  is 

an effective spatially independent b-value given by the Frobenius norm of b0-matrix (at 

isocenter), which generally includes incremental b-components due to time-domain cross-

terms between diffusion and imaging gradients:  (Eqs.[A2–A3], 

(32,34)).

Spatial nonlinearity of the gradient coils (23,24), characteristic of wide-bore clinical 

magnets (25), can be described by static dimensionless nonlinearity tensor L(r) (23,26) 

independent of desired gradient strength at isocenter. For linear systems, L = I, for any 
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image voxel r = (x, y, z)T. In presence of spatial gradient nonlinearity (23–26), spurious 

gradients are produced that significantly alter both direction and norm of effective DWI 

waveform, Eq.[A9]. These result in a b′-matrix (26), Eq.[A10], with spatially dependent 

norm ‖b′‖(r) ≠ ‖b0‖. The “true” (unbiased) apparent diffusion coefficient, as follows from 

Eq.[A1],

[2]

now includes contribution from spatial and imaging cross-terms with the diffusion tensor. 

For any three orthogonal diffusion gradient directions, each kth b′-matrix in Eq.[2] can be 

transformed to DW-frame by rotation UUT = I3 ≡ I:

[3]

where , U = (u1, u2, u3), and unit vector uk = (uxk, uyk, uzk)T defines 

the kth DW direction in the gradient coil coordinates. This single transformation 

simultaneously preserves the bulk of the norm (power) for each of the three bk-matrices in 

the leading term along the corresponding DW direction (Eqs.[A3, A11]): , and 

effectively reduces all cross-terms in Eq.[2]: .

As shown in Appendix, Eqs.[A11]–[A13], to reduce Eq.[2] to its simplified analogue of Eq.

[1] in presence of nonlinearity, spatial bias map for each applied DW gradient can be 

approximated by:

[4]

and corresponding “corrected” b-value map is then obtained from:

[5]

Note that for DW-gradient directions along the LAB axes, U=I, Eqs.[4,5] can be further 

simplified to produce: . Residual error of the leading b-correction term, Eqs.

[A3, A14], is negligible and depends on selected DW direction and relative strength of 

cross-terms with imaging gradients at isocenter.

Finally, the unbiased ADC value can be approximated using Eq.[1] and replacing “assumed” 

b-value with “corrected”  map, Eq.[5]. When the DWI sequence is designed so that 

effective b-value is independent of direction, , it can be factored out from expression 

for corrected ADCc:
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[6]

Residual error of ADC-correction, will be defined by contribution of spatially-dependent 

cross-terms of Eq.[3] in Eq.[2] with diffusion tensor components in DW-frame, 

. This error will depend on mutual orientation of selected DW directions and 

principal axis system of diffusion tensor, as well as its anisotropy and relative strength of 

cross-terms with imaging gradients.

In practice, it may be more desirable to directly correct either b-values, Eq.[5], or actual 

DWI pixel intensity as a function of space before ADC calculations (e.g., for multi-

exponential model fit (12,30)). Intensity correction for each orthogonal DWI direction can 

be achieved by:

[7]

The proposed correction workflow is summarized in Figure 1. Note that described ADC bias 

correction procedure uses only three orthogonal measurements for a given b-value and 

avoids matrix inversion, fitting approximation (28) or direct solution of DTI eigenvalue 

problem for Eq.[2] (26), which are more sensitive to the measurement noise (27).

Methods

(1) Hardware model parameters

Gradient waveforms and corresponding b-matrices, Eq.[A2], (32,34) were modeled 

numerically (Matlab 7, MathWorks Inc.) for a time-compact pulse sequence (35) using two 

scenarios for three orthogonal diffusion gradients: (1) “LAB” -- DW gradients applied 

independently along X, Y, Z directions (‖b0‖ = 1010, U = I = [(1, 0,0)T, (0, 1,0)T, (0, 0,1)T]), 

and “OVP” -- DW gradients combined along X+Y+Z axes (‖b0‖ = 1510, 

. Low nominal b-value of 

‖b0‖ = 101 was also modeled to estimate relative contribution of imaging cross-terms. 

Square waveforms were used as diffusion pulse models. The duration of the DW pulses was 

30ms, 4ms slice select and SE pulse, TE = 100ms, with 3.2ms read-out. For time-

compactness (35), read-out pre-phase pulse immediately preceded the read-out gradient at 

TE. Imaging gradient contribution to time-domain cross-terms was included through 

numerical time-integration of gradient waveforms Eq.[A2] (32,34). Following Janke, et al, 

(24) spatial dependence of gradient coil fields was described via spherical harmonic 

expansion to the 7th order skipping all even terms (using characteristic magnet bore diameter 

rc = 400 mm). Magnetic field for the Y-coil was obtained by 90° rotation of the X-gradient 

field. Nine 3D-elements of gradient nonlinearity tensor were obtained by numeric 

differentiation of the gradient coil fields along three Cartesian axes and subsequent 

normalization by the effective gradient strength at isocenter, Eq. [A9]. The spatial 

dependence of bij (r)-terms was then modeled numerically, Eq.[A10], using nonlinearity 
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tensor according to the formalism introduced in Ref.(22), within a 300×300×300 mm3 

volume sampled every 5 mm. The spatial dependence of residual cross-terms after 

correction was obtained via Eq.[3].

(2) Tissue diffusion model

Diffusion properties of the media were modeled numerically using diffusion tensor (8,10) 

with tissue-like characteristics: ADC =1.0×10−3 mm2/s and fractional anisotropy FA = 0.0, 

0.3, 0.5, 0.7 and 0.9. Model ADC was uniform across FOV. Diffusion tensor orientation was 

varied uniformly in respect to the lab (gradient) system by consecutive rotations around X

−Y−X axes (0..π/2, 0..π/2, 0..2π) with a constant step of 9° for the first rotation around X 

and around Y, and scaled by sin(αY) (to achieve constant solid angle arc length) for the 

second rotation around X, resulting in 2510 uniform D-tensor orientations. This sampling 

rate was empirically determined to provide adequate orientation density coverage for the 

error histogram shape and width analysis downstream. The uniformity of sampling ensured 

absence of orientation clustering and under-binning of the error histograms. The uniformity 

was checked by visualization of D-ellipsoid rotation for 100–300 orientations. “True” 

(uniform) ADC was obtained according to Eq.[2] including full gradient nonlinearity, 

imaging cross-terms and tissue model description, Eqs.[A1,A2,A9,A10]. The “assumed 

ADC”, ADCa, was obtained according to Eq.[1], using effective b-values at isocenter 

(ignoring spatial dependence). The “corrected ADC”, ADCc, (Eq.[6]) was calculated using 

spatially dependent “corrected” -terms, Eq.[5], substituted into Eq.[1]. The 

corresponding corrector maps, Eq.[4], were obtained assuming only knowledge of hardware 

parameters (DWI gradient waveform and nonlinearity tensor, Figure 1).

(3) ADC error analysis

ADC errors were calculated as deviation from true (uniform model) value for each pixel in 

3D-volume within 300 mm FOV. Error statistics histograms were compared for ADC with, 

Eq.[6], and without, Eq.[1], bias correction. Fixed binning step (0.005) and range (−0.2 to 

0.35) was used for all fractional error histograms independent of model FA and DWI 

gradient orientation to provide uniform statistics independent of sampling. The appropriate 

range and binning step were determined from the model with FA = 0.9 corresponding to the 

widest error range. The histograms were characterized by mean, median, 95-percentile, 

range and root-mean-square-error (RMSE) measured over the full image volume. To 

characterize orientation dependence of the error, whole-volume RMSE histograms were 

explored. The figure of merit for the correction procedure was defined as orientation-mean 

of the whole-volume RMSE. The total efficiency of the correction was measured as percent 

corrected mean RMSE. To confirm that error statistics are independent of model parameters, 

in addition to the model parameters listed above, b-value of 1000 and ADC = 2×10−3 mm2/s 

were also tested with OVP for extreme anisotropy values of FA=0 and FA=0.9. Lastly, the 

simulated one-dimensional ADC = 1.1×10−3 mm2/s dependence along Z and X were 

compared to experimental phantom results with superior-inferior (SI) and right-left (RL) 

offset, respectively.
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(4) Phantom

An ice-water based isotropic DWI phantom was devised with known diffusion coefficient of 

1.1×10−3 mm2/s (36) (denoted as “ADC” for consistency). One long 30mm diameter tube 

filled with distilled water at thermal equilibrium with an ice-water envelop provided the 

universal ADC standard (18). The phantom was constructed similar to Ref.(18) from a 

single tube (29×260 mm) and 3000-mL polypropylene wide-mouth jar. The 172-mL tube 

was filled with distilled water, capped with insulation and cemented to the underside of the 

3785 mL jar top. Prior to diffusion measurements, cubed or crushed ice and water were 

added such that ice filled the full extent of the jar. By screwing on the jar top, the 172-mL 

tube of water was held in the center ice-water mixture. The phantom was wrapped in a foam 

insulation and zip-lock plastic bag to keep surface condensate off MR components. 

Following preparation of the phantom, 60 minutes was allowed to reach thermal 

equilibrium. The ice-water mixture provided temperature control to 0°C for several hours 

and allowed ADC measurement accuracy within 2% (18,19).

(5) MRI data acquisition protocol

A 3T clinical MR system (Philips Ingenia) was used. Acquisition conditions: TR = 8000ms; 

TE = 98 ms; acquisition matrix = 128×128; FOV = 240×240mm; 25 slices, 6mm thick, 4mm 

gap; bandwidth = 2.65kHz/pixel; NEX = 1; no parallel imaging. Two DWI pulse sequences 

were considered with gradient waveforms applied on three orthogonal axes. The first 

sequence, denoted “LAB”, had nominal b-value = 1000s/mm2and only one DWI gradient 

channel was active at a time (DW axes = X, Y, Z); whereas for the second sequence, 

denoted overplus (OVP), applied multiple gradient channels simultaneously for nominal b-

value = 1000s/mm2. For the LAB sequence, ADC measurements on the isotropic ice-water 

phantom were performed both for three separate direction measurements and the resultant 

trace DWI defined as the geometric mean of individual axis DWx,y,z. Off-center 

measurements were performed using torso coil and repositioning the phantom with 50 mm 

overlap in superior/inferior (SI) and right/left (RL) directions. Axial and sagittal slices were 

acquired for SI and RL offset directions, respectively. The axis of the 172mm tube was 

oriented perpendicular to the slices. Measurements along the tube axis provided a spatial 

extent of approximately +/−150 mm in the SI and RL directions.

Results

Nonlinearity bias error was analyzed numerically using hardware and tissue model 

parameters described above. The base-level error due to time-domain cross-terms with 

imaging gradients was provided by numerical integration of gradient waveforms including 

imaging gradients or excluding them according to Eq.[A2–A3] (32). For the LAB and OVP 

gradient waveforms used in this work (see Methods), the effect of cross-terms with imaging 

gradients on bij-elements in the absence of spatial bias was numerically estimated to be less 

than 1.3% for low b-value of 100 and less than 0.4% for b-values above 1000. DWI-

orientation error term induced by imaging gradients (~1.5%) was found to be approximately 

3-times higher than the b-magnitude error (<0.5%, Eq.A3). Overall, small contribution of 

both magnitude and direction error due to imaging cross-terms was included into general 

ADC correction formalism as an error term matrix ε, Eq.[A3], with the elements max(|εij|) ≤ 
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‖ε‖~o(0.03 · ‖b‖D), where bD is obtained for the DW gradient waveform in the absence of 

the imaging gradients.

Further numerical simulations ascertained that time-integral and spatial bias terms still 

commute when gradient waveforms include imaging gradients, Eq.[A2], thus allowing 

independent calculation of b0-matrix at isocenter once and propagating the spatial bias 

through Eq.[A10] (26). Introduction of spatial bias and spatial gradient cross-terms, Eq.

[A9], (26) lead to relative enhancement of the cross-terms with imaging gradients. However, 

spatial bias due to cross-terms with imaging gradients alone accounted for < 0.5% of total 

spatial bias for each voxel. The bulk of nonlinearity bias (>99.5%) was due to spatial cross-

terms between diffusion gradients. Total bias including diffusion and imaging gradients was 

numerically evaluated and visualized through spatial dependence of diagonal and off-

diagonal terms of biased b’-matrix.

The effect of nonlinearity on spatial bias of b’-matrix including imaging gradients, Eqs.

[A2,A9], (26) is illustrated in Figure 2 for a single representative DWI direction for LAB (u3 

= (0, 0,1)T: Fig.2a,d), OVP  : Fig.2b,e) and corrected OVP (Fig.2c,f; 

Eqs.[3–4]) scenarios. Spatial dependence is depicted as 3D color-map for one diagonal (bzz, 

Fig.2a–c) and one off-diagonal (bzx, Fig2.d–f) element of 3×3 b-matrix. Spatial non-

uniformity of b-value is reflected in color gradient of the planes and spherical surfaces 

within the volume. The relative power of diffusion weighting across 3D map is represented 

by color-bar scale.

In the absence of nonlinearity, the 3D map would be colored uniformly according to the 

nominal b-value at the isocenter (bLAB=1010, bOVP = 1510; see Methods). As evident from 

the color gradient, due to nonlinearity, spatial deviation from nominal value increases 

towards the FOV boundaries both for LAB (850–1200 scale, Fig.2a) and OVP (600–950 

scale, Fig.2b) gradients. For LAB-DW scenario (Fig.2a), spatial bias introduced by 

nonlinearity along Z-direction, retains characteristic cylindrical symmetry of Z-coil gradient 

field, as prescribed by lzz (consistent with Theory, and Ref.22). Similar observations were 

made for the LAB-X and LAB-Y DW-directions (bxx and byy not shown). For the described 

correction procedure, Eq.[3,4], spatial bias of the leading b-element for LAB gradients 

provides the corrector map, Eq.[4], for the corresponding direction (i.e. corrected bzz has the 

same appearance as bzz nonlinearity map in Fig.2a).

As is evident from boundary plane projections for OVP scenario (Fig.2b), spatial symmetry 

of the diagonal bzz-term no longer directly reflects individual gradient coil field (unlike 

LAB(20)), but represents a mixed effect of nonlinearity from gradient coils simultaneously 

active for this OVP direction (Methods). Unlike LAB, for OVP corrected bzz non-uniformity 

scale (1200–1900; Fig.2c) is different from the one before correction (600–950; Fig.2b), 

indicating that OVP corrector map includes nonlinearity contribution from all active 

gradient coils (Eq.[4]). The color gradient of the corrected map (Fig.2c, Eq.[4]) preserves all 

spatial non-uniformity information and thus substantially removes nonlinearity bias error in 

ADC by Eq.[6]. Spatial dependence and scale for off-diagonal b-elements (Fig.2d–f) reports 

on the nonlinearity bias that propagates into ADC errors in Eqs.[2,3]. At each point in space, 
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the contribution of off-diagonal element, byz, is below 10% of the diagonal values, bzz, both 

for LAB and corrected OVP scenario, but is much higher (up to 95%) for OVP before 

correction (see corresponding numerical color-bar scales).

Figure 3 illustrates qualitative agreement between calculated 1D-spatial dependence of ADC 

and our experimental observations for an isotropic ice-water phantom run on a clinical 

scanner with the LAB DWI-gradients. For all three separate gradient directions and the 

trace, both observed (Fig.3a,b) and calculated (Fig.3c,d) ADC are quadratically 

underestimated along SI, while overestimated along RL compared to true values (solid 

horizontal line). The absolute bias along SI is more than two times higher than that along RL 

(Fig.3a,c versus Fig.3b,d). The model correctly reflects differences in spatial bias for 

individual DW gradient directions (e.g., direction 1 versus 2 in Fig.3b,d).The trace ADC 

bias error for OVP gradients (not shown) was 12 the same as for LAB. For FOV > 50 mm, 

the observed non-uniformity bias is significantly higher (> 10%) than either standard 

deviation of the measurement within ROI (< 2%, error bars) or error terms due to imaging 

gradients (< 2%, vertical shift near zero-offset).

Figure 4 compares tiled 2D ADC Z-slice images obtained with the complete nonlinearity 

model, Eq.[2], for three orthogonal OVP DWI-gradients (top row) to those after correction 

(below) according to Eq.[6] in case of isotropic (FA=0, Fig.4a) and highly anisotropic 

(FA=0.9, Fig.4b) diffusion media. The orientation of diffusion tensor in respect to magnet 

axis happened to be (π/10, π/3, 0) which was representative of the typical bias error. Non-

uniformity of uncorrected ADC, as indicated by gray-scale gradient, is higher for anisotropic 

medium (Fig.4b), while correction efficiency (uniformity of corrected ADC gray-scale-

maps) is lower, especially toward the FOV edges of each slice-tile, indicating higher 

residual bias errors. True (model) ADC is uniform across FOV (Methods). For the isotropic 

case, ADC non-uniformity is effectively removed by correction producing uniform gray-

scale-map in Fig.4a.

The absolute ADC non-uniformity error within FOV is summarized for several anisotropy 

values in histograms of Figure 5a. Figure 5b shows the average correction efficiency for two 

DWI gradient direction scenarios. Both uncorrected (light) and residual (dark) error 

histograms become broader with increasing FA of the medium (Fig. 5a). The number of 

voxels with high nonlinearity bias decreases as absolute bias value increases. The relative 

width of the histograms described by the ratio of their corresponding mean RMSE (averaged 

over 2510 uniform diffusion tensor orientations) is shown in Figure 5b. This ratio reflects 

efficiency of the correction procedure, which decreases with increasing FA. Higher overall 

efficiency is achievable for OVP gradients that include off-diagonal nonlinearity terms in 

corrector, Eq.[4]. The absolute error reduction for ADC non-uniformity achieved through 

leading-term correction procedure, Eqs.[4,6], was from 90 to 70% for FA from 0.3 to 0.9 

respectively; and better than 97% for FA=0. More than 90% error is corrected for OVP and 

80% for LAB scenario for FA<0.5. The histogram statistics did not change when using 

model ADC = 2×10−3mm2/s versus 1×10−3mm2/s or b-value of 1510s/mm2 versus 

1010s/mm2 for FA=0 and 0.9.
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Discussion

The objective of this work was to find a viable correction procedure for the observed spatial 

non-uniformity bias of ADC for media of arbitrary anisotropy in the fewest number of 

measurements. Such procedure (Fig.1) was devised for any three orthogonal DWI-

measurements based on fundamental property of ADC invariance under rotation and 

intrinsic symmetries of diffusion weighting matrix. The nonlinearity corrector maps were 

independent of b-value at isocenter and obtained by squared projection of the nonlinearity 

tensor onto DW-gradient direction, Eq.[4]. Since nonlinearity tensor is a static system 

characteristic (23,26) that depends only on gradient coil design, the required correctors are 

generated once and are independent of other specific experimental settings. Contribution 

from imaging cross-terms not included in b-value was confirmed to be negligible as 

expected for conventional (clinical) DWI pulse sequences (32) properly designed to 

minimize the time integral of imaging gradients that overlap with diffusion gradient 

waveforms (35). Residual ADC bias error due to spatial gradient nonlinearity cross-terms 

with anisotropic diffusion tensor, Eq.[2], was effectively reduced in DW-frame, Eq.[3]. This 

model assumes knowledge of gradient coil fields (23,24) and DWI-pulse sequence Eq.[A2] 

(32,33). In practice, leading term maps can be obtained once for a scanner system and 

applied for correction of b-value bias or DWI intensities in ADC measurements. For 

moderate tissue anisotropy (FA<0.5), this correction reduces ADC bias error over large 

FOV from above 15% to below experimental measurement uncertainty (<2%). Thus, this 

approach is well suited for body DWI oncologic applications. (5–7)

The presence of spatial and time-domain gradient cross-terms combined with tissue 

anisotropy complicates interpretation of measured DWI intensity ratios, Eq.[A1], (26,32). 

The source of non-uniformity bias in the conventional (3) ADC experiment, Eq.[2], for 

media of arbitrary anisotropy, is spatial dependence of all b-matrix elements (26). Thus, for 

an arbitrary DWI-direction, complete description of the system requires six 3D-maps for 

bij(r) = bji(r)-elements (18 maps for three orthogonal measurements). The effective scale 

(power of each bij-element) is determined by the norm of the gradient waveform and time-

domain cross-terms between diffusion and imaging gradients (Eqs.[A2–A3], Fig.2). Spatial 

dependence of the bij(r)-map is determined by spatial dependence of the gradient 

nonlinearity tensor, Eq.[A10] (26), as well as DW-gradient frame orientation in respect to 

the gradient-coil frame, Eq.[3] (Fig.2a,d versus Fig.2b,e). Fortunately, a good approximation 

to the complete system description can be achieved with only three orthogonal 

measurements, Eqs.[3,4].

The bias error predicted by the model along SI and RL direction is qualitatively consistent 

with experimental measurements using a temperature-controlled isotropic phantom as 

depicted in Figure 3. Measured ADCs are proportionally underestimated along SI, while 

overestimated along RL compared to true values. Higher absolute bias is observed along SI 

compared to RL. The observed spatial bias depends on DW waveform (e.g., dashed versus 

dotted traces), while measured value for isotropic medium should be independent of 

diffusion gradient direction. Negligible offset of the measured curves near isocenter (Fig.

3a,b) confirms small contribution of imaging cross-terms, Eqs.[A2–A3]. Qualitative 

agreement between our modeled and measured bias (Fig.3) strongly suggests gradient 

Malyarenko et al. Page 10

Magn Reson Med. Author manuscript; available in PMC 2014 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



nonlinearity as the major source of the spatial ADC bias error (19). Quantitatively, our 

current nonlinearity model underestimates the bias scale, but this is likely due to literature 

values of the applied spherical harmonics coefficients (24) underestimating those of the 

actual clinical scanner used for phantom measurements (19). Quantitative agreement should 

be achieved with access to appropriate system coefficients.

As described in Theory section (and derived in Appendix), the simplified correction is 

possible via mathematical transformation of biased b'-matrix and tissue diffusion tensor into 

DW-frame (defined by orthogonal diffusion gradients). This transformation reduces 

contribution of spatial cross-terms, Eqs.[2,3] (Fig.2d,f) and preserves b-norm and diffusion 

trace (ADC). For three orthogonal measurements, this formalism is equivalent to projection 

of nonlinearity tensor onto DW-directions Eq.[4] that provides a single “corrected” leading 

term -map, Eq.[5], per measurement. Sufficient description for LAB diffusion gradients 

(e.g., Fig.2a,d) is obtained by including nonlinearity bias along the gradient direction, lkk. 

For arbitrary DWI direction away from LAB axis (e.g., OVP), the corrected -terms will 

include coil fields both along and orthogonal, li≠j≠k, to gradient direction, Eqs.[4] (Fig.2c). 

Due to different spatial dependence of corrector Ck (r)-maps for each DWI direction, Eq.[4], 

spatial dependence of leading -terms, Eq.[5], has to be corrected separately for 

individual DW-gradient directions before combining for ADC calculation, Eq.[6]. Each 

measurement provides only one diagonal component of the diffusion tensor, Dkk, along the 

corresponding DW direction used in an ADC-experiment, Eq.[A5]. These values depend on 

orientation of the frame defined by DW gradients, and in general case, do not represent the 

eigenvalues of the diffusion tensor (required for FA estimate (8,10,26)). Note that 

information on diffusion tensor orientation is lost by this approximation, while corrected off-

diagonal elements, bi≠j, are needed to obtain FA from full DTI measurement (26).

After suggested leading-term correction according to Eqs.[4,6], residual error-distribution 

for ADC will depend on anisotropic properties of the media and relative orientation of 

gradient fields, Eqs.[3,A6,A14]. The residual error is determined by spatial dependence of 

spurious diffusion gradients, Eq.A9], and cross-terms with imaging gradients, which slightly 

perturb orientation of “effective” DW gradient frame and are neglected by our simplified 

correction procedure. The minimal residual error can be predicted for isotropic media, where 

Di≠j= 0, and off-diagonal cross-terms are effectively eliminated in Eq.[2]. This is confirmed 

by the results illustrated in Fig.4a, where non-uniformity bias is nearly removed for FA=0 

by our correction procedure. For anisotropic case (Fig.4b), residual error exhibits clear 

orientation dependence and is larger for regions further from isocenter. The number of 

pixels with higher ADC non-uniformity error decreases approximately quadratically with 

the bias value (Fig.5a) reflecting general spatial nonlinearity scale of the gradient coil fields 

(19,24). Negative skew of the pixel histograms of ADC error before correction is 

independent of FA and reflects intrinsic asymmetry in the gradient coil field model used 

(24). Higher symmetry of residual error histograms after correction confirms that no 

additional spatial bias is introduced by our simplified correction procedure. The histogram 

statistics does not change when different b-value or model ADC are used, confirming that 

presented error correction efficiency estimate is independent of actual ADC or effective b0-
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value. Therefore, the proposed error correction procedure is adequate for arbitrary 

experimental conditions.

The relative amount of error corrected for all pixels within the FOV was quantified by the 

ratio of the histogram RMSE before and after correction (Fig.5b). Slightly higher correction 

efficiency observed for OVP versus LAB DWI scenario is expected due to inclusion of off-

diagonal nonlinearity tensor elements into corrector Eq.[4]. This facilitates suppression of 

spatial cross-terms with imaging gradients. Still, major bias error reduction occurs even with 

LAB scenario, where corrector includes only diagonal nonlinearity terms, lkk (U=I in Eq.

[4]). This is consistent with off-diagonal nonlinearity (spurious gradients) having lower 

effect on spatial bias. Therefore, LAB results in Fig.5b provide baseline correction 

efficiency if the off-diagonal nonlinearity (spurious gradients) is ignored. Single anisotropy 

value used by our model for all pixels within the FOV is a hypothetical scenario to illustrate 

the impact of anisotropy. More practical assumption is the distribution of anisotropies 

(37,38), with prevalence of lower anisotropies observed for non-neurologic or disease 

tissues (37). In the reasonable anisotropy range (FA<0.5 (37,39)), the proposed correction 

procedure removes > 90% of error and reduces absolute ADC non-uniformity bias to below 

experimental uncertainty (< 2%, Fig.3a,b) over clinically relevant FOVs.

A couple useful tips regarding efficient reduction of residual ADC error were realized by 

presented comprehensive gradient nonlinearity model and error analysis: (a) for highly 

anisotropic media, OVP gradients provide more efficient ADC correction when off-diagonal 

nonlinearity terms are known; (b) minimal effort correction procedure that ignores spatial 

dependence of off-diagonal cross-terms of nonlinearity tensor can be applied for low 

anisotropy tissue with LAB-gradients. In practice, the described correction can be 

implemented via the following three routes: (i) providing corrected b-maps (LUT, 

normalized by b-value) for a set of 16 DWI gradient directions, Eq.[5]; (ii) providing 

corrected ADC maps, Eq.[6]; and (iii) providing corrected DWI images, Eq.[7]. When it is 

desirable to obtain the diffusion coefficient for kth direction (Dkk) by fitting several 

measurements at different b-values, spatial bias correction should be applied first either to b-

values or DWI intensities (Fig.1), followed by appropriate model fit of signal versus b-value 

(e.g, mono-exponential model versus alternative (12)).

Correction of individual DWI intensities (prior to ADC correction) is preferred since it 

offers greatest portability and flexibility. The corrective functions are pre-calculated once 

(Fig.1, dashed outline) and are stored on the MRI system for internal use. Each acquired 

DWI can be spatially corrected on the scanner. Since this correction is performed directly on 

the system, information regarding acquisition conditions and linkage between patient-based 

and magnet-based coordinate systems is available internally. This is analogous to geometric 

distortion correction currently applied on MRI scanners (25). Once the individual image 

intensities of each DWI are corrected as a function of spatial location, they are fully portable 

since existing online/offline diffusion analysis routines/models do not need any modification 

and can be applied directly to the spatially-corrected DWI.

To conclude, spatial dependence of b-matrix norm, described by squared projection of 

system nonlinearity tensor onto DWI direction, accounts for the bulk (70–90%) of ADC 
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non-uniformity error for anisotropic medium (FA = 0.9–0.3) and >97% for isotropic 

medium. Residual error due to spatial and time-domain cross-terms between diffusion and 

imaging gradients depends on FA of the medium and the DWI-gradient direction/mode. 

ADC non-uniformity errors are amplified for anisotropic diffusion and gradient over-plus 

mode and can be corrected most efficiently. Simplified b-correction algorithm, including 

spatial dependence of leading diagonal b-terms rotated into diffusion gradient frame, is 

found to be sufficient to control conventional (i.e. three-direction) ADC measurement bias 

error in clinical studies (5–7). This procedure, although applicable only to ADC 

measurement, is mathematically robust to experimental noise since it avoids data fitting and 

solution of the full eigenvector/eigenvalue problem. Once calculated for specific gradient 

coil system and selected DWI directions, the spatial dependence of correctors are fixed, 

well-behaved smoothly varying functions, independent of subject or imaging sequence, 

which simply scale with b-value. Vendor cooperation is desirable to implement viable 

instrumental correction procedures in-line to control spatial ADC bias errors on clinical 

scanners.
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Appendix

In conventional DWI MR experiment, the diffusion tensor elements, Dij, are related to 

measured signal intensity ratios for any image pixel, SR = So/Sb, of zero to non-zero 

diffusion gradient conditions via (8,10,11):

[A1]

where, V and Λ are matrices of eigenvectors and eigenvalues of D, respectively, I≡ I3 is a 

3×3 identity matrix, and , are the elements of symmetric 3×3 b-matrix obtained by time-

integration of kth-direction gradient waveform, gk(τ), according to (26,32,34) :

[A2]

Here γ is the gyromagnetic ratio, TE is the echo time for the spin echo DWI sequence, and 

gk(τ) waveform coordinates indicate active gradient coil elements X, Y and Z at time τ. This 

separation of system specific characteristics under the time integral of Eq.[A2] (32,34) is 

achievable since diffusion tensor in Eq.[A1] is independent of time. Spatial direction of 

applied diffusion gradients, u= gD/‖gD‖, can be described by a unit vector in gradient coil 

coordinates, u= (uX, uY, uZ)T, while their strength is determined by the Euclidean norm of 

the diffusion waveform, ‖gD‖. The general gradient waveform includes all sequence 

gradients with polarity reversed after TE/2 (32) to implicitly account for effect of the spin 

echo RF pulse (34). According to Ref.(32), coefficients of dyadic product of Eq.[A2] can be 

written in a 3×3 b-matrix form. When imaging gradients are included, g= gD + gIMG, each 
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element of this matrix can be decomposed into three parts (32) that separately account for 

diffusion and imaging gradients, as well as their cross-products. Diffusion term (D) is 

proportional to the product of the desired diffusion gradient strength with their timing 

elements (duration and spacing) (34). The other two terms describe additional (undesired) 

weighting due to products of imaging gradients with themselves (IMG) and with diffusion 

gradients (ICT). For time-compact DWI sequences (35) with moderate imaging resolution 

(32), imaging cross-terms are small, such that:

[A3]

Here, ‖b‖ ≡ ‖b‖F, is a Frobenius (Euclidean) norm of symmetric b-matrix, invariant under 

rotations. When the gradient strength is independent of spatial coordinate, g(r) = g0, at 

isocenter r = r0 = (x0, y0, z0)T, b-matrix is uniform over the FOV and can be described by 

effective b-value, , for each of three kth orthogonal measurement. Using Eq.[A3] 

and assuming ε → 0, Eq.[A1] can be simplified for an arbitrary DWI waveform:

[A4]

[A5]

Note that, Dkk ≠ λk is not an eigenvalue of diffusion tensor, but rather a projection of the 

eigenvalue “vector” onto DW direction. The model error term along uk, Eq.[A3–A4], is 

given by:

[A6]

and is negligible when Eq.[A3] conditions are satisfied.

In case of linear gradients, the above simplification, Eq.[A4], allows straightforward 

calculation of “assumed ADC” from any three orthogonal DW measurements U = (u1, u2, 

u3), UUT = I:

[A7]
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[A8]

In presence of nonlinearity (23,24), the strength of the gradient varies depending on location 

in the magnet bore and spurious gradients are produced in directions orthogonal to desired 

DW, leading to spatial bias of the b′(r)-matrix (26). To the first order, such variations can be 

described by spatially-dependent nonlinearity tensor (26), L(r):

[A9]

[A10]

Where g0-gradient waveform and b0–matrix are given at isocenter. When b0(IMG) + b0(ICT) > 

0 in Eqs.[A2–A3], b′ (r) is symmetric positive definite (semi-definite for g0(IMG) → 0), and 

thus, possesses orthogonal eigenvectors with the largest (1st) eigenvalue close to the b’-
norm, Eq.[A3]:

[A11]

Therefore, similar to Eq.[A3], b′ can be approximated by , and Eq.[A4–A7] 

formalism can be applied with ‖b′‖ replacing  in Eq.[A8]. In the limit of negligible 

nonlinearity and imaging cross-terms: L~I, gIMG → 0 in Eqs.[A3, A10], any three 

orthogonal DW directions (UUT = I) satisfy Eq.[A11]: U′ ≅ U, and . In 

general, for arbitrary DW direction from an orthogonal set, a corrector  can be 

devised such that  :

[A12]

that makes Eq.[A7] universally valid as an ADC approximation. Here , Eq.[A10], 

where li = (l1i, l2i, l3i)T is the ith column of gradient nonlinearity tensor L(r), Eq.[A9].

An alternative corrector, independent of b0–value at isocenter, can be obtained by 

“projecting” Eq.[A1] onto DW direction with bk′, similar to Eqs.[A4–A5]:

[A13]
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Using Eqs.[A6,A12], residual b-correction error due to nonlinearity and time-domain cross-

terms along kth DW direction is given by: Δ

[A14]

References

1. Clark CA, Le Bihan D. Water diffusion compartmentation and anisotropy at high b values in the 
human brain. Magn Reson Med. 2000; 44(6):852–859. [PubMed: 11108621] 

2. Galban CJ, Mukherji SK, Chenevert TL, Meyer CR, Hamstra DA, Bland PH, Johnson TD, Moffat 
BA, Rehemtulla A, Eisbruch A, Ross BD. A feasibility study of parametric response map analysis 
of diffusion-weighted magnetic resonance imaging scans of head and neck cancer patients for 
providing early detection of therapeutic efficacy. Transl Oncol. 2009; 2(3):184–190. [PubMed: 
19701503] 

3. Sorensen AG, Buonanno FS, Gonzalez RG, Schwamm LH, Lev MH, Huang-Hellinger FR, Reese 
TG, Weisskoff RM, Davis TL, Suwanwela N, Can U, Moreira JA, Copen WA, Look RB, 
Finklestein SP, Rosen BR, Koroshetz WJ. Hyperacute stroke: evaluation with combined 
multisection diffusion-weighted and hemodynamically weighted echo-planar MR imaging. 
Radiology. 1996; 199(2):391–401. [PubMed: 8668784] 

4. Chenevert TL, Stegman LD, Taylor JM, Robertson PL, Greenberg HS, Rehemtulla A, Ross BD. 
Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain 
tumors. J Natl Cancer Inst. 2000; 92(24):2029–2036. [PubMed: 11121466] 

5. Dickinson L, Ahmed HU, Allen C, Barentsz JO, Carey B, Futterer JJ, Heijmink SW, Hoskin PJ, 
Kirkham A, Padhani AR, Persad R, Puech P, Punwani S, Sohaib AS, Tombal B, Villers A, van der 
Meulen J, Emberton M. Magnetic resonance imaging for the detection, localisation, and 
characterisation of prostate cancer: recommendations from a European consensus meeting. Eur 
Urol. 2011; 59(4):477–494. [PubMed: 21195536] 

6. Li SP, Padhani AR. Tumor response assessments with diffusion and perfusion MRI. J Magn Reson 
Imaging. 2012; 35(4):745–763. [PubMed: 22434697] 

7. Padhani AR, Liu G, Koh DM, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, 
Van Cauteren M, Collins D, Hammoud DA, Rustin GJ, Taouli B, Choyke PL. Diffusion-weighted 
magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 
2009; 11(2):102–125. [PubMed: 19186405] 

8. Alexander AL, Hasan K, Kindlmann G, Parker DL, Tsuruda JS. A geometric analysis of diffusion 
tensor measurements of the human brain. Magn Reson Med. 2000; 44(2):283–291. [PubMed: 
10918328] 

9. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H. Diffusion tensor 
imaging: concepts and applications. J Magn Reson Imaging. 2001; 13(4):534–546. [PubMed: 
11276097] 

10. Basser PJ, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR 
spin echo. J Magn Reson B. 1994; 103(3):247–254. [PubMed: 8019776] 

11. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M. MR imaging of 
intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. 
Radiology. 1986; 161(2):401–407. [PubMed: 3763909] 

12. Riches SF, Hawtin K, Charles-Edwards EM, de Souza NM. Diffusion-weighted imaging of the 
prostate and rectal wall: comparison of biexponential and monoexponential modelled diffusion 
and associated perfusion coefficients. NMR Biomed. 2009; 22(3):318–325. [PubMed: 19009566] 

13. Delakis I, Moore EM, Leach MO, De Wilde JP. Developing a quality control protocol for diffusion 
imaging on a clinical MRI system. Phys Med Biol. 2004; 49(8):1409–1422. [PubMed: 15152682] 

14. Ogura A, Hayakawa K, Miyati T, Maeda F. Imaging parameter effects in apparent diffusion 
coefficient determination of magnetic resonance imaging. Eur J Radiol. 2011; 77(1):185–188. 
[PubMed: 19646836] 

Malyarenko et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2014 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



15. Sasaki M, Yamada K, Watanabe Y, Matsui M, Ida M, Fujiwara S, Shibata E. Variability in 
absolute apparent diffusion coefficient values across different platforms may be substantial: a 
multivendor, multi-institutional comparison study. Radiology. 2008; 249(2):624–630. [PubMed: 
18936317] 

16. Colagrande S, Pasquinelli F, Mazzoni LN, Belli G, Virgili G. MR-diffusion weighted imaging of 
healthy liver parenchyma: repeatability and reproducibility of apparent diffusion coefficient 
measurement. J Magn Reson Imaging. 2010; 31(4):912–920. [PubMed: 20373436] 

17. Teipel SJ, Reuter S, Stieltjes B, Acosta-Cabronero J, Ernemann U, Fellgiebel A, Filippi M, Frisoni 
G, Hentschel F, Jessen F, Klöppel S, Meindl T, Pouwels PJ, Hauenstein KH, Hampel H. 
Multicenter stability of diffusion tensor imaging measures: a European clinical and physical 
phantom study. Psychiatry Res. 2011; 194:363–371. [PubMed: 22078796] 

18. Chenevert TL, Galban CJ, Ivancevic MK, Rohrer SE, Londy FJ, Kwee TC, Meyer CR, Johnson 
TD, Rehemtulla A, Ross BD. Diffusion coefficient measurement using a temperature-controlled 
fluid for quality control in multicenter studies. J Magn Reson Imaging. 2011; 34(4):983–987. 
[PubMed: 21928310] 

19. Malyarenko, D.; Galban, CJ.; Londy, FJ.; Meyer, CR.; Johnson, TD.; Rehemtulla, A.; Ross, BD.; 
Chenevert, TL. J Magn Reson Imaging. 2012. Multi-system repeatability and reproducibility of 
apparent diffusion coefficient measurement using an ice-water phantom. in press

20. Tan, ET.; Marinelli, L.; Slavens, ZW.; King, KF.; Hardy, CJ. J Magn Reson Imaging. 2012. 
Improved correction for gradient nonlinearity effects in diffusion-weighted imaging. in press

21. Bammer, R.; Markl, M.; Pelc, NJ.; Moseley, ME. Honolulu, Hawaii, USA: 2002 May 18–24. 
Assessment of Spatial Gradient Field Distortions in Diffusion-Weighted Imaging; p. 11722002

22. Robson, MD. Honolulu, Hawaii, USA: 2002 May 18–24. Non-linear Gradients on Clinical MRI 
Systems Introduce Systematic Errors in ADC and DTI Measurements; p. 11732002

23. Romeo F, Hoult DI. Magnet field profiling: analysis and correcting coil design. Magn Reson Med. 
1984; 1(1):44–65. [PubMed: 6571436] 

24. Janke A, Zhao H, Cowin GJ, Galloway GJ, Doddrell DM. Use of spherical harmonic 
deconvolution methods to compensate for nonlinear gradient effects on MRI images. Magn Reson 
Med. 2004; 52(1):115–122. [PubMed: 15236374] 

25. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, 
Brown G, Macfall J, Fischl B, Dale A. Reliability in multi-site structural MRI studies: effects of 
gradient non-linearity correction on phantom and human data. Neuroimage. 2006; 30(2):436–443. 
[PubMed: 16300968] 

26. Bammer R, Markl M, Barnett A, Acar B, Alley MT, Pelc NJ, Glover GH, Moseley ME. Analysis 
and generalized correction of the effect of spatial gradient field distortions in diffusion-weighted 
imaging. Magn Reson Med. 2003; 50(3):560–569. [PubMed: 12939764] 

27. Laun FB, Schad LR, Klein J, Stieltjes B. How background noise shifts eigenvectors and increases 
eigenvalues in DTI. MAGMA. 2009; 22(3):151–158. [PubMed: 19067007] 

28. Ozcan A. Noise and nonlinear estimation with optimal schemes in DTI. Magn Reson Imaging. 
2010; 28(9):1335–1343. [PubMed: 20655681] 

29. Ozcan A. Minimization of imaging gradient effects in diffusion tensor imaging. IEEE Trans Med 
Imaging. 2011; 30(3):642–654. [PubMed: 21356610] 

30. Lemke A, Stieltjes B, Schad LR, Laun FB. Toward an optimal distribution of b values for 
intravoxel incoherent motion imaging. Magn Reson Imaging. 2011; 29(6):766–776. [PubMed: 
21549538] 

31. Wu YC, Alexander AL. A method for calibrating diffusion gradients in diffusion tensor imaging. J 
Comput Assist Tomogr. 2007; 31(6):984–993. [PubMed: 18043367] 

32. Gullmar D, Haueisen J, Reichenbach J. Analysis of b-Value Calculations in Diffusion Weighted 
and Diffusion Tensor Imaging. Concepts in Magnetic Resonance Part A. 2005; 25A(1):53–66.

33. Wong EC, Cox RW, Song AW. Optimized isotropic diffusion weighting. Magn Reson Med. 1995; 
34(2):139–143. [PubMed: 7476070] 

34. Stejskal EO, Tanner JE. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-
Dependent Field Gradient. The Journal of Chemical Physics. 1965; 42:288–292.

Malyarenko et al. Page 17

Magn Reson Med. Author manuscript; available in PMC 2014 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



35. Pipe, JG. Pulse Sequences for Diffusion-weighted MRI. In: Johansen-Berg, H.; Behrens, T., 
editors. Imaging brain pathways - Diffusion MRI: from quantitative measurement to in vivo 
neuroanatomy. Elsevier; 2009. p. 11-35.

36. Holz M, Heil SR, Sacco A. Temperature-dependent self-diffusion coefficients of water and six 
selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys Chem 
Chem Phys. 2000; 2:4740–4742.

37. Cercignani M, Inglese M, Pagani E, Comi G, Filippi M. Mean diffusivity and fractional anisotropy 
histograms of patients with multiple sclerosis. AJNR Am J Neuroradiol. 2001; 22(5):952–958. 
[PubMed: 11337342] 

38. Santarelli X, Garbin G, Ukmar M, Longo R. Dependence of the fractional anisotropy in cervical 
spine from the number of diffusion gradients, repeated acquisition and voxel size. Magn Reson 
Imaging. 2010; 28(1):70–76. [PubMed: 19577395] 

39. Bourne RM, Kurniawan N, Cowin G, Sved P, Watson G. Microscopic diffusion anisotropy in 
formalin fixed prostate tissue: preliminary findings. Magn Reson Med. 2012; 68(6):1943–1948. 
[PubMed: 22287422] 

Malyarenko et al. Page 18

Magn Reson Med. Author manuscript; available in PMC 2014 November 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Schematic of proposed ADC correction workflow. Dashed outline marks one-time 

procedure to obtain corrector maps for a specific MRI scanner. This is followed by 

description of allowed correction routes for a DWI scan to remove ADC bias.
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Figure 2. 
Effect of gradient nonlinearity on spatial non-uniformity of diagonal (a–c) versus off-

diagonal (d–f) elements of b-matrix over FOV = 300×300×300mm is illustrated for DWI 

gradients along “Z”-LAB (a,d), “Z”-OVP (b,e), and corrected “Z”-OVP (c,f). Spatial 

dependence is represented by color gradient at boundary planes (X=150mm, Y=150mm, Z=

−150mm) and spherical slice through the FOV. Color-bars to the right of each 3D-map 

provide the scale for depicted b-values (s/mm2). The unbiased (uniform) b-value 

corresponds to 1010 (a), 755 (b) and 1510s/mm2 (c) at isocenter. The deviation from 

uniformity is visually estimated by the color gradient scale away from isocenter. The color 

gradient of the corrected map (c) preserves all spatial non-uniformity information of (b) to 

remove nonlinearity bias via Eqs.[4,5]. The residual non-uniformity error, Eq.[2], of b-

matrix is represented by the spatial bias and relative scale of the off-diagonal b-elements (d–

f).
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Figure 3. 
Comparison of measured spatial bias for ADC (a,b) for isotropic ice-water phantom) to the 

model (c,d) in case of LAB-DWI gradients plotted for three separate directions (dashed, 

dotted curves) and the trace (solid curve): (a,c) SI offset; (b,d) LR offset. Dotted horizontal 

lines mark 5% deviations from reported ADC ≡ 1.1×10−3mm2/s value of water (36) at 0 °C 

(solid line). Error bars for the measured trace ADC correspond to a standard deviation over 

10 mm diameter circular ROI (approx. 90 pixels). Spatial non-uniformity bias away from 

isocenter exceeded experimental measurement errors.
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Figure 4. 
Corrected versus uncorrected ADC gray-scale maps for 60 image slices (6×10 tiles) through 

FOV = 300×300×300 mm3 for (a) isotropic media FA=0 and (b) an arbitrary diffusion-

tensor orientation with FA=0.9. Gray color-bar scale is 10−3 mm2/s. ADC non-uniformity 

bias is depicted by deviation from true (uniform model) ADC ≡ 1×10−3mm2/s across FOV.
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Figure 5. 
(a) corrected (dark) versus uncorrected (light grey) error histograms (scaled to maximum 

pixel number) for four FAs and 2510 uniform diffusion-tensor orientations within FOV = 

300×300×300mm; (b) total correction efficiency (%RMSE) as a function of FA for all 

pixels within FOV averaged over 2510 diffusion tensor orientations for LAB (gray circles) 

versus OVP (black circles) DWI. Squares illustrate baseline efficiency without bias 

correction.
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