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The potential for carcinogenic risks is increased by radiation-induced bystander responses; these responses are
the biological effects in unirradiated cells that receive signals from the neighboring irradiated cells. Bystander
responses have attracted attention in modern radiobiology because they are characterized by non-linear
responses to low-dose radiation. We used a synchrotron X-ray microbeam irradiation system developed at the
Photon Factory, High Energy Accelerator Research Organization, KEK, and showed that nitric oxide (NO)-
mediated bystander cell death increased biphasically in a dose-dependent manner. Here, we irradiated five cell
nuclei using 10 × 10 µm2 5.35 keV X-ray beams and then measured the mutation frequency at the hypoxanthine-
guanosine phosphoribosyl transferase (HPRT) locus in bystander cells. The mutation frequency with the null
radiation dose was 2.6 × 10–5 (background level), and the frequency decreased to 5.3 × 10–6 with a dose of
approximately 1 Gy (absorbed dose in the nucleus of irradiated cells). At high doses, the mutation frequency
returned to the background level. A similar biphasic dose-response effect was observed for bystander cell
death. Furthermore, we found that incubation with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-
1-oxyl-3-oxide (carboxy-PTIO), a specific scavenger of NO, suppressed not only the biphasic increase in
bystander cell death but also the biphasic reduction in mutation frequency of bystander cells. These results
indicate that the increase in bystander cell death involves mechanisms that suppress mutagenesis. This study
has thus shown that radiation-induced bystander responses could affect processes that protect the cell against
naturally occurring alterations such as mutations.
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INTRODUCTION

Biological responses to radiation are induced in irradiated
cells mainly as a result of DNA damage. However, many
studies indicate that biological responses to radiation are not

always limited to the irradiated cells but can be induced in
neighboring unirradiated ‘bystander’ cells. This phenom-
enon, often called radiation-induced bystander response, was
first described by Nagasawa and Little in 1992 [1]. So far the
range of biological effects demonstrated to be induced in
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bystander cells via signals from irradiated cells includes
sister chromatid exchange [1, 2], cell death [3–8], chromo-
somal instability [9], and mutations [10, 11]. These findings
have had a large impact on radiobiology because they may
have important implications for the estimation of risk to
human health associated with exposure to low-dose radi-
ation. The risks associated with low-dose ionizing radiation
are estimated by extrapolating data obtained after exposure to
intermediate doses using a linear non-threshold (LNT) model.
The discovery of radiation-induced bystander responses and
other non-targeted effects has triggered a dispute over the val-
idity of the LNT model because a non-linear response at a low
dose is a characteristic of these phenomena. The controversy
over this issue has not been resolved, in part, because the
number and location of the radiation-track traversals cannot be
monitored or controlled for each cell when a broad radiation
field is used, which is often true in low-dose radiation experi-
ments. The microbeam cell irradiation system, which enables
observation of cellular responses of individual irradiated and
non-irradiated cells equally, is a powerful tool to elucidate the
mechanisms underlying the biological responses to low-dose
radiation, including bystander responses.
We used a synchrotron X-ray microbeam irradiation

system developed at the Photon Factory, High Energy
Accelerator Research Organization, KEK [12–15], and found
that cell death is more prevalent in cells irradiated with X-ray
microbeams when only nuclei, rather than the whole cells,
are irradiated [16, 17]. Furthermore, we recently showed that
the biphasic increase in bystander cell death was dose-
dependent when nuclei of targeted cells were exposed to
X-ray microbeams [7, 18]. Our findings indicated that cell
death, both in irradiated and bystander cells, was modified
by the site of energy deposition within the cells.
As a next step, we measured the mutation frequency in

bystander cells neighboring those with irradiated nuclei.
Because mutations are a prerequisite of carcinogenesis, our
results may provide fundamental information for evaluating
the carcinogenic risk posed by exposure to low doses of ion-
izing radiation.

MATERIALS ANDMETHODS

Cell culture and sample preparation
V79 Chinese hamster lung cells were cultured in minimum
essential medium-alpha (MEMα; Nacalai Tesque Inc.,
Nakagyo-ku, Kyoto, Japan) containing 10% fetal bovine
serum (FBS; Nichirei Biosciences Inc., Chuo-ku, Tokyo,
Japan), 100 U/ml penicillin (Invitrogen Corp, Carlsbad,
California, USA), 100 µg/ml streptomycin (Invitrogen), and
15 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic acid
(HEPES; Nacalai Tesque) and then incubated in a
humidified incubator maintained at 37°C in an atmosphere
containing 5% CO2. To irradiate cells with microbeams,
1.0 × 105 V79 cells were seeded on custom-designed

polypropylene-based dishes (34 mm in diameter), the
bottoms of which were composed of a 3-µm polypropylene
film (Toray Industries Inc., Chuo-ku, Tokyo, Japan), and
incubated overnight. Before X-ray irradiation, the cell nuclei
were stained with a 2 µM solution of Hoechst 33258
(Dojindo Molecular Technologies Inc., Kamimashiki-gun,
Kumamoto, Japan) for 1 h. At the time of irradiation, the
Hoechst solution was replaced with 5 ml of fresh medium.

Microbeam irradiation
Monochromatic X-ray microbeam irradiation was performed
using the synchrotron X-ray microbeam irradiation system
installed at the BL-27B station in the Photon Factory
[12–15]. The procedures for microbeam irradiation and dos-
imetry have been previously described [7, 17]. To ensure that
the irradiation for initial stimulation was similar to that used
in previous studies [7, 18], nuclei of five isolated single cells
located at the center of each dish were selected as targets.
The positions of these nuclei, defined as the center of mass
of Hoechst33258-stained nuclei images, were stored in the
controlling computer of the system. We irradiated the five
targeted cell nuclei with 10 × 10 µm2 5.35 keV X-ray beams,
and the exposure rates were 8.5 × 10−3 ± 3.4 × 10−5 C/kg/s
(1.0 × 104 ± 4.2 × 101 photons/s in 10 × 10 µm2 beam). In
our study, the ‘nuclear-averaged dose’, at which the absorbed
energy is divided by the mass of nucleus as described in
Maeda et al. [17], was used as a measure of radiation doses
and the dose rate was 1.8 × 10−1 ± 7.3 × 10−4 Gy/s.

Determination of bystander cell survival
The fraction of bystander cells that survived was measured
using a colony-formation assay. After irradiation, the culture
medium was removed, and the cells were washed twice with
phosphate buffered saline (PBS). Immediately thereafter,
2 ml of fresh medium was added to the dishes, and the cells
were cultured for 3 h. Next the cells were harvested using a
trypsin-ethylene diamine tetraacetic acid (EDTA) solution
(0.05% trypsin, 0.53 mM EDTA•4Na; Invitrogen); the har-
vested cells were diluted and plated in a 100-mm cell culture
dish at approximately 150 viable cells per dish. After incuba-
tion for 6 days, the cells were fixed with HC Tissue Fixative
MB (Amresco Inc., Solon, Ohio, USA) for 25 min at room
temperature and rinsed twice with PBS. Following that the
cells were stained with 1% methylene blue (Wako Pure
Chemical Industries Ltd, Chuo-ku, Osaka, Japan) solution.
Colonies containing more than 50 cells were counted as
survivors.

HPRTmutation assay
The HPRT mutation assay is a method commonly used to
study the genetic changes and genomic instability [19, 20].
After irradiation, the culture medium was removed, and the
cells were washed twice with PBS. Immediately thereafter,
2 ml of fresh medium was added to the dishes, and the cells
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were cultured for 3 h. Cells were harvested by trypsinization
and transferred to a T-75 cell culture flask containing fresh
medium. Cells were maintained for 8 days and were subculti-
vated every 2 days to allow for phenotypic expression. Then,
1 × 106 cells were harvested and seeded onto 100-mm cell
culture dishes with fresh medium containing 10 µg/ml
6-thioguanine (Wako) and incubated for 6 days. Cells in
dishes were fixed and stained using the same method
described above for the colony-formation assay, and the
colonies (i.e. HPRT mutants) were scored. The mutation
frequency was expressed as the number of resistant colonies
divided by the total number of viable cells at the time of
selection.

Cell culture with NO scavenger after irradiation
2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-
l-3-oxide, sodium salt (carboxy-PTIO; Dojindo Molecular
Technologies Inc.) is a specific scavenger of NO [21, 22].
Directly after irradiation, the cells were incubated with
medium containing carboxy-PTIO instead of normal fresh
medium. During the clonogenic assays for the measurement
of surviving fractions and of mutation frequencies, cells were
also incubated with medium containing carboxy-PTIO
instead of normal fresh medium. The concentration of
carboxy-PTIO in the medium was set to 20 µM, because the
concentration of NO in the medium was not expected to
exceed 20 µM after irradiation [7], as indicated by studies in
which the concentration of NO2

−, an oxidization product of
NO, in the medium after irradiation was measured with
Griess reagent [23].

Statistical analysis
Statistical analysis was performed on the data obtained from
at least three independent experiments. All the results are
expressed as means ± standard error (SE). Significant levels
were assessed using Student’s t test. Analysis of the correla-
tions between bystander cell death and mutation frequency in
the bystander cells was assessed using analysis of variance
(ANOVA). A probability (P) value < 0.05 was considered to
indicate statistical significance.

RESULTS

Determination of the incubation period
for the assays of bystander responses
We first determined the incubation period for trypsinization
to harvest the cells for the colony formation assay. Cell
nuclei (n = 5) located in the center of a dish were irradiated
with 1 Gy of 10 × 10 µm2 square 5.35 keV X-ray beams and
incubated for 0–6 h. Then, the surviving fractions of the cell
populations on the dishes were determined using the colony-
formation assay. We set the incubation period as 3 h,
because the decrease in surviving fractions reached a plateau
3 h after irradiation (Fig. 1).

Bystander cell death induced by
microbeam-irradiated V79 cells
We measured the dose–survival relationship in bystander
V79 cells (Fig. 2). We observed a dose-dependent biphasic

Fig. 1 The surviving fraction of bystander V79 cells is plotted as a
function of the time after irradiation. Data were taken from more
than three independent experiments. The error bars represent
standard errors (SEs).

Fig. 2. The surviving fractions of bystander V79 cells are plotted
as a function of the nuclear-averaged dose in the irradiated cells.
Cells were incubated with (open circles) or without (closed circles)
the nitric oxide (NO)-specific scavenger, 2-(4-carboxyphenyl)-
4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO),
commencing immediately after irradiation. Data were taken from at
least three independent experiments. The error bars represent
standard errors (SEs). An asterisk indicates P < 0.05, and double
asterisks indicate P < 0.01.
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increase in the death of bystander cells. The surviving frac-
tion decreased to 0.87 ± 0.015 when nuclei were irradiated
with a nuclear-averaged dose of 1 Gy; however, at higher
doses the surviving fraction was stable at approximately
0.94. Because the fraction of irradiated cells in the dish
was < 0.5 × 10−4, it is likely that the decrease in the surviving
fraction was the result of bystander responses. Our previous
studies showed the same type of biphasic dose–response
effect as that observed in this study during the death of by-
stander cells [7, 8, 18].
In the previous study, 2.0 × 103 individual V79 cells were

seeded on dishes, and five cells at the center of the dish were
irradiated [7, 18]. On the other hand, in the present study,
1.0 × 105 cells were seeded on dishes. Although, the shape of
the dose–survival curves and the magnitude of bystander cell
death were almost equal in both studies [7, 18], the fraction
of irradiated cells among the cell population was 0.25% and
0.005%, respectively. These results indicate that initial small

stimulation (i.e. irradiation to only five cell nuclei in the cell
population) is sufficient to saturate the bystander cell death.

HPRTmutation in the bystander cell population
The dose–response relationship between radiation dose and
mutation frequency in the bystander cell population was
determined using the HPRT mutation assay (Fig. 3). The
background mutation frequency in the control, non-irradiated
cells, was 2.6 × 10−5 ± 1.3 × 10−6. The mutation frequency
in bystander cells decreased significantly (P < 0.01) to
5.3 × 10−6 ± 1.3 × 10−6 when five target nuclei were irra-
diated with a nuclear-averaged dose of 1 Gy; however, at
higher doses the mutation frequency returned to background
levels. The biphasic decrease in mutation frequency was
similar to the biphasic decrease in bystander cell death.

The effects of NO on bystander cell death
and mutagenesis in the population of bystander cells
Recently, we showed that NO is a principal mediator of by-
stander cell death [7]. Therefore, we investigated the role of
NO in bystander cell death and mutations. Treatment with
20 µM carboxy-PTIO, a specific scavenger of NO [21, 22],
was not cytotoxic to V79 cells (Table 1). The effects of
carboxy-PTIO in post-irradiation incubation are shown in
Figs 2 and 3. The dose-dependent biphasic increase in the
death of bystander cells was not observed when the cells
were incubated with carboxy-PTIO (Fig. 2). Furthermore,
the dose-dependent biphasic decrease in mutation frequency
was not observed when the cells were incubated with
carboxy-PTIO (Fig. 3). These results clearly show that NO
plays an important role, not only in the induction of death of
bystander cells, but also in the suppression of spontaneous
mutagenesis in bystander cells.

DISCUSSION

Our findings showed a biphasic dose–response relationship
between the mutation frequency in bystander cells and irradi-
ation dose when the nuclei of targeted cells were exposed to
X-ray microbeams. Previous studies on bystander responses,
especially those investigating mutations in bystander cells,
mostly focused on the effects caused by irradiation with low
fluences of α-particles. For example, Nagasawa and Little
found an unexpectedly high frequency of HPRT mutations
in CHO cells exposed to very low fluences of α-particles;

Table 1. Cytotoxicity of incubating V79 cells with 20 µM 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide
(carboxy-PTIO)

carboxy-PTIO (20 µM) – +

Colony-forming efficiency 0.92 (±0.070) 0.91 (±0.050)

Mutation frequency 2.6 × 10−5 (±7.8 × 10−6) 2.6 × 10−5 (±6.0 × 10−6)

Fig. 3 HPRT mutation frequencies in bystander cells are plotted
as a function of the nuclear-averaged dose in the irradiated cells.
Cells were incubated with (open squares) or without (closed squares)
the nitric oxide (NO)-specific scavenger, 2-(4-carboxyphenyl)-
4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO),
commencing immediately after irradiation. Data were taken from at
least three independent experiments. The error bars represent
standard errors (SEs). An asterisk indicates P < 0.05, and double
asterisks indicate P < 0.01.
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they concluded that the mutations occurred in unirradiated
cells via bystander responses [10]. Similarly, Zhou et al.
reported that when 20% of human-hamster hybrid (AL) cells
were irradiated with 20 α-particles using charged particle
microbeams, the frequency of mutations in the human
chromosome 11 in the other 80% of the cells (i.e. bystander
cells) quadrupled relative to background levels [11]. Our
findings, unlike those from previous studies, showed that the
HPRT mutation frequency in bystander V79 cells decreased
at radiation doses around 1 Gy (Fig. 3). The mutation fre-
quency significantly decreased (P < 0.01) from 2.6 × 10−5

(background level) to 5.3 × 10−6 at a nuclear-averaged dose of
approximately 1 Gy; however, at higher doses the mutation
frequency returned to the background level. Interestingly,
this dose–response effect is quite similar to that observed
in the death of bystander cells (Fig. 2). ANOVA indicated
a significant correlation (P < 0.05) between bystander cell
death and HPRT mutation frequency. The similarity of these
behaviors indicates the possibility that bystander cell death
and mutations in bystander cells are not independent
phenomena.
Some groups reported a similar dose–response in neoplas-

tic transformation after exposure to low-dose radiation.
Although the phenomena described in those studies are not
bystander responses, the discussions in those reports might
be useful to help consider the mechanisms underlying our
results. Azzam et al. reported that low-dose γ-ray irradiation
reduces the risk of neoplastic transformation from the spon-
taneous level to one-third or one-fourth of that level [24].
They proposed that exposure to low doses of radiation
resulted in an increased capacity for the error-free repair of
DNA double-strand breaks [24]. In addition, Redpath and his
colleagues reported that low-dose γ-ray or X-ray irradiation
protected a human hybrid cell line against spontaneous neo-
plastic transformation. Interestingly, the dose–response in
their work was biphasic, similar to that observed in our
HPRT mutation study. They suggested that a reduction in the
oxidative stress, possibly as a consequence of the upregula-
tion of antioxidants by low doses of irradiation, might be a
mechanism mediating those phenomena [25, 26]. Because in
our study the viability of bystander cells decreased in the
same dose range as that of the reduction of HPRT mutation
frequency, the activation of antioxidant functions, rather than
the upregulation of DNA repair capability, may be related to
the suppression of mutagenesis. The oxidative damage of
nucleotides within DNA or precursor pools that is caused by
reactive oxygen species (ROS) is thought to play an important
role in spontaneous mutations. Intracellular levels of ROS are
persistently high in genetically unstable cells [27–29], and
clones of those unstable cells secrete factors such as cytokines
and persistent free radicals that contribute to the perpetuation
of the unstable phenotype [30]. Bystander responses might
suppress the secretion of those factors and/or elevate the anti-
oxidant functions in the bystander cells population.

To date, two major classes of intercellular signaling
events, direct cell-to-cell contact via gap junctions [11, 31–
33] and indirect communication via secreted factors [34, 35],
are known to be involved in the induction of bystander
responses. Hou et al. reported that most mutations induced in
bystander cells were point mutations and suggested that these
mutations may have been caused by ROS [36]. However,
Zhou et al. reported that oxidative stress or hydroxyl radicals,
which have a very short half-life, were not chief mediators of
mutations in bystander cells [11]; they showed that the inhib-
ition of gap-junction communication suppressed the muta-
genesis in bystander cells [11, 37]. V79 cells, the cells used
in this study, exhibit some degree of gap-junction intercellu-
lar communication [38, 39]. However, gap junction-mediated
bystander responses may have been rare in our study because
we seeded the cells on the irradiation dish at low densities,
and most cells did not contact other cells during the short in-
cubation periods after irradiation. Therefore, it is likely that
the observed bystander responses were due to indirect com-
munication mediated by secreted factors. Certain bystander
signaling factors secreted from irradiated cells, such as NO
[7, 8, 40–45] and transforming growth factor-β1 (TGF-β1)
[46–48], apparently act as mediators between irradiated and
bystander cells. Recently, we showed that NO is a principal
mediator of bystander cell death; the addition of carboxy-
PTIO, a specific scavenger of NO, to the culture medium
suppresses the biphasic bystander cell death [7]. The dose-
dependent biphasic increase in the death of bystander cells
was suppressed by scavenging of the NO in a similar manner
(Fig. 2). Interestingly, scavenging of the NO also suppresses
the dose-dependent biphasic decrease of the mutation fre-
quency in bystander cells (Fig. 3). These results clearly indi-
cate an increase in NO-mediated bystander cell death
participated in mechanisms that suppressed mutagenesis in
bystander cells. In many cases [4–8, 49], approximately
5–20% of the bystander cells were killed by radiation-induced
bystander responses. However, it is not clear why bystander
responses induce cell death at those frequencies. Recently,
Egashira et al. reported that exposure to NO causes mitochon-
drial degeneration and subsequent cell killing in cells that
have low antioxidative functions [50]. Because NO is a major
mediator of bystander cell death, the cells that are genetically
unstable because of defects in their antioxidative activity
might be selectively killed by bystander responses. Thus, the
secretion of factors that contributed to the perpetuation of
the unstable phenotype may have been suppressed, and the
antioxidant activity in surviving cells may have been
increased; therefore, mutagenesis may have been suppressed
in the bystander cells (Fig. 3). Our group has reported that the
biphasic NO-mediated bystander cell death was induced by
X-ray microbeams also in normal human fibroblast WI-38
cells [8]. A reduction in the mutation frequency may occur in
normal human bystander cells if NO-mediated bystander cell
death selectively kills genetically unstable cells.
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Radiation-induced bystander responses are generally
thought to increase the risk of low-dose radiation to human
health because many cytotoxic phenomena are observed in
bystander cells. However, previous studies, as well as this
study, have reported the presence of a radiation-protective
bystander phenomena [48, 51, 52]. These phenomena are
part of the cellular homeostatic response and it is difficult to
categorize these effects as beneficial or harmful. To assess
the effects of radiation-induced bystander responses on
human health precisely, it is necessary not only to elucidate
the mechanisms mediating individual endpoints, but also to
understand the biological significances for the one living
system. Our results indicated that radiation-induced bystand-
er responses can enhance selective cell killing of genetically
unstable cells in the bystander cell population, and this se-
lective cell death might act as a protective mechanism that
competes with increases in non-lethal and potentially car-
cinogenic damage (e.g. mutations). These hypothetical pro-
tective effects may provide an adaptive advantage to the
organism.
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