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Abstract

Streptococcus (S.) pneumoniae is a common causative pathogen in pneumonia. Serine protease orthologs expressed by a
variety of bacteria have been found of importance for virulence. Previous studies have identified two serine proteases in S.
pneumoniae, HtrA (high-temperature requirement A) and PrtA (cell wall-associated serine protease A), that contributed to
virulence in models of pneumonia and intraperitoneal infection respectively. We here sought to identify additional S.
pneumoniae serine proteases and determine their role in virulence. The S. pneumoniae D39 genome contains five putative
serine proteases, of which HtrA, Subtilase Family Protein (SFP) and PrtA were selected for insertional mutagenesis because
they are predicted to be secreted and surface exposed. Mutant D39 strains lacking serine proteases were constructed by in-
frame insertion deletion mutagenesis. Pneumonia was induced by intranasal infection of mice with wild-type or mutant
D39. After high dose infection, only D39DhtrA showed reduced virulence, as reflected by strongly reduced bacterial loads,
diminished dissemination and decreased lung inflammation. D39DprtA induced significantly less lung inflammation
together with smaller infiltrated lung surface, but without influencing bacterial loads. After low dose infection, D39DhtrA
again showed strongly reduced bacterial loads; notably, pneumococcal burdens were also modestly lower in lungs after
infection with D39Dsfp. These data confirm the important role for HtrA in S. pneumoniae virulence. PrtA contributes to lung
damage in high dose pneumonia; it does not however contribute to bacterial outgrowth in pneumococcal pneumonia. SFP
may facilitate S. pneumoniae growth after low dose infection.
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Introduction

The bacterium Streptococcus (S.) pneumoniae is a major global cause

of human disease [1]. S. pneumoniae is the most frequent cause of

community-acquired pneumonia and a common pathogen in

sepsis, the incidence being greatest at the extremes of age and in

immune compromised individuals [2]. Although the discovery of

antibiotics and the development of vaccines have reduced the

health burden associated with pneumococcal infections, S.

pneumoniae still causes over 2 million deaths annually [1] and

increased bacterial resistance against currently available antibiotics

could make pneumococcal infections an even larger health threat

in the future [3]. Consequently, additional knowledge about this

bacterium and its virulence factors is of importance.

In 1991, Courtney [4] was the first to describe a role for serine

proteases as virulence factors for S. pneumoniae. Since then, serine

protease orthologs have been found in many bacteria and

numerous roles in virulence and pathogenesis have been described

[5–16]. One of these serine proteases is HtrA (high-temperature

requirement A), which has been identified as a virulence factor in

several bacterial species. In S. pneumoniae, HtrA is important for

bacterial stress response and protein quality control, and has a role

in competence [11,14,17]. As a posttranslational regulator, HtrA is

involved in bacteriocin activity and cell division [8,15,16]. HtrA

has been identified as an important virulence factor for S.

pneumoniae, i.e. HtrA deficient pneumococci demonstrated a

dramatically reduced virulence in models of pneumonia and

bacteremia [11]. Another investigation identified PrtA (cell wall-

associated serine protease A) as a pneumococcal serine protease

important for virulence after intraperitoneal infection [5].

In this study, we searched for additional serine proteases as

virulence factors of S. pneumoniae. By reannotating the S. pneumoniae

D39 genome using a subsystems approach [18] and by screening

all proteins for the presence of serine protease associated domains

using Interproscan [19], we identified SFP (subtilase family

protein) as an additional surface-exposed pneumococcal serine

protease besides HrtA and PrtA, and generated directed gene
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knockout mutants of htrA (SPD_2068), sfp (SPD_1753) and prtA

(SPD_0558) in S. pneumoniae strain D39. We tested their virulence

in an in vivo pneumonia model by inoculating mice with viable

wild-type (WT) and mutant S. pneumoniae via the airways, and

compared several outcome parameters 48h after infection.

Materials and Methods

Serine protease search
All proteins encoded in the genome of S. pneumoniae D39 where

screened for the presence of serine protease associated domains

using Interproscan [19]. Domains IPR009003 and IPR001940

identified HtrA, domain IPR008357 identified SFP, while

domains IPR000209 and IPR015500 identified both SFP and

PrtA as predicted to encode serine proteinases. An additional

search for proteins predicted to have serine protease activity was

performed by examining membership of GO category 0008236,

resulting in the identification of SPD_1765 and SPD_1920. Blast

analysis of the proteome of S. pneumoniae D39 with HtrA, SFP and

PrtA with an E-value cut-off of 0.1 showed limited protein

sequence similarity of SFP with PrtA, but no other putative serine

proteases were identified. Furthermore the S. pneumoniae D39

genome was re-annotated using the +6RAST subsystems ap-

proach [18] and the resulting annotations where searched for

protease encoding proteins. No other obvious serine proteases

could be detected using these methods. Subcellular localization

prediction of the putative serine proteases was performed with

SignalP [20].

Construction of directed deletion mutants
Directed-deletion mutants of S. pneumoniae D39 lacking HtrA

(D39DhtrA), SFP (D39Dsfp) or PrtA (D39DprtA) were generated by

allelic exchange of the target gene with a spectinomycin resistance

marker essentially as described previously [21]. Briefly, an

extension PCR was performed to join 400–500 bp 5’ and 3’

flanking sequences of the target gene with the spectinomycin

resistance cassette (obtained from pR412T7). The resulting PCR

products were introduced by competent stimulating peptide (CSP-

1)-induced transformation into D39. Transformants were selected

on the basis of spectinomycin resistance and were checked by PCR

for recombination at the desired location on the chromosome.

Subsequently, the D39 WT strain was transformed with 1 mg

chromosomal DNA isolated from the mutants to prevent the

accumulation of inadvertent mutations elsewhere on the chromo-

some. At the same time, D39 was mock-transformed to obtain a

coupled WT strain. All primers used in this study are shown in

Table 1.

In vitro growth assay
Mid-log growing mutant or WT S. pneumoniae were diluted to an

optical density (OD) of 0.1 (620 nm wavelength) in Todd Hewitt

broth (Oxoid microbiology products, Thermo Scientific, Hamp-

shire, UK) with 0.5% Yeast extract (THY). Cultures were

incubated at 37uC in a 5.0% CO2 incubator. OD was measured

every hour for the next 5 hours.

Animals
Specific pathogen-free C57BL/6 male and female mice were

purchased from Harlan Sprague-Dawley (Horst, the Netherlands).

Experimental groups were age- and sex matched, and housed in

the Animal Research Institute Amsterdam under standard care.

All experiments were conducted with mice between 10 and 12

weeks of age.

Ethics statement
This study was carried out in concordance with the ‘Wet op de

Dierproeven’ in the Netherlands. The Institutional Animal Care

and Use Committee of the Academic Medical Center approved all

experiments. All efforts were made to minimize suffering.

Induction of pneumonia happened under isoflurane anaesthesia.

Experimental study design
Pneumonia was induced by intranasal inoculation with S.

pneumoniae D39, D39DhtrA, D39Dsfp or D39DprtA (serotype 2;

56105 or 56104 colony forming units (CFU) in 50 mL isotonic

saline) using previously described methods [22–24]. Mice were

euthanized 48 hours after induction of pneumonia (N = 8 mice

per group). Blood was obtained from the inferior vena cava and

diluted 4:1 with citrate. Bronchoalveolar lavage fluid (BALF), lung,

spleen and liver were harvested as described [22–24] and organs

were homogenised in five volumes of sterile isotonic saline. The

left lung lobe was fixed in 10% buffered formalin and embedded in

paraffin. Total cell numbers in BALF were determined by an

automated cell counter (Coulter Counter, Coulter Electronics,

Hialeah, FL, USA). Differential cell counts were performed on

cytospin preparations stained with a modified Giemsa stain (Diff-

Quick; Dade Behring AG, Düdingen, Switzerland). For bacterial

quantification blood, BALF, and organ homogenates were serially

diluted by 10-fold in sterile isotonic saline and plated onto sheep-

blood agar plates. Following 16 hours of incubation at 37uC CFU

were counted. For further measurements, homogenates were

diluted 1:1 with lysis buffer (300 mM NaCl, 30 mM Tris, 2 mM

MgCl2, 2 mM CaCl2, 1% (v/v) Triton X-100, pH 7.4) with

protease inhibitor mix and incubated for 30 minutes on ice,

followed by centrifugation at 680 g for 10 minutes. Supernatants

were stored at –20uC until analysis.

Histopathology
Four-micrometer sections of the left lung lobe were stained with

hematoxylin and eosin (H&E). Slides were coded and scored by a

pathologist blinded for group identity for the following parameters:

interstitial inflammation, endothelialitis, bronchitis, oedema,

pleuritis and presence of thrombi. All parameters were rated

separately from 0 (condition absent) to 4 (most severe condition).

The total histopathological score was expressed as the sum of the

scores of the individual parameters, with a maximum of 24. In

addition, pulmonary infiltrate was scored as a percentage of total

lung surface occupied by confluent infiltrates.

Assays
Interleukin (IL)-6, tumor necrosis factor alpha (TNF-a),

keratinocyte-derived cytokine (KC) and IL-1b were measured

using commercially available ELISA kits (R&D Systems, Abing-

don, UK). Myeloperoxidase (MPO; Hycult, Uden, the Nether-

lands) was measured by ELISA according to manufacturers’

instructions.

Statistical analysis
Data are expressed as box and whisker plots showing the

smallest observation, lower quartile, median, upper quartile and

largest observation, or as medians with interquartile ranges.

Comparisons between groups were first performed using Kruskal-

Wallis one-way analysis of variance test; in case of significant

differences, differences between groups were tested using the

Mann-Whitney U test. All analyses were done using GraphPad

Prism version 5.01 (GraphPad Software, San Diego, CA). P-values

, 0.05 were considered statistically significant.

S. pneumoniae Serine Protease Virulence Factors
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Results

S. pneumoniae D39 genome contains three putative
serine proteases

To identify all serine protease proteins encoded in the genome

of S. pneumoniae D39, we screened the D39 proteome for the

presence of serine protease domains using Interproscan as

described in the Experimental procedures. Furthermore, the

D39 genome was re-annotated to identify additional proteases.

This led to the identification of several proteases, of which only

HtrA (SPD_2068), PrtA (SPD_558) and SFP (SPD_1753) were

predicted to have both serine protease activity (figure 1A-C) and

be secreted and surface-exposed based on the presence of a signal

sequence [20]. The predicted PDZ (Post synaptic density protein,

Drosophila disc large tumor suppressor, and Zonula occludens-1

protein) domain in HtrA could be involved in protein-protein

interactions. The DUF (Domain of Unknown Function) 1034

domain in PrtA is predicted to have serine-type endopeptidase

activity. Two additional putative serine proteases were identified

by their membership of GO category 0008236 (SPD_1765 and

SPD_1920), but they were excluded from further analysis because

they did not contain a signal sequence or a cell surface exposed

serine protease domain. BLAST analysis of the D39 proteome

with HtrA, PrtA and SFP did not reveal any additional putative

serine protease encoding genes.

S. pneumoniae D39DhtrA, but not D39Dsfp or D39DprtA,
displays diminished growth and dissemination in vivo

Mutant S. pneumoniae strains did not show reduced growth

compared to WT S. pneumoniae in THY at 37 uC and 5.0% CO2

(figure 1D). To study the role of the three serine proteases in S.

pneumoniae virulence, we infected mice with 56105 CFU of either

WT D39, D39DhtrA, D39Dsfp or D39DprtA via the airways and

quantified bacterial loads at the primary site of infection (lungs)

and distant body sites (blood, spleen and liver) 48 hours later

(figure 2). WT S. pneumoniae D39, D39Dsfp and D39DprtA had

multiplied in the lungs, accompanied by dissemination to spleen

and liver; the counts of these three pneumococcal strains were

similar in all body sites examined. In contrast, D39DhtrA counts

were markedly lower in the lungs and in all distant body sites when

compared with the other three strains (P , 0.0005). In addition,

no bacteria could be detected in the blood of D39DhtrA infected

animals (P , 0.005).

Reduced lung inflammation during pneumonia caused
by S. pneumoniae D39DhtrA or D39DprtA

This model of pneumococcal pneumonia is associated with

histological features in the lung characteristic for lower respiratory

tract infection, including interstitial inflammation, endothelialitis,

edema, inflammatory infiltrates and pleuritis [25]. To determine

the impact of the three S. pneumoniae serine proteases on the

induction of these inflammatory alterations, we semi-quantitatively

scored lung histology slides after pneumonia caused by WT D39,

D39DhtrA, D39Dsfp or D39DprtA (figure 3). The lungs of D39DhtrA

infected mice displayed significantly less inflammation and a

smaller infiltrated lung surface (P , 0.01). Remarkably, in spite of

similar bacterial loads, the lungs of D39DprtA infected mice also

displayed lower histopathology scores when compared with lungs

of WT D39 infected mice, together with a smaller infiltrated lung

surface (P , 0.05). Considering that neutrophils play a key role in

the inflammatory response during respiratory tract infection by S.

pneumoniae [1,26], we next determined total cell and neutrophil

counts in BALF after infection with WT D39, D39DhtrA, D39Dsfp

or D39DprtA (figure 4). We additionally measured MPO concen-

tration in whole lung homogenates, as a marker of neutrophil

content of lung tissue. Total cell counts were lower in BALF

Table 1. Oligonucleotide primers used in this study.

Primer name Target a, b Sequence (5’- 3’)

Primers for generation of directed mutants

PBpR412_L SpecR cassette GCCGCTCTAGAACTAGTGG

PBpR412_R SpecR cassette GATACCCCTCGAATTGACGC

PBTnMr9 SpecR cassette control primer CAATGGTTCAGATACGACGAC

SPD_2068_L1 htrA left flanking region TTCCCTTCAATGGCTAACAC

SPD_2068_L2 htrA left flanking region CCACTAGTTCTAGAGCGGCAAACTACCCAAGGCTCCAC

SPD_2068_R1 htrA right flanking region GACTTGCCCATCTTATCTGC

SPD_2068_R2 htrA right flanking region GCGTCAATTCGAGGGGTATCACCATTCTATCGGAGACACC

SPD_2068_C htrA gene control primer TCGCTGAGAATCTGTGTCAG

SPD_1753_L1 sfp left flanking region CCTCTTGGATTAGAGACAATC

SPD_1753_L2 sfp left flanking region CCACTAGTTCTAGAGCGGCTTTCGCTAGTCTGAGTGTG

SPD_1753_R1 sfp right flanking region TAGTTGTGGTAACCTGTTTGC

SPD_1753_R2 sfp right flanking region GCGTCAATTCGAGGGGTATCATTACAAGTCAGTTTAGTTG

SPD_1753_C sfp gene control primer CTTTCGCCTCCACCAGTAAC

SPD_0558_L1 prtA left flanking region TTCAAACCACGTCAACGTCG

SPD_0558_L2 prtA left flanking region CCACTAGTTCTAGAGCGGCTGCAGCTGTAGTTAGTGAC

SPD_0558_R1-2 prtA right flanking region TAACCGTCCAATAGACTTCG

SPD_0558_R2 prtA right flanking region GCGTCAATTCGAGGGGTATCAGCCCAGACACTATTAGCTG

SPD_0558_C prtA gene control primer GTGTCTGCTAAGACTACCTC

doi:10.1371/journal.pone.0080062.t001
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obtained from D39DhtrA infected mice (P , 0.05); a similar trend

was observed for neutrophil influx. In accordance, whole lung

MPO concentrations were lower after infection with D39DhtrA (P

, 0.05). The deletion of either sfp or prtA did not influence cell

recruitment. Cytokines and chemokines play an eminent role in

the regulation of inflammation during pneumonia [1,26]. There-

fore, we measured cytokines (TNFa, IL-1b, IL-6) and a chemokine

(KC) in whole lung homogenates as an additional readout for

pulmonary inflammation. Lung IL-1b, IL-6 and KC levels were

lower in D39DhtrA when compared with the other three S.

pneumoniae strains (table 2).

Modest role for SFP after low dose infection
The data presented above confirm that HtrA plays a significant

role in S. pneumoniae virulence [11]. We argued that the

Figure 1. HtrA, SFP and PrtA: structure and in vitro growth of mutant S. pneumoniae. Structure of serine protease HtrA (A), SFP (B) and PrtA
(C), predicted by SMART PROTEIN online sequence analysis (http://smart.embl-heidelberg.de/). Number of amino acids is indicated underneath each
enzyme. The predicted PDZ (Post synaptic density protein, Drosophila disc large tumor suppressor, and Zonula occludens-1 protein) domain in HtrA
could be involved in protein-protein interactions. The DUF (Domain of Unknown Function) 1034 domain in PrtA is predicted to have serine-type
endopeptidase activity. (D) Mutant S. pneumoniae strains did not show reduced growth compared to WT S. pneumoniae in vitro.
doi:10.1371/journal.pone.0080062.g001

S. pneumoniae Serine Protease Virulence Factors
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contribution of PrtA and SFP to S. pneumoniae virulence could be

more subtle and as such not noticed in our model with a relatively

high bacterial dose. Accordingly, we repeated our infection

experiments with a 10-fold lower inoculum (56104 CFU). These

studies again revealed the reduced virulence of D39DhtrA, as

reflected by lower bacterial loads in lungs (P , 0.005) and liver (P

, 0.005) at 48 hours post infection (figure 5). Of interest,

pneumococcal burdens were also modestly but significantly lower

in lungs after infection with D39Dsfp (P , 0.05); this difference

with WT D39 was not observed in blood or distant organs. Cell

influx in low dose pneumonia was modest (Figure 6), with less than

half of the total cell counts in BALF compared to high dose

infection. No difference in total cell numbers was observed

between WT or mutant S. pneumoniae infected mice (figure 6A).

Neutrophil influx determined by cell differentiation on cytospin

slides however was diminished in D39DhtrA infected animals

(figure 6B) (P , 0.05).

Figure 2. S. pneumoniae D39DhtrA, but not D39Dsfp or D39DprtA, displays diminished growth and dissemination in vivo. Mice were
infected with WT or mutant S. pneumoniae (56105 CFU) via the intranasal route and euthanized 48 hours later. Bacterial counts were determined in
lung (A), blood (B), spleen (C) and liver (D). Data are expressed as box- and whisker plots depicting the smallest observation, lower quartile, median,
upper quartile and largest observation. N = 8 mice per group at each time point. *** P , 0.005 versus WT S. pneumoniae.
doi:10.1371/journal.pone.0080062.g002

Table 2. Lung cytokine and chemokine levels.

S. pneumoniae D39 D39DhtrA D39Dsfp D39DprtA

Lung homogenate, t = 48h (pg/mL)

IL-6 1689 (257 – 2864) 174 (136 – 220) ** 1076 (220 – 3045) 260 (174 – 3717)

TNF-a 498 (216 – 857) 220 (189 – 277) 592 (229 – 1290) 285 (171 – 805)

KC 7164 (747 – 8697) 362 (322 – 444) ** 3218 (659 – 7962) 482 (300 – 8355)

IL-1b 724 (116 – 1117) 81 (73 – 97) ** 363 (129 – 859) 106 (79 – 1047)

Mice were infected with the S. pneumoniae strain indicated (56105 CFU) via the intranasal route and euthanized 48 hours later. Data are expressed as medians and
interquartile range of 7 or 8 mice per group. ** P , 0.01 versus WT S. pneumoniae.
doi:10.1371/journal.pone.0080062.t002
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Discussion

Serine protease orthologs have been found in many bacteria,

contributing to their virulence to a significant extent [4-14].

Previous research identified the serine protease HtrA as a major

virulence factor in S. pneumoniae during experimentally induced

pneumonia [11,14]. We here sought for additional S. pneumoniae

serine proteases and determined their role in virulence during

respiratory tract infection in vivo. Our main findings are that the S.

pneumoniae D39 genome expresses three putative secreted, surface-

exposed serine proteases: HtrA, SFP and PrtA. We confirmed

reduced virulence after high and low dose infection of D39DhtrA

[11,14], as reflected by strongly reduced bacterial loads, dimin-

ished systemic dissemination and decreased lung inflammation.

After high dose infection D39DprtA induced significantly less lung

inflammation without influencing bacterial loads. Pneumococcal

burdens were also modestly but significantly lower in lungs after

low dose infection with D39Dsfp. These data reveal two additional

pneumococcal serine proteases that can modify the host response

during pneumonia, albeit clearly to a more modest extent than

HtrA.

Structure and function of HtrA have been widely studied. S.

pneumoniae HtrA has been identified to help bacteria survive

environmental pressures such as elevated temperature, oxidative

stress, and osmotic stress [11]. Another study revealed an

important role for HtrA during S. pneumoniae cell division [15].

HtrA additionally has a distinct role in bacteriocin activity by

reducing pneumocin expression [8,16]. Pneumocins mediate intra-

and interspecies competition in vitro and have been shown to

provide a competitive advantage in vivo [16]. In the present study,

we confirmed the strongly reduced virulence of D39DhtrA in

pneumonia [11]. D39DhtrA infected animals displayed more than

3 logs lower bacterial counts in their lungs at 48 hours after

infection; in addition, their lungs showed minimal signs of lower

respiratory tract infection upon histopathological examination.

There was significantly less dissemination to distant organs in

D39DhtrA infected mice. Notably, D39DhtrA could be detected in

spleen and liver, although blood cultures were sterile in all

experiments. Ibrahim et al [11] concluded that D39DhtrA S.

pneumoniae did not disseminate from the lungs based on negative

blood cultures; our data, however, indicate that D39DhtrA is able

to spread to distant body sites.

It is known that apolactoferrin can kill many species of bacteria,

including Streptococcus pneumoniae. Lactoferricin, an N-terminal

peptide of apolactoferrin, and fragments of it are even more

bactericidal than apolactoferrin. PrtA cleaves apolactoferrin,

greatly enhancing the killing activity of apolactoferrin and its

cleavage products [13]. Thus, in theory, PrtA deficiency might

cause increased rather than decreased virulence due to a

diminished capacity of apolactoferrin to kill S. pneumoniae.

Nonetheless, the only in vivo study performed thus far with PrtA

deficient S. pneumoniae showed decreased virulence compared to

WT S. pneumoniae when injected intraperitoneally in mice [5]. Our

pneumonia model is more relevant to determine the role of PrtA in

S. pneumoniae virulence, as pneumonia is the primary illness caused

by pneumococci. In both high and low dose infection, bacterial

outgrowth, pulmonary cell influx and cytokine release were similar

after induction of pneumonia with D39DprtA or WT S. pneumoniae.

Interestingly, histopathology scores of lungs and the percentage of

infiltrated lung surface were significantly lower in D39DprtA

infected animals than in mice inoculated with WT S. pneumoniae,

suggesting that PrtA has a modest role in the induction of

pulmonary inflammation during pneumococcal pneumonia with-

out influencing cellular influx or cytokine release in the lungs, and

bacterial multiplication and dissemination.

To our knowledge, the role of SFP in pneumococcal virulence

has not been studied before. SFP has homology with S. agalactiae

CspA, a serine protease capable of inactivating chemokines in vitro

[7]. While after high dose infection the growth of D39Dsfp was

Figure 3. Reduced lung inflammation during pneumonia caused by S. pneumoniae D39DhtrA and D39DprtA. Mice were infected with WT
or mutant S. pneumoniae (56105 CFU) via the intranasal route and euthanized 48 hours later. (A) Representative microphotographs of H&E stained
lung sections of WT or mutant S. pneumoniae infected mice (10 times original magnification). (B) Total lung histopathology scores expressed as box-
and whisker plots depicting the smallest observation, lower quartile, median, upper quartile and largest observation. (C) Pulmonary infiltrate as
percentage of total lung surface. No infiltrates were observed in the D39DhtrA infected group; only one mouse with an infiltrate was observed in the
D39DprtA infected group. N = 8 mice per group at each time point. * P , 0.05, ** P , 0.01 versus WT S. pneumoniae.
doi:10.1371/journal.pone.0080062.g003
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indistinguishable from that of WT S. pneumoniae, this mutant strain

demonstrated slightly reduced growth in the lungs in low dose

pneumonia. This modest role of SFP mediated virulence should be

confirmed in additional studies using different S. pneumoniae strains.

We identified two additional hypothetical proteins, SPD_1765

and SPD_1920, predicted to have serine protease activity. These

were not examined further here as their serine protease domain

was likely not exposed to the outer cell surface. It may be of

interest to examine the roles of intracellular serine protease activity

for SPD_1765 and SPD_1920 in S. pneumoniae virulence in future

research.

The current investigation addressed the role of three serine

proteases expressed by S. pneumoniae (HtrA, SFP and PrtA) in

virulence in vivo by comparing bacterial growth and dissemination

and the accompanying inflammatory response in the lung after

48 hours of airway infection by newly generated deletion mutants.

This time point was selected since our main endpoint of interest

was bacterial growth; the 48-hour time point reflects late stage

pneumonia shortly before mice are expected to die. Our data

confirm the previously reported important role for HtrA in S.

pneumoniae virulence [11]. In this previous paper, reconstitution of

HtrA into D39DhtrA reverted D39DhtrA to its full virulence [11].

We here created a new HtrA deletion mutant and our

investigation is limited by the fact that we did not reconstitute

HtrA in our independently generated D39DhtrA strain. Of note,

however, our main objective was to identify new pneumococcal

serine proteases as virulence factors in pneumonia. Since our

results only reveal a significant role for the already established

HrtA [11], we think that the absence of a HrtA reconstitution

experiment does not jeopardize our main conclusion (i.e., that the

other proteases identified do not significantly contribute to the

virulence of S. pneumoniae). In contrast to its reported role in

intraperitoneal infection [5] we here show that PrtA does not

influence bacterial multiplication and dissemination in pneumo-

coccal pneumonia, however, PrtA had a modest role in the

induction of pulmonary inflammation. Finally, in the first studies

reported to date, we provide evidence that SFP may facilitate S.

pneumoniae growth after low dose infection of the lower respiratory

tract, although clearly these data need to be confirmed in

independent experiments involving more time points. Together

these data firmly establish that virulence of S. pneumoniae is

dominated by HtrA.
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Figure 4. Diminished cell and neutrophil influx during pneumonia caused by S. pneumoniae D39DhtrA. Mice were infected with WT or
mutant S. pneumoniae (56105 CFU) via the intranasal route and euthanized 48 hours later. Cell (A) and neutrophil (B) influx were determined on BALF
cytospin preparations. As a marker of neutrophil influx in lung tissue, MPO was measured in whole lung homogenates (C). Data are expressed as box-
and whisker plots depicting the smallest observation, lower quartile, median, upper quartile and largest observation. N = 8 mice per group at each
time point. * P , 0.05 versus WT S. pneumoniae.
doi:10.1371/journal.pone.0080062.g004
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Figure 5. HtrA strongly contributes to virulence after low dose infection with a more modest role for SFP. Mice were infected with a 10-
fold lower inoculum of WT or mutant S. pneumoniae (relative to the infectious dose used in the experiments shown in figures 2–4; 56104 CFU) via the
intranasal route and euthanized 48 hours later. Bacterial counts were determined in lung (A), blood (B), spleen (C) and liver (D). Data are expressed as
box- and whisker plots depicting the smallest observation, lower quartile, median, upper quartile and largest observation. N = 8 mice per group at
each time point. * P ,0.05, ** P , 0.01, *** P , 0.005 versus WT S. pneumoniae.
doi:10.1371/journal.pone.0080062.g005

Figure 6. Diminished cell and neutrophil influx during pneumonia caused by low dose S. pneumoniae D39DhtrA. Mice were infected
with a 10-fold lower inoculum of WT or mutant S. pneumoniae (relative to the infectious dose used in the experiments shown in figures 2–4; 56104

CFU) via the intranasal route and euthanized 48 hours later. Cell (A) and neutrophil (B) influx were determined on BALF cytospin preparations. Data
are expressed as box- and whisker plots depicting the smallest observation, lower quartile, median, upper quartile and largest observation. N = 8
mice per group at each time point. * P , 0.05 versus WT S. pneumoniae.
doi:10.1371/journal.pone.0080062.g006
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