
The Rockefeller University Press
J. Cell Biol. Vol. 203 No. 3  381–383
www.jcb.org/cgi/doi/10.1083/jcb.201310070 JCB 381

JCB: Comment

Cell polarization is an essential feature that allows many cell 
types to fulfill their unique functions. Upon differentiation, po-
larized cells establish specialized membrane domains with dis-
tinct protein composition. In myelinated axons, such membrane 
compartmentalization is essential for fast and efficient propaga-
tion of action potentials in a saltatory manner. The membrane of 
these axons is divided into several distinct domains that include 
(1) the nodes of Ranvier, which are gaps between myelin seg-
ments where sodium channels are clustered; (2) the paranodal 
axoglial junction, where the terminal loops of the myelin attach 
to the axon; (3) the juxtaparanodal region, where Kv1 potas-
sium channels are concentrated; and (4) the internode, which 
are covered by compact myelin (Fig. 1). In the peripheral ner-
vous system (PNS), this intricate axonal organization requires 
specific intercellular contact sites between the axon and myelina-
ting Schwann cells (Poliak and Peles, 2003; Eshed-Eisenbach 
and Peles, 2013), as well as the formation of membrane diffu-
sion barriers that restrict the movement of proteins and lipids in 
the plasma membrane across different domains (Lasiecka et al., 
2009; Katsuki et al., 2011).

The main membrane barrier that plays an important role in 
the assembly of the nodes of Ranvier is present at the paranodal 
junction (Feinberg et al., 2010; Susuki et al., 2013). These septate-
like junctions are composed of axonal (Caspr and contactin) and 
glial (neurofascin 155-kD isoform) adhesion molecules, and are 
linked through specific adaptor proteins to the actin–spectrin 
membrane cytoskeleton (Ogawa et al., 2006; Perkins et al., 2008; 
Nans et al., 2011). Cytoskeletal components of the paranodal 
junction include the scaffold protein 4.1B, which is required 
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for the organization of myelinated axons (Horresh et al., 2010; 
Buttermore et al., 2011; Cifuentes-Diaz et al., 2011; Einheber 
et al., 2013), as well as ankyrin B and II and II spectrin (Ogawa 
et al., 2006). A paranodal membrane barrier has long been de-
scribed as the boundary separating nodal and juxtaparanodal ion 
channels. The barrier function has been attributed to the axoglial 
contact and formation of the septate-like junctions (Bhat et al., 
2001; Boyle et al., 2001). Nonetheless, the molecular mechanism 
forming the barrier itself has never been resolved. In general, 
membrane barriers can form by several mechanisms (Lasiecka  
et al., 2009). For example, a barrier at the axonal initial segment 
(AIS), which maintains axo-dendritic polarity, is formed by an
choring various transmembrane proteins to the actin-based mem-
brane skeleton (Nakada et al., 2003; Galiano et al., 2012). In the 
base of the cilium, yeast bud and dendritic spines septins, pro-
teins that are absent from AIS and tight junctions (Caudron and 
Barral, 2009), form high order ring-like structure that immobi-
lize lipids in the inner membrane leaflet. In erythrocytes, direct 
binding of spectrin to membrane lipids forms a diffusion barrier 
for both proteins and lipids in the absence of actin (Sheetz et al., 
2006). Interestingly, at the epithelial tight junction, the diffusion 
barriers for lipids and proteins are probably achieved by separate 
mechanisms, as targeting some junctional components results in 
loss of lipid but not of protein polarity (Jou et al., 1998).

In the current issue, Zhang et al. succeeded to uncouple 
the assembly of the paranodal membrane domain from its bar-
rier function. This was accomplished by specifically ablating 
II spectrin in peripheral sensory neurons and analyzing the 
axonal organization of these nerves. The unique domain organi-
zation of myelinated axons allows for a simple and highly re-
producible examination of the barrier function at the paranode. 
That is, impairment of the barrier will result in the displacement 
of juxtaparanodal components (i.e., Caspr2, Kv1.2, and TAG-1) 
into the paranodes and nodes, as observed in mutants that lack 
an intact paranodal junction (Bhat et al., 2001; Boyle et al., 
2001). In the affected nerves of the II spectrin mutant, the au-
thors made the surprising observation that although the axoglial 
paranodal junction remained completely intact, juxtaparanodal 
complexes were no longer excluded from paranodes and nodes 
(Fig. 1). Developmental analysis of the mutant revealed a dra-
matic increase in the number of paranodes and nodes containing 
juxtaparanodal components with age, an observation suggesting 
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AISs are formed by intrinsic factors, whereas the paranodal 
junction is determined by axon–glia interactions. Strikingly, a 
previous paper from Rasband and colleagues has shown that an 
axonal barrier controlling the formation of the AIS is composed 
of the same cytoskeletal proteins as the paranodal barrier, namely 
ankB, II spetrin, and II spectrin (Galiano et al., 2012). Thus, 
the same membrane barrier can be localized by either external 
or internal cues and participate in either the formation (AIS and 
nodes of Ranvier) or maintenance (nodes of Ranvier and jux-
taparanodal region) of axonal domains.
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supporting a role for the paranodal junction barrier in the main-
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Neurofascin 186, as well as by restricting the distribution of 
these channels to the nodal gap by the paranodal junction barrier 
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The similarity between mice lacking II spectrin in sen-
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Figure 1.  II spectrin helps organize membrane do-
mains in myelinated axons. A schematic view depicting 
the organization of myelinated peripheral nerves around 
the nodes of Ranvier of wild type (WT, top), and mice 
mutants lacking axonal II spectrin (middle) or the ad-
hesion molecule Caspr (bottom). The presence of intact 
paranodal junction (PNJ) is marked by green vertical lines 
between the paranodal loops (PNL) and the axon. In wild-
type nerves (top), both the paranodal junction and the 
cytoskeletal barrier are intact, resulting in the sequestering 
of Kv1 channels (blue) in the juxtaparanodal region (JXP) 
away from nodal sodium channels (red). In contrast to the 
paranodes in Caspr knockout that lack both the junction 
and the barrier function (bottom), in the II spectrin mutant 
(middle) the barrier is compromised while the junction is 
intact. Note that the nodes in both mutants are wider com-
pared to the wild type.
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