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WDR34 Mutations that Cause Short-Rib Polydactyly
Syndrome Type III/Severe Asphyxiating Thoracic
Dysplasia Reveal a Role for the NF-kB Pathway in Cilia

Céline Huber,1,8 Sulin Wu,2,8 Ashley S. Kim,2 Sabine Sigaudy,3 Anna Sarukhanov,2 Valérie Serre,1

Genevieve Baujat,1 Kim-Hanh Le Quan Sang,1 David L. Rimoin,4,5 Daniel H. Cohn,2,4,6

Arnold Munnich,1 Deborah Krakow,2,4,7,9 and Valérie Cormier-Daire1,9,*

Short-rib polydactyly (SRP) syndrome type III, or Verma-Naumoff syndrome, is an autosomal-recessive chondrodysplasia characterized

by short ribs, a narrow thorax, short long bones, an abnormal acetabulum, and numerous extraskeletal malformations and is lethal in

the perinatal period. Presently, mutations in two genes, IFT80 and DYNC2H1, have been identified as being responsible for SRP type III.

Via homozygosity mapping in three affected siblings, a locus for the disease was identified on chromosome 9q34.11, and homozygosity

for threemissensemutations inWDR34were found in three independent families, as well as compound heterozygosity for mutations in

one family. WDR34 encodes a member of the WD repeat protein family with five WD40 domains, which acts as a TAK1-associated

suppressor of the IL-1R/TLR3/TLR4-induced NF-kB activation pathway. We showed, through structural modeling, that two of the three

mutations altered specific structural domains of WDR34. We found that primary cilia in WDR34 mutant fibroblasts were significantly

shorter than normal and had a bulbous tip. This report expands on the pathogenesis of SRP type III and demonstrates that a regulator of

the NF-kB activation pathway is involved in the pathogenesis of the skeletal ciliopathies.
The short-rib polydactyly (SRP) group of skeletal dysplasias

falls within the ciliopathy spectrum of disorders. This

group includes four perinatal lethal conditions (SRP types

I–IV) and two other similar skeletal disorders, Ellis-van Cre-

veld (EVC [MIM 225500]) syndrome and asphyxiating

thoracic dysplasia (ATD [MIM 208500, MIM 611263,

MIM 613091, MIM 613819, MIM 614376]), all inherited

as autosomal-recessive disorders. Ellis-van Creveld syn-

drome is usually a nonlethal skeletal disorder associated

with a long narrow chest, short stature, atrial septal de-

fects, oral frenulum, and polydactyly. ATD is characterized

by respiratory insufficiency at birth and long-term survi-

vors are affected by retinal degeneration and cystic renal

and liver abnormalities. In ATD, increased lethality can

result from pulmonary, renal, and liver failure. ATD is

phenotypically related to short-rib polydactyly syndrome

type III (SRP type III [MIM 263510]), which is also known

as Verma-Naumoff syndrome. Indeed, both disorders share

similar radiological features including short ribs and a

trident-shaped acetabular roof of the pelvis. However, in

SRP type III, the radiographic abnormalities are more pro-

found with very shortened tubular bones with both round

and laterally spiked metaphyseal ends as well as polydac-

tyly.1,2 SRP type III is uniformly lethal as a result of pulmo-

nary hypoplasia and other concomitant organ system

abnormalities.
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Mutations in a gene encoding a protein involved in

intraflagellar transport (IFT), IFT80 (MIM 611177), have

been identified in 3/39 individuals with ATD.3 We also

identified IFT80 mutations in one SRP type III case, sup-

porting the idea that ATD and SRP type III can be allelic

with variable severity.4 More recently mutations in cyto-

plasmic dynein 2 heavy chain 1 (DYNC2H1 [MIM

603297]) have been identified in cases affected either

with SRP type III or ATD.5,6 DYNC2H1 is a component of

the cytoplasmic dynein complex and is directly involved

in transport along microtubules via its large motor

domain. These previous molecular and phenotypic data

support the fact that SRP type III and ATD can be allelic

and both demonstrate locus heterogeneity. The proposed

functions of the identified genes confirm that the SRP skel-

etal dysplasia group belongs to the ciliopathy spectrum of

disease.5

Under an approved human subjects protocol, DNA sam-

ples were collected from 15 SRP type III cases, in accor-

dance with the ethical standards of the responsible

committee on human experimentation (institutional and

national) and proper informed consent was obtained. We

identified homozygosity for a mutation in IFT80 in one

family4 and mutations in DYNC2H1 in three other fam-

ilies.5,6 Among the 11 remaining cases, we excluded

mutations in IFT80 and DYNC2H1 and focused on a
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Figure 1. Clinical and Radiological
Features of Individuals 1 and 2 in Family 1
Clinical and radiological features of the
case 1. Male deceased at day 7 of respira-
tory distress.
(A) Note the short and narrow thorax,
short limbs, and brachydactyly.
(B) Note the long and narrow thorax with
short ribs.
(C–E, G) Upper and lower limbs: Note the
shortened tubular bones, round meta-
physeal ends with lateral spike, and the
delayed bone age.
(DandE)Hands and feet:Note roundmeta-
physeal ends with lateral spikes of square
and thickset metatarsus and phalanx and
the poor mineralization of phalanx.
(F) Note the trident aspect of the acetab-
ular roof (arrow).
consanguineous Algerian family with three affected indi-

viduals. The first affected individual was diagnosed with

SRP type III or severe asphyxiating thoracic dysplasia

(ATD) by ultrasound at 23 weeks because of the findings

of micromelia, curved femurs, and short thorax. The pro-

band died on day 7 of life resulting from respiratory insuf-

ficiency and abnormal skeletal findings were confirmed by

postnatal radiographs (Figure 1). The second case was a

suspected recurrence and the pregnancy was terminated

at 26 weeks of gestation. The third case was diagnosed at

20 weeks of gestation and was stillborn at 42 weeks of

gestation.

We performed genome-wide homozygosity mapping

with (1) a 4 cM average marker density (1,000 markers,

deCODE genetics) on DNA samples from the three affected

individuals and (2) GeneChip HumanMapping 250K NspI

arrays (Affymetrix) on DNA samples from two of the

affected individuals. A single region of homozygosity

shared by the three individuals was identified on chromo-

some 9. With the MERLIN program, the maximum LOD

score was Z ¼ 2.4 (q ¼ 0) for the region delimited by the

markers at loci D9S1819 and D9S1847. Analysis of SNP

genotypes delineated the critical region of homozygosity;

the centromeric boundary defined by SNP_A-4229219

(rs2798429) and the telomeric boundary by SNP_A-

2284253 (rs10114591) (9q34.11, 3.6 Mb) (Figure S1 avail-

able online). This region contains 94 genes, and among

them, 33 genes referenced in the cilia database (cildb v.2)

were considered as candidate genes. After excluding muta-

tions in ODF2 (outer dense fiber protein 2) (MIM 602015)

by direct sequencing, we considered WD repeat-contain-

ing protein 34 (WDR34 [MIM 613363], NCBI accession

number NM_052844.3). We performed direct Sanger

sequence analysis (oligonucleotide sequences provided

on request) and identified homozygosity for a missense

mutation in the three affected cases (ex7, c.1022C>T
The American Journal of Human Gen
[p.Ala341Val]) (Table 1, Figure 2).

The mutation was not identified

among 242 control chromosomes.
With the use of the PolyPhen web program, the conse-

quence of this mutation was predicted as benign. However,

the SIFT web program (Sorting Intolerant From Tolerant)

predicted the substitution at position 341 from Ala to Val

to affect protein function with a score of 0.02.

Absence of any tissue to further study the consequences

of the predicted mutation prompted us to perform

whole-exome analysis on one of the affected individuals

to determine whether other mutations in the region of

homozygosity could be responsible for the disorder. Across

the exome, there were 22,165 variants in 10,359 genes.

Excluding variants listed in dbSNP and UTR, ncRNA,

synonymous, and heterozygote variants narrowed the

number of variants to 22 in 15 genes present in the homo-

zygous state. Among those, four homozygous variants in

four genes encoded ciliary proteins: VPS10 (vacuolar pro-

tein sorting 10 [MIM 602005]), DCLK2 (doublecortin like

kinase 2 [MIM 613166]), SPTBN5 (spectrin beta non eryth-

rocytic 5 [MIM 605916]), and WDR34. Finally, in the re-

gion of homozygosity on chromosome 9, there was only

one homozygous variant, the c.1022C>T change previ-

ously identified by direct sequencing of WDR34. This

homozygous change was absent from data sets including

dbSNP129, the 1000 Genomes Project, and in-house

exome data.

We then combined candidate gene sequencing of

WDR34 and whole-exome analysis in 30 independent

cases with the ATD/SRP type III spectrum phenotype.

In two individuals (both of whom had SRP type III)

from consanguineous families, homozygosity for muta-

tions in exons 7 and 8 (one in each individual) were iden-

tified (ex7 c.1061C>T [p.Thr354Met]; ex8 c.1339C>T

[p.Arg447Trp]) (Table 1, Figure 2) The mutations cosegre-

gated with the disease in each family and were not identi-

fied among 220 control chromosomes. In an indepen-

dent family with a proband (R00-326) affected by ATD,
etics 93, 926–931, November 7, 2013 927
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compound heterozygosity for the following muta-

tions were identified: ex8 c.1340G>T, p.Arg447Gln, and

c.982�2T>G. The mutations segregated within the family.

A source of RNA was not available from the affected indi-

vidual to confirm the predicted consequence of the intron

6 splice site mutation. Interestingly, the same arginine,

p.447, was substituted in the homozygous and heterozy-

gous state to methionine and glutamine, respectively.

These changes were predicted as possibly and probably

damaging by the PolyPhen and SIFT web programs,

respectively.

WDR34 encodes aproteinof 536 aminoacids that is high-

ly conserved in evolution, with human andmouseWDR34

sharing 83% identity (Ensembl). The expression pattern of

mouse Wdr34 mRNA shows that the gene is ubiquitously

expressed in all examined tissues, including brain, thymus,

heart, lung, liver, spleen, kidney, testis, and intestine.7 It is

primarily localized within the cytoplasm in 293-Flag-

WDR34-transfected HEK293 cells.7 It is a member of the

WD repeat protein family with fiveWD40 domains (details

in Figure 2).WD40 repeats areminimally conserved regions

of approximately 40 amino acids, typically bracketed by

Gly-His and Trp-Asp (GH-WD) and facilitate formation of

heterotrimeric or multiprotein complexes. These proteins

are involved in intracellular trafficking, cargo recognition,

and protein binding.8,9 In coat proteins (such as COPI,

COPII, and clathrin), they are essential for vesicular cage

formation.10

Many WD40 domain-containing proteins have been

previously implicated in the ciliopathies and specifically

in disorders with skeletal abnormalities. Indeed, mutations

in IFT80 (also called WDR56) are responsible for the ATD/

SRP type III spectrum; mutations inWDR35 (MIM 613602)

and WDR10 (also called IFT122) (MIM 606045) produce

Sensenbrenner syndrome (MIM 218330), which is charac-

terized by craniosynostosis and facial, ectodermal, and

skeletal anomalies,11–15 and WDR35 mutations have

been found in an unclassified form of SRP.16 Finally, muta-

tions in WDR19 (also called IFT144) (MIM 608151) have

been identified in Sensenbrenner syndrome, ATD, and

nephronophthisis (NPHP [MIM 256100]).17

WD40 repeats are configured into b strands and turns,

referred to as a bladed beta-propeller folded structure.

To determine the effect of the mutations (p.Ala341Val,

p.Thr354Met, p.Arg447Trp) on this structure, we under-

took homology modeling of the WDR34 mutations.

Although a three-dimensional structure has not been deter-

mined forWDR34, the 2.50 Å coordinate set for the yeast a/

b’-COP subcomplex of the COPI vesicular coat (PDB acces-

sion number 3mkq),18 a known beta-propeller folded struc-

ture, was used as a template for modeling the human

WDR34 protein. Using the Swiss-Model program18 in the

automated mode, the three-dimensional structure of

human WDR34 protein (residues 210–515) was compared

with residues 1–301 of the yeast b’-COP N-terminal b-pro-

peller. The predicted structures (Figure S2) were visualized

with the Swiss-Pdb Viewer 3.7. The yeast b’-COP
er 7, 2013



Figure 2. Location of the WDR34 Mutations
Location of the WDR34 mutation and the five WD40-repeat-containing domains.
N-terminal b-propeller is characterized by a regular and

compact structure involving short connecting loops be-

tween the b strands at both axial ends of the b-propeller.
Figure 3. The p.Thr354Met and p.Arg447Trp Substitutions
Produce Abnormal Primary Cilia in Fibroblasts
(A) Control fibroblast showing the primary cilium. Blue (DAPI)
labels the nucleus, red (acetylated tubulin) labels the cilium, and
yellow labels the basal body.
(B and C) Fibroblasts from affected individuals R97-375 (B) and
R07-106 (C), showing statistically significantly shorter cilia. The
arrow in (B) identifies the bulbous tip of the cilium.
(D) Bar graph showing variation in cilia length resulting from
WDR34 mutations. n ¼ 10. SD for control 0.43, R97-375 SD,
0.48, p < 0.0008 relative to control, SD for R07-106, 0.52, p <
0.0002 relative to control.

The American
The effect is to create relatively flat axial ends, which are

important for formation of interactions at the triskelion

(three arms) center. At the triskelion center, the b’-COP sub-

units associate through pairwise interactions involving a

small, circumscribed area of the axial end of oneN-terminal

b-propeller and the sides of the adjacent b-propeller. The

p.Thr354Met missense substitution is located in an area

that is predicted to be important for interactions at the

triskelion center, suggesting that the mutation might alter

the configuration of the propellers. The precise function

of WDR34 in vesicle formation is unknown, so it is not

possible to predict the functional impact of the mutation.

The p.Arg447Trp substitution is predicted to disrupt the

fourth WD40 repeat, which may influence cargo binding,

but the functional impact for p.Ala341Val substitution

was not clear from this analysis.

To further understand the effect ofWDR34 substitutions

on cilia morphology, we showed that the structure of the

cilia in cultured fibroblasts from affected individuals in

two of the families (R97-375, p.Thr354Met and R07-106,

p.Arg447Trp) appeared subjectively shorter with a bulbous

tip (Figure 3), as observed in DYNC2H1 mutant cultured

chondrocytes, suggesting a defect in cytoskeletal microtu-

bule architecture with an abnormal elongation and/or

maintenance of the axoneme by IFT to form the mature

primary cilium.6 These findings may support a role of

WDR34 in retrograde intraflagellar transport. The mean

cilia length was 2.63 5 0.44 mm for R97-375, 1.28 5

0.23 mm for R07-106, and 3.74 mm5 0.63 for control cells.

Student’s t test analysis showed that cilia from both SRP

cell lines were statistically significantly shorter than con-

trol (p < 0.05). As previously shown, WDR34 is a cyto-

plasmic protein and our observation of similar localization

of the protein between control and diseased fibroblasts
Journal of Human Genetics 93, 926–931, November 7, 2013 929



Figure 4. Localization of WDR34 Protein
in Control and R97-375 Cultured Fibro-
blasts
Control fibroblasts (A–C) and R97-375 fi-
broblasts (D–F) showing localization of
WDR34 (A, D), acetylated tubulin (B, E),
and overlapping expression (C, F) (blue,
DAPI, nucleus).
may suggest that the mutations do not lead to mislocaliza-

tion or absence of the protein (Figure 4).

WDR34has been implicated in the immune response as a

negative regulator of the IL-1R/TLR3/TLR4-induced NF-kB

activation pathway, functioning by sequestering TAK1,

TAB2, and TRAF6 by binding to its WD domains.7 We

further hypothesize that the mutations identified in SRP

type III individuals may disturb the stability or interaction

of WDR34 with these proteins. This is based on findings

that overexpression of WDR34 leads to diminished TAK1

phosphorylation7 and suggests that enhanced TAK1 activ-

itymay contribute to the cellular phenotype in the affected

individuals with WDR34 substitutions resulting from par-

tial loss of function. It has also been recently demonstrated

that the cilium and the regulation of its structure and func-

tion are of fundamental importance in inflammation.19 In

bovine primary chondrocytes, interleukin-1 (IL-1b and

IL-1a) exposure increases pre-existing primary cilia length.

This elongation occurred via protein kinases: cAMP-acti-

vated protein kinase A (PKA), protein kinase C (PKC), and

MAP mitogen-activated protein kinases MEK-ERK. More-

over, adenylate cyclase (cAMP) levels and G protein sub-

units Gai also regulate chondrocyte cilia length via PKA,

but independent of IL-1, implicating complex immune

regulation of cilia length.19

The identification of WDR34 mutations in four distinct

families with SRP type III/severe ATD demonstrates that

a negative regulator of the IL-1R/TLR3/TLR4-induced

NF-kB activation pathway is involved in the pathogenesis

of the skeletal ciliopathies. Our findings of abnormal

cilia with bulbous distal tip further support the role of

WDR34 in retrograde intraflagellar transport.
Supplemental Data

Supplemental Data include two figures and can be found with this

article online at http://www.cell.com/AJHG/.
930 The American Journal of Human Genetics 93, 926–931, Novemb
Acknowledgments

Part of this work has been supported by a national grant from Pro-

gramme Hospitalier de Recherche Clinique (PHRC AOM06031)
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Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org/
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