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Global Analysis of DNA Methylation Variation
in Adipose Tissue from Twins Reveals Links to Disease-
Associated Variants in Distal Regulatory Elements

Elin Grundberg,1,2,11,12,* Eshwar Meduri,1,2,11,13 Johanna K. Sandling,1,8,9 Åsa K. Hedman,3

Sarah Keildson,3 Alfonso Buil,4 Stephan Busche,5 Wei Yuan,2 James Nisbet,1 Magdalena Sekowska,1

Alicja Wilk,1 Amy Barrett,6 Kerrin S. Small,2 Bing Ge,5 Maxime Caron,5 So-Youn Shin,1 the Multiple
Tissue Human Expression Resource Consortium, Mark Lathrop,5 Emmanouil T. Dermitzakis,4

Mark I. McCarthy,3,6,7 Timothy D. Spector,2 Jordana T. Bell,2 and Panos Deloukas1,10,*

Epigenetic modifications such as DNAmethylation play a key role in gene regulation and disease susceptibility. However, little is known

about the genome-wide frequency, localization, and function of methylation variation and how it is regulated by genetic and environ-

mental factors.We utilized theMultiple TissueHuman Expression Resource (MuTHER) and generated Illumina 450K adiposemethylome

data from 648 twins. We found that individual CpGs had low variance and that variability was suppressed in promoters. We noted that

DNA methylation variation was highly heritable (h2median ¼ 0.34) and that shared environmental effects correlated with metabolic

phenotype-associated CpGs. Analysis of methylation quantitative-trait loci (metQTL) revealed that 28% of CpGs were associated

with nearby SNPs, and when overlapping them with adipose expression quantitative-trait loci (eQTL) from the same individuals, we

found that 6% of the loci played a role in regulating both gene expression and DNAmethylation. These associations were bidirectional,

but there were pronounced negative associations for promoter CpGs. Integration of metQTL with adipose reference epigenomes and

disease associations revealed significant enrichment of metQTL overlapping metabolic-trait or disease loci in enhancers (the strongest

effects were for high-density lipoprotein cholesterol and body mass index [BMI]). We followed up with the BMI SNP rs713586, a

cg01884057 metQTL that overlaps an enhancer upstream of ADCY3, and used bisulphite sequencing to refine this region. Our results

showed widespread population invariability yet sequence dependence on adipose DNAmethylation but that incorporating maps of reg-

ulatory elements aid in linking CpG variation to gene regulation and disease risk in a tissue-dependent manner.
Introduction

Themolecular basis of complex traits and diseases has only

partially been explained by common sequence variants.1

Of the hundreds of already identified common complex-

trait-associated genetic loci, the majority of which map

to noncoding DNA,2 only a few have been translated to

biological mechanisms. An approach to understanding

noncoding variation and its impact on quantitative traits

and disease susceptibility is linking cellular phenotypes,

such as gene expression3–5 or chromatin state6,7 in dis-

ease-targeted cells or tissues, with common sequence vari-

ants.

Epigenetic variation such as DNA methylation is now

acknowledged to make a significant contribution to com-

plex disease susceptibility.8,9 To this end, we have devel-

oped one of the largest population collections of multiple

primary tissues (i.e., adipose, skin, and blood) in the
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Multiple Tissue Human Expression Resource (MuTHER)

project, where the tissues were obtained through punch bi-

opsies from an area adjacent and inferior to the umbilicus.

Using this resource, we recently presented the most precise

decomposition to date of gene expression variability: that

genetic effects contribute on average ~30% of the variation

in gene expression. We also showed evidence of the impor-

tance of using disease-targeted tissue or cell panels for ac-

curate interpretation of functionality of disease loci from

genome-wide association studies (GWASs).10 We are now

expanding our efforts on population-based cellular pheno-

typing to also include methylome data.

DNA methylation patterns differ with age;11 compared

with newborns, centenarians have more hypomethylated

CpGs,12 believed to be regulated by stochastic, environ-

mental, and genetic variation.13 For instance, several

studies are reporting direct effects of cigarette smoking

on the epigenome,14,15 whereas others have shown a
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correlation between epigenetic modification and common

diseases.8 A pioneering study using allele-specific DNA

methylation and mRNA expression showed evidence of a

genotype-dependent effect of DNA methylation, as well

as a correlation with gene expression.16 It was also demon-

strated that the sequence variants regulating DNA methyl-

ation are predominantly located in cis. These results have

been confirmed and followed up in more detail in more

recent studies exploring the effect of genetic factors

in modulating DNA methylation,17–19 providing further

evidence of both a strong genetic component in interindi-

vidual DNA methylation variation and a common mecha-

nism regulating gene expression and DNA methylation.

However, most of the studies presented to date have

been limited to either whole-blood-derived DNA samples

or targeted arrays of promoter regions (i.e., Illumina

27K), which include only a small fraction of methylation

variation. Although several studies have demonstrated

that changes in promoter methylation could significantly

affect gene expression,20,21 the function of DNA methyl-

ation in intergenic and gene-body regions is less defined.

Consequently, studies using more homogeneous cell or

tissue samples for the analysis of genome-wide DNA

methylation patterns in larger sample sizes are in high de-

mand.

Weestimatedmethylation levels of 485,764 sites covering

not only gene promoters but also several other genomic fea-

tures22 in subcutaneous adipose tissue derived from 648

female twins. Taking advantage of the twin structure, we

performed large-scale heritability analysis of global DNA

methylationvariationbydissecting it into genetic and envi-

ronmental (both common and unique) effects. In addition,

we used previously collected genomic (SNP) and transcrip-

tomic (IlluminaHT12) data to assess the impact of common

variants on DNA methylation differences and to estimate

the global correlation with expression of nearby genes.

Finally, in an attempt to understand the functional role of

epigenetic variants, we correlated our methylation quanti-

tative-trait loci (metQTL) findings with publicly available

reference epigenome data on human cells differentiated

into adipocytes from the National Institutes of Health

(NIH) RoadMap Epigenomics Project.23 The complete anal-

ysis outline is presented in Figure S1, available online.
Subjects and Methods

Sample Inclusion
A total of 662 adipose tissue samples collected in the MuTHER

study were included herein. The MuTHER study includes 856

female European-descent individuals recruited from the TwinsUK

Adult Twin Registry,24 as previously described.10 In brief, 8 mm

punch biopsies were taken from a relatively photo-protected area

adjacent and inferior to the umbilicus. Subcutaneous adipose tis-

sue was carefully dissected from each biopsy, weighted and split

into multiple pieces, and immediately stored in liquid nitrogen

until analysis. All the procedures followed were in accordance

with the ethical standards of the St. Thomas’ Research Ethics Com-
The American
mittee (REC reference 07/H0802/84) at St. Thomas’ Hospital in

London, and all study subjects provided written informed con-

sent. As recently described, RNA was extracted from the MuTHER

adipose tissues and used for expression profiling using Illumina

Human HT-12 V3 BeadChips.
DNA Isolation and Bisulphite Conversion
In order to avoid sampling biases, we randomized the included ad-

ipose tissue samples prior to DNA extraction. Genomic DNA was

then isolated with a NORGEN DNA Purification Kit (Norgen Bio-

tek Corporation) according to the manufacturer’s protocol and

quantified with PicoGreen. Prior to bisulphite conversion, the

DNA samples were further randomized, and exactly 700 ng of

each DNA sample was taken for bisulphite conversion with the

EZ-96 DNAMethylation Kit (Zymo Research) according to the sup-

plier’s protocol. Before proceeding with methylation profiling, we

quantified concentrations of the bisulphite-treated DNA samples

with NanoDrop ND-1000 (NanoDrop Technologies).
Genome-wide Methylation Profiling
Methylation profiling was performed on the bisulphite-converted

samples with the Illumina Infinium HumanMethylation450

BeadChip; 5 ml of each eluted bisulphite-treated DNA sample was

processed according to the protocol supplied by Illumina. The

methylation array targeted 485,764 methylation sites across the

genome with both the Infinium I (two bead types per CpG site;

one each for the methylated and unmethylated states) and II (one

bead type per CpG site; the methylated state is determined at the

single-base extension step) assay designs. Given the complexity

of the probe design,methylation scores (beta values) have different

distributions for the different probe types (Figure S2). The Bead-

Chips were scanned with the IlluminaHiScan SQ scanner, and

raw data were imported to the GenomeStudio v.2010.3 software

with the methylation module 1.8.2 for the extraction of the image

intensities. Sample quality control based on probe detection and

using theGenomeStudiop values of detectionof signal above back-

ground resulted in the exclusion of 11 samples (at least 95%

coverage per sample was required). In addition, probes that failed

in at least one individual (n ¼ 13,686) and that were not reported

by the GenomeStudio software were discarded.

The signal intensities for the methylated and unmethylated

states were then quantile normalized for each probe type sepa-

rately, and beta values were calculated with R 2.12.0.25 Beta values

are the ratio of the normalized intensity of the methylated bead

type to the combined normalized locus intensity, and they range

from 0 (hypomethylated) to 1 (hypermethylated). Principal-

component analysis of the beta values was then performed for as-

sessing the impact of known technical factors on the variation in

beta values, as well as for detecting any potential outliers. Bead-

chip, bisulphite-sequencing (BS) conversion efficiency (assessed

with the built-in BS conversion efficiency controls), and BS-treated

DNA input were shown to contribute significantly to the variation

in beta levels and were thus included together with age as covari-

ates in subsequent analysis. After principal-component analysis,

three samples were considered outliers and removed, leaving a to-

tal of 648 samples for subsequent analysis (see below).
Probe Mapping and Annotation
To test for cross hybridization, we mapped all probe sequences

of Illumina’s Infinium HumanMethylation450K BeadChip (n ¼
485,764) to the human reference genome (GRCh37) with BLAT
Journal of Human Genetics 93, 876–890, November 7, 2013 877



with default parameters.26 As described earlier, probes that were

mapped to multiple locations with at least two mismatches were

considered to be ambiguous.18 A total of 459,433 uniquely

mapped autosomal probes were chosen and further filtered for

sequence polymorphisms. Sequence variants from CEU (Utah res-

idents with ancestry from northern and western Europe from the

CEPH collection) populations were downloaded from the 1000

Genomes Project (release 3).27 Irrespective of their frequency,

SNPs spanning the ten bases around the methylated base of the

probes were deleted. A threshold of minor allele frequency

(MAF) ¼ 1% was set for SNPs overlapping the rest of the probe

sequence. In addition, probes overlapping copy-number variants

were deleted. This resulted in a final set of 357,802 probes. How-

ever, we restricted all of our analysis to 344,303 sites that were

measured across all samples (Table S1).

Filtered probes were assigned to CpG islands (CGIs) and RefSeq

transcripts that were downloaded from the UCSC Genome

Browser. With the methylated site as a reference, all the probes

were allocated to different gene properties, namely TSS200 (200

bases away from the 50 end of the transcription start site [TSS]),

TSS1500 (1,300 bases away from the 50 end of TSS200), the 50

UTR, the first exon, the gene body, and the 30 UTR. Probes that

were 2 kb away from either side of the CGIs were considered to

be shores, and shelves were a further 2 kb away from either side

of the shores.22
Methylation and Gene Expression Association
Associations between DNA methylation and gene expression

levels were analyzed for 210,984 methylation and 18,818 expres-

sion probes situated on or 1,500 bp upstream of 13,532 genes.

To test the associations, we used a linear mixed-effects model in

R25 with the lme4 package28 lmer() function, fitted by maximum

likelihood. The linear mixed-effects model was adjusted for both

fixed effects (age, beadchip, BS conversion efficiency, and BS-

treated DNA input) and random effects (family relationship and

zygosity). We used a likelihood ratio test to assess the significance

of the gene expression effect. The p value of the gene expression

effect in each model was calculated from the Chi-square distribu-

tion with 1 degree of freedom (df) and �2log(likelihood ratio) as

the test statistic. False-discovery rate (FDR) was calculated with

the q value package29 implemented in R 2.11.25
Heritability Analysis
The classical twin design was applied for comparing the similarity

of monozygotic (MZ) and dizygotic (DZ) twins by means of the

ACE model, which partitions the variance into additive genetic

(A), common environment (variance due to environmental effects

shared within twin pairs) (C), and unique environment (environ-

mental effects not shared within twin pairs) (E). Because all twin

pairs included in the study visited the clinic in pairs and because

MZ twins share 100% of their genes, any differences arising be-

tween them in these circumstances are unique (E). The correlation

observed betweenMZ twins thus provides an estimate of AþC. In

contrast, DZ twins have a common shared environment but share

on average only 50% of their genes, such that the correlation be-

tween DZ twins is a direct estimate of 0.5(A þ C). Consequently,

twice the difference between MZ and DZ twins gives the genetic

additive effect (A), and the common environment (E) is the MZ

correlationminus the estimate of the genetic effect (A). A standard

linear mixedmodel was used for estimating these variance compo-

nents, as previously described.30 All available complete twin pairs
878 The American Journal of Human Genetics 93, 876–890, Novemb
were included in the model and corresponded to 97 MZ and 162

DZ pairs. Age, beadchip, BS conversion efficiency, and BS-treated

DNA input were included in the model as covariates.

Pathway Analysis
In order to visualize the data in the context of biological networks,

we analyzed functions or pathways data through the use of the In-

genuity Pathway Analysis (IPA) system (Ingenuity Systems). The

data set containing genes for which shared environmental effect

accounted for more than 30% of the total variance in methylation

levels was uploaded to the application. Each gene identifier was

mapped to its corresponding gene object in the Ingenuity Knowl-

edge Base. These genes, called focus genes, were overlaid onto a

global molecular network developed from information contained

in the Ingenuity Knowledge Base. The functional analysis identi-

fied the biological functions that were most significant to the

data set. In the data set, genes that met the cutoff and were asso-

ciated with biological functions in the Ingenuity Knowledge

Base were considered for the analysis. Fisher’s exact test was used

for calculating a p value determining the probability that each bio-

logical function assigned to the data set was due to chance alone.

Insulin Association
Associations between DNA methylation and insulin levels were

modeled with a linear mixed-effects model in R25 with the lme4

package28 lmer() function, fitted by maximum likelihood. The

linear mixed-effects model was adjusted for both fixed effects

(age, beadchip, BS conversion efficiency, and BS-treated DNA

input) and random effects (family relationship and zygosity). A

likelihood ratio test was used for assessing the significance of the

phenotype effect. The p value of the phenotype effect in each

model was calculated from the Chi-square distribution with 1 df

and �2log(likelihood ratio) as the test statistic. Fisher’s exact test

was used for assessing enrichment of phenotype associations in

the set of shared environmentally controlled sites versus the full

set of methylation sites.

Genotyping and Genotype Imputation
Genotyping of the TwinsUK data set (n ¼ ~6,000) was done with a

combination of Illumina arrays (HumanHap300, Human-

Hap610Q, 1M-Duo, and 1.2MDuo 1M). Intensity data for each

of the three arrays were pooled separately (with 1M-Duo and

1.2MDuo 1M pooled together), and genotypes were called with

the Illuminus31 calling algorithm with the use of a threshold

on a maximum posterior probability of 0.95, as previously

described.32

Imputation was performed with the IMPUTE software package

(v.2)33 with two reference panels, P0 (HapMap2, rel 22, combined

CEU, YRI [Yoruba in Ibadan, Nigeria], and ASN [East Asian] panels)

and P1 (610kþ, including the combined HumanHap610k and 1M

array). After imputation, SNPs were filtered at a MAF > 5% and

IMPUTE info value of >0.8.

metQTL Analysis
Associations between DNA methylation levels and probabilities

of imputed genotypes (MAF > 5%, info > 0.8) were tested in

samples of related individuals by means of a two-step statistical

approach implemented in the GenABEL and ProbABEL pack-

ages.34,35 In brief, a linear mixed (polygenic) model of methyl-

ation levels, covariates, and a kinship matrix was estimated in

GenABEL, and a score test in ProbABEL followed. Age, beadchip,
er 7, 2013



BS conversion efficiency, and BS-treated DNA input were

included as cofactors. In total, 603 adipose samples had both

methylation profiles and imputed genotypes and were thus

included in the analysis. Cis analysis was limited to SNPs located

within 100 kb of either side of the probe location. FDR for the cis

analysis was calculated with the q value package29 implemented

in R 2.11.25

The score test is known to slightly underestimate the additive

effect sizes36 of each SNP, so the top association per probe was

validated with a linear mixed-effects model in R with the lme4

package28 lmer() function, fitted by maximum likelihood. The

linear mixed-effects model was adjusted for both fixed effects

(age, beadchip, BS conversion efficiency, and BS-treated DNA

input) and random effects (family relationship and zygosity). A

likelihood ratio test was then applied for assessing the significance

of the SNP effect. The p value of the SNP effect in each model was

calculated from the Chi-square distribution with 1 df and

�2log(likelihood ratio) as the test statistic.

To estimate the significance of our calculated FDR levels, we per-

formed permutation tests as follows: 100 probes were selected at

random from probes with at least one SNP association at a 1%

FDR. For each probe, models were fitted to all SNPs in its 100 kb

cis region. Current results are based on 100 permutations of the

genotype data; the same permutation scheme (accounting for

relatedness) was applied across the whole 100 kb cis region for pre-

serving linkage disequilibrium (LD) structure. We then calculated

the percentage of models in each permutation round (across all

probe-SNP models) with a parametric p value below the threshold

corresponding to a 1% FDR estimated from the data with a q value.

We found ~0.46% of the ‘‘permuted models’’ to have a p < 2.7 3

10�3 (corresponding to a 1% FDR) by chance. However, at the

1% FDR threshold, we found that in 2/100 permutation rounds,

at least 1% of 14,803 random models had a p value below the

threshold purely by chance. From the permuted data, we thus esti-

mated that p< 6.463 10�3 corresponded to a 1% FDR, suggesting

that the q value slightly overestimated the significance required at

the selected FDR level when data were correlated.
metQTL and eQTL Overlap
Expression profiling of the MuTHER twins was performed on Illu-

mina HT12 BeadChip as previously described.10 A total of 3,478

cis-eQTL (defined as a 1 Mb region on either side of the transcript)

at a 1% FDR using 2,029,988 imputed SNPs (MAF > 5% and

IMPUTE info value > 0.8) were discovered.10

To test the overlap of SNPs associated with methylation and

expression, we used a two-step procedure. First, we considered

expression and methylation probes situated on the same gene or

1,500 bp upstream of the gene (applicable to methylation probes

only) and asked whether the top SNP associated with expression is

the same as that associated with DNA methylation. In the second

step, we used conditional analysis to test whether top SNPs asso-

ciated with expression probes are in LD with any of the significant

SNPs associated with methylation probes.37 For this, we ran a

linear mixed model by conditioning on top SNPs associated

with corresponding expression probes (expression score was

used as the response variable, and batch and age were used as co-

variates).
Analysis of ChIP-Seq Data
Aligned chromatin immunoprecipitation sequencing (ChIP-seq)

reads (.BAM files) from nuclei from adipose tissue derived from
The American
five independent donors were downloaded from the NIH Road-

map Epigenomics Project from the Gene Expression Omnibus

repository. More specifically, aligned ChIP-seq reads of the

H3K4me1 and H3K4me3 marks and the ChIP-seq input were

used. The corresponding accession numbers were GSM621425,

GSM669908, GSM669975, GSM670045, and GSM772757 for

H3K4me1; GSM621435, GSM669925, GSM669988, GSM669998,

and GSM670041 for H3K4me3; and GSM621401, GSM669934,

GSM669940, GSM669984, and GSM670043 for the ChIP-seq

input files. The embargo end date spanned from August 12,

2011 to September 28, 2012. The ChIP-seq data were processed

as recently described.38 In brief, each file of the H3K4me1 and

H3K4me3 marks was divided into 100 bp bins, and the number

of reads within each bin was counted. For generating normalized

intensity signals, the counts in each bin were further normalized

according to the total number of reads. Input reads were processed

in the same way, and their normalized signal-intensity values were

subsequently subtracted from the ChIP-seq bins. The H3K4me1

and H3K4me3 bins were then ranked according to their normal-

ized signal-intensity values, and the top 200,000 bins per histone

mark and individual were kept. These top-ranked bins were further

filtered such that only those that were present in at least three in-

dividuals for either mark were kept. For mapping promoters with

the H3K4me3 mark, only bins mapping within 1 kb of the TSS

of known RefSeq transcripts were considered. Finally, enhancers

were identified with the H3K4me1 mark under the condition

that no H3K4me3 bins could overlap.

Whole-Genome Bisulphite Sequencing
Whole genome bisulphite sequencing (WGBS) and library con-

struction were carried out as described by Kulis et al.9 In brief,

1 mg of adipose-tissue-derived DNA was spiked with 0.2% unme-

thylated l DNA (Promega) and sheared by sonication to 150–

300 bp with a Covaris E220 Focused-ultrasonicator. Genomic

DNA libraries were constructed with the TruSeq Sample Prepara-

tion Kit (Illumina) according to Illumina’s standard protocol. After

adaptor ligation, bisulphite conversion was carried out with the

Epitect Fast Bisulphite Kit (QIAGEN) according to the manufac-

turer’s protocol, ensuring conversion efficiency of >99%. The

adaptor-ligated DNA was then enriched through four to eight

cycles of PCR with the KAPA HiFi HotStart DNA Polymerase Kit

(KAPA Biosystems). Library quality and quantity were monitored

with the Agilent 2100 BioAnalyzer (Agilent) and the Quant-iT

PicoGreen dsDNA Assay Kit (Life Technologies).

Each sample was sequenced on one lane of an Illumina HiSeq

2000 or 2500 system with the use of 100 bp paired-end

sequencing, yielding on average 366 million total reads per sam-

ple. Reads were aligned to the bisulphite-converted reference

genome with the Burrows-Wheeler Aligner; (1) clonal reads, (2)

reads with a low-mapping quality score (<20), (3) reads with a

more than 2%mismatch to the converted reference over the align-

ment length, (4) reads mapping to the forward and reverse strand

of the bisulphite-converted genome, (5) read pairs not mapped to

the expected distance according to the library insert size, and (6)

read pairs mapping in the wrong direction were removed as

described by Johnson et al.39 For avoiding potential biases in

downstream analyses, the followingWGBS-interrogated CpG sites

were further filtered: sites not covered by at least three reads, sites

overlapping a SNP (dbSNP 137), and sites overlapping DAC Black-

listed Regions or Duke Excluded Regions generated for the

ENCODE project. The mean genome coverage was estimated to

be ~7-fold.
Journal of Human Genetics 93, 876–890, November 7, 2013 879
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Figure 1. Distribution of Assessed Methylation Sites Based on
Genomic Regions
Methylation sites were categorized in groups on the basis of their
genomic location (x axis). The promoter region includes methyl-
ation sites located in a window of 1,500 bp upstream of the TSS,
in the 50 UTR, and in the first exon. Intergenic regions include
methylation sites not mapping to any of the other categories,
and ambiguous sites refer to sites that fell in at least two different
categories. ‘‘TVSs’’ stands for top 10% of variable sites, and ‘‘All’’
stands for all mapped methylation sites (n ¼ 344,303).
Results

Adipose DNA Methylation Profiles in Twins

DNA methylation profiles were successfully obtained from

subcutaneous abdominal adipose tissue from 648 female

twins (97 MZ pairs, 162 DZ pairs, and 130 singletons)

included in the MuTHER study with the use of the Illu-

mina HumanMethylation450 BeadChip. This array har-

bors a total of 485,764 probes, which interrogate almost

exclusively CpG sites (see Subjects and Methods)40. We

restricted our analyses to 344,303 probes (Table S1) that

were unambiguously mapped, did not overlap with any

common sequence polymorphisms, and were successfully

measured in all samples (see Subjects and Methods). These

are referred to here as methylation sites. These methyl-

ation sites were densely distributed across the genome;

the median distance between adjacent sites was 391 bp,

and a large proportion (32.3%) mapped to promoter

regions, defined here as mapping in a window of

1,500 bp upstream of the TSS, in the 50 UTR, or in the first

exon of RefSeq transcripts. Of the 23,667 RefSeq genes,

20,144 (85.1%) had at least one site, and the average was

17 methylation sites per gene. We estimated 65,821

(19.1%) sites to be located in CGIs, where CpGs are highly

clustered and mostly located near gene promoters and

expressed genes; the mean methylation level was beta ¼
0.15 (Figure S3). This observation in adipose tissue is in

line with previous findings showing hypomethylation of

CGIs in other cell types.41

We then compared methylation levels of the 344,303

sites across all individuals and noted little variation at

most sites (Figure S4). When restricting to the top 10% of

variable sites (TVSs), we found enrichment in gene bodies

(p ¼ 1.7 3 10�4) and intergenic regions (p < 1 3 10�5),
880 The American Journal of Human Genetics 93, 876–890, Novemb
whereas promoter regions were depleted of TVSs (p <

1 3 10�5) (Figure 1). Similarly, we found TVSs to be

depleted in CGIs (Figure S5).

As previously shown, methylation levels of nearby CpG

sites tend to be correlated.18,22 We found approximately a

third of the TVSs to be clustered with a maximum probe-

pair distance of 1 kb. The correlation of methylation levels

between probes decreased with increasing interprobe

distance (rho1–100 bp ¼ 0.75 versus rho900–1,000 bp ¼ 0.25)

and dropped significantly once it exceeded 300 bp. Given

that most of the non-TVSs exhibited minor variation

across individuals, it is not a surprise that the correlation

pattern of adjacent probes differed from that of TVSs

(Figure S6).

DNA Methylation Variation and the Impact of Gene

Expression

The MuTHER adipose tissue samples included here have

previously been profiled on the IlluminaHT12 array for

global gene expression patterns.10 Therefore, we were

able to study the degree of association between DNA

methylation and expression of nearby genes in this

tissue. We limited the analysis to methylation sites that

directly mapped to a RefSeq gene or 1,500 bp upstream

of the TSS (see Subjects and Methods). Because the major-

ity of genes harbor multiple methylation sites and ex-

pression probes, we ended up with 210,984 methylation

and 18,818 expression probes situated in 13,532 genes.

For any given gene, we tested associations between all

methylation and expression-probe combinations map-

ping to the same transcript. From 314,697 associations,

we found 7,706 to be significant at a 1% FDR (p ¼
2.6 3 10�4) (Table S2), indicating that 6,933 methyla-

tion sites (3.2% of the tested sites) and 2,334 genes

(17.2% of the tested genes) had at least one significant

association. Extending the support for earlier find-

ings18,42 with regard to the direction of the effect, we

found only a slight enrichment of negative correlations

(median beta ¼ �0.015) among all significant associations

between DNA methylation and gene expression (Fig-

ure 2A), indicating that a large proportion of the signifi-

cant associations were positive, i.e., increased methylation

was linked to increased expression of the corresponding

gene. We further divided our methylation-expression

correlations into three groups based on the location(s)

of the methylated site (promoter region, gene-body re-

gion, and 30 UTR) and found negative correlations in all

of them; median beta in promoter regions, gene-body

regions, and 30 UTRs was �0.018, �0.013, and �0.007,

respectively. However, when we restricted to TVSs, we

observed negative correlations for the sites located in

promoter regions (median beta ¼ �0.03) and positive cor-

relations for those closer to 30 UTRs (median beta ¼ 0.02)

(Figure 2B). This paradox of the positive correlation be-

tween gene-body methylation and gene expression levels

is in line with previous reports43,44 but remains largely

unexplained. However, it was recently suggested that
er 7, 2013
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Figure 2. DNA Methylation Variation and the Impact of Gene
Expression
We studied the correlation between DNAmethylation and expres-
sion variation in adipose tissue by associating methylation sites
mapping to RefSeq genes or 1,500 bp upstream of the TSS with
the corresponding transcripts from the IlluminaHT12 expression
array.
(A) Histogram showing the direction of effect (x axis) of all 7,706
associations significant at a 1% FDR; the vertical red line high-
lights the median value.
(B) Box plot of the direction of effect (x axis) of the significant
associations limited to TVSs categorized in groups based on the
location(s) of the methylation site (y axis). The five-number
summaries in the plot of each group represent the smallest obser-
vation, lower quartile, median, upper quartile, and largest observa-
tion (sample maximum). The vertical red line indicates the central
point of 0.
gene-body methylation might serve to repress spurious

transcription from intragenic promoters and thus allow

for more efficient transcriptional elongation.45
The American
Impact of Genetic and Environmental Factors on DNA

Methylation

Because our study included MZ (n ¼ 97) and DZ (n ¼ 162)

twin pairs, we were able to distinguish between genetic

and environmental effects on methylation variation and

estimate their respective contributions. We first sought to

study the correlation of adipose methylation states be-

tween individuals sharing 100% (MZ) or 50% (DZ) of the

genetic makeup, as well as between unrelated individuals.

Both using all sites and limiting to TVSs, we noted that

concordance in methylation between MZ twins was

greater than that in DZ twins and unrelated individuals,

indicating genetic influences of DNA methylation

(Figure S7). Given the invariability of methylation levels

for the majority of the sites, correlation levels were rela-

tively higher in the analysis of all sites (Figure S7A) than

in that of only TVSs (Figure S7B). Next, we estimated

narrow-sense heritability, h2, for 344,092 methylation sites

by using a variance-component model adjusting for

the identified technical cofactors (see Subjects and

Methods).30 The average h2 estimates of methylation sites

genome-wide corresponded to 0.19, which is well in agree-

ment with estimates from a smaller twin study11 using the

Illumina HumanMethylation27 panel. However, this array

targets only sites located within proximal promoters of

known genes (~27,000 CpG sites in total). Here, we noted

that the heritability estimate was considerably increased

when we took variance into account (Figure S8). Limiting

to the TVSs, we estimated that, on average, as much as

37% (median h2 ¼ 0.34) of the phenotypic variance can

be in fact attributed to genetic factors (Figure 3A).

As was the case for TVSs, we noted that highly heritable

sites (h2 > 0.5, n ¼ 48,072) were depleted in promoter

regions (p < 1 3 10�5), which are known to be mainly

hypomethylated.45 As such, when we compared the

methylation profiles of these highly heritable sites to those

of nonheritable sites, we found an enrichment of hyper-

methylation among highly heritable sites (Figures S9A

and S9B). In addition, we also found that the proportion

of heritable methylation sites was associated with genomic

locations, given that significantly more heritable sites were

noted in gene-body or intergenic regions than in regions

close to the TSS (p < 1 3 10�5) (Figure S9B).

Twin studies also allow calculation of the proportion of

phenotypic variation attributable to familial nongenetic

factors, i.e., the shared common environment. We found

shared environment to contribute little to methylation

variation in adipose tissue (i.e., average 2% of TVSs and

0.2% of all sites), indicating that the remaining proportion

of the nongenetic variance was due to nonshared environ-

ment and stochastic factors (Figure 3B). However, for 8,638

sites, we found shared environmental effect to account for

more than 30% of the total variance in methylation levels.

These sites, corresponding to 4,133 unique genes, were

subjected to pathway analysis, where we found them to

be significantly associated with functions related to meta-

bolic diseases (p ¼ 2.5 3 10�10). The top five functions
Journal of Human Genetics 93, 876–890, November 7, 2013 881



Table 1. Top Functions of Genes with CpG Sites Affected by
Shared Common Environment

Category Function Annotation p Value
Number
of Genes

Metabolic disease glucose-metabolism
disorder

2.47 3 10�10 193

Metabolic disease diabetes mellitus 1.41 3 10�9 176

Metabolic disease insulin resistance 1.80 3 10�8 106

Metabolic disease non-insulin-dependent
diabetes mellitus

4.79 3 10�8 88

Metabolic disease insulin-dependent
diabetes mellitus

3.55 3 10�4 70
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Figure 3. Genetic and Nongenetic Effect on Adipose DNA
Methylation
For adipose methylation levels of TVSs (n ¼ 34,430; measured on
the Illumina450K array), the proportion of variation attributable
to (A) genetic (h2) or (B) familial nongenetic factors (shared
common environment [CE]) was estimated. The y axis shows
the proportion of CpG sites at the h2 or CE cutoff indicated on
the x axis. The dotted line represents median estimates.
associated with these genes are listed in Table 1 and

include functions related to diabetes mellitus. Interest-

ingly, when associating methylation levels of our TVSs

with concurrently measured insulin levels, we noted a

2.3-fold enrichment (p < 1 3 10�5) of insulin-associated

methylation sites regulated by shared environment fac-

tors among all significant associations (Bonferroni p <

1.4 3 10�6).

Common Variants Regulating DNA Methylation in

Adipose Tissue

Tomap the underlying (common) genetic effect of adipose

DNA methylation levels, we performed metQTL mapping

by associating methylation levels with common sequence

variants (MAF > 0.05) located close to the methylation site

(CpG site 5 100 kb). This was performed with imputed

HapMap2 genotypes in a linear mixed (polygenic) model

and a subsequent score test accounting for relatedness.

We called metQTL at a 1% FDR, corresponding to p <

8.6 3 10�4, and detected a high number of associations,

i.e., 98,085 (28.5%) of the sites tested (corresponding to

74,174 unique SNPs) had a significant association with a

common sequence variant (Table S3). The sequence vari-

ants associated with the methylation traits were overrepre-
882 The American Journal of Human Genetics 93, 876–890, Novemb
sented in regions close to the methylation site (Figure 4).

Applying a more conservative threshold for significance

as the Bonferroni correction (p < 1.2 3 10�9) led to the

detection of 36,139 (10.5%) sites with a significant associ-

ation. Although extensive filtering of probes was done

prior to analysis (see Subjects and Methods) on the basis

of known sequence variants both within the probe and

at the CpG site, we did not rule out the possibility of addi-

tional low-frequency or rare variants at the CpG site, ex-

plaining some of these associations.

For the sites associated with at least one common

sequence variant at a 1% FDR, the average h2 estimate

was 0.32, and when we restricted to those passing the Bon-

ferroni correction, h2 was markedly higher (h2 ¼ 0.44). We

then sought to estimate how much of the heritability of

eachmethylation site was driven by the identified metQTL

SNPs. Because the current sample size was not sufficient for

obtaining reliable h2 estimates of less than 0.1, we focused

on the TVSs with h2 > 0.1 (n ¼ 21,144) and combined the

results from the heritability and metQTL analyses. We

found that 15% of the sequence variants each explained

more than 50% of the methylation heritability per site

and that, on average, common variants explained 19%

of the total genetic variance of DNA methylation

(Figure S10). Taken together, the genetic contribution of

the variation in methylation for a large proportion of the

measured sites seems to be linked to a limited number of

common variants.

In an attempt to study shared genetic regulation and

links between DNA methylation and gene expression in

adipose tissue, we overlapped our metQTL with eQTL

from the same tissue and sample set.10 Of the 3,478 adi-

pose tissue eQTL mapping to 3,142 genes at a 1% FDR,

we found that 751 (21.6%) of the eQTL overlapped with

at least one metQTL (i.e., a total of 1,510 metQTL overlap-

ped with the 751 eQTL) at a similar significance (1% FDR)

and also when LDwas taken into account (see Subjects and

Methods), i.e., sequence variants at 751 loci regulated both

expression and DNA methylation of the corresponding

gene (Table S4). These 751 loci corresponded to 702 genes

(22.3%). We then studied whether there was a direct asso-

ciation between DNA methylation and gene expression at

these 751 loci (Table S2). We found that 223 of the 751 loci
er 7, 2013
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Figure 4. Distribution of Top SNPs Associated with the Probe
We performed metQTL analysis by associating methylation levels
with common sequence variants (MAF> 0.05) located close to the
probe (probe 5 100 kb). The histogram shows the distance from
the methylation site (kb, x axis) for the significant associations
identified at a 1% FDR.
also had a significant association (1% FDR) between gene

expression and DNA methylation and were enriched

with negative correlations (median beta ¼ �0.02). These

223 eQTL were linked to 444 unique metQTL (a total of

473 metQTL), which we thereafter considered our set of

high-confidence expression metQTL (Table S5).

Degree of Tissue Dependency of Expression metQTL

We next sought to study tissue dependency and indepen-

dency of the 444 expression metQTL (i.e., genetic variants

regulating both gene expression and DNA methylation in

adipose tissue) and thus included data from eQTLmapping

efforts in multiple tissues,10 such as skin and lymphoblas-

toid cell lines (LCLs). As described above, these 444 loci

corresponded to 223 unique eQTL or genes, indicating

that multiple methylation sites regulated by the same

variant overlap with the same eQTL. Interestingly, when

assessing tissue independency by studying shared effects

at a 1% FDR, we found 58% of these adipose eQTL to be

significant in at least one other tissue at a similar FDR.

Using a conservative threshold of calling tissue-dependent

effects (p > 0.05 in both LCLs and skin), we found that

20% of the eQTL were, however, restricted to adipose tis-

sue. Thus, only a small proportion of expression metQTL

appeared to be restricted to gene regulation in adipose tis-

sue, although confirming this pattern will require the

assessment of additional tissue types.

Given the high abundance of adipose metQTL, we next

aimed to study the tissue dependency by performing repli-

cation studies in a subset of the samples where peripheral-

blood-derived DNAwas collected for methylation profiling

with the Illumina450 array (n ¼ 200). Of the 98,085 adi-

pose tissue metQTL identified at a 1% FDR, 88,751 were

available for testing in the corresponding blood-sample

set. We found that 31,735 (35.7%) of the adipose tissue

metQTL replicated in whole blood (same direction, p <

0.05) (Table S6). Estimating the proportion of true positives
The American
from the enrichment of low association p values (see Sub-

jects and Methods), we confirmed the high replication rate

of metQTL as p1 ¼ 0.49 (Figure S10). The replication rate

was significantly increased (p ¼ 2.3 3 10�16) when we

restricted to either TVSs, Bonferroni-corrected metQTL,

or metQTL overlapping eQTL; as much as 48% of the

TVS metQTL, 52% of the Bonferroni-corrected metQTL,

and 52% of the expression metQTL were replicated in

whole blood. The difference in replication rate might

have been due to larger effect sizes of individual metQTL

among the TVSs or enrichment of tissue-dependent

metQTL with smaller effect sizes among all sites where

the replication cohort lacked sufficient power to detect

those effects. The correlation between highly heritable

sites and significant replicated and nonreplicated metQTL

is shown in Figure S12.

Epigenetic-Variant Annotation Using Regulatory-

Element Mapping

As discussed above, we found that population variability of

individual methylation sites was depleted in promoter re-

gions (Figure 1).We also showed thatmost variablemethyl-

ation sites led to no detectable changes in gene expression.

Together, these findings indicate that methylation varia-

tion has ‘‘structure’’ and that blind mining of variable sites

across the genome is likely to be ineffective in building

insight into disease biology given the considerable

nonfunctional methylation pattern. As a first hypothesis-

free approach to understanding where the epigenetic

variants lie in our 450K population data, we used publicly

available reference epigenome data on human cells differ-

entiated into adipocytes from the NIH RoadMap Epige-

nomicsMapping Consortium.23 The NIH RoadMap Project

has not developed full integrative epigenomes from these

cells, but chromatin mark data have been generated

in five independent samples. We considered marks in-

formative for active promoter (H3K4me3)46,47 and en-

hancer (H3K4me1) function48 and employed a simple

background-subtracted binning approach.38 Considering

only autosomes, we divided each data set into 100 bp

bins, and after background subtraction and normalization,

we restricted the analysis to the top200,000bins per sample

(see Subjects and Methods). We then picked the bins pre-

sent in at least three of the five samples for either mark.

ForH3K4me3, we further restricted to binsmappingwithin

1 kb of the TSS of known RefSeq transcripts. Finally,

H3K4me1 bins overlapping with H3K4me3 were excluded.

These binswere thenoverlappedwithourmethylation sites

from the 450K data, which showed that 10,180 of 344,303

(3%) methylation sites were uniquely annotated to

enhancer elements and 72,983 of 344,303 (21%) CpG sites

were uniquely annotated to promoter elements (Table S7).

These annotated regions, particularly promoter regions,

were shown to be less variable than nonannotated regions

(median varenhancer ¼ 7.9 3 10�4, median varpromoter ¼
9.5 3 10�5, median varnonannotated ¼ 6.1 3 10�4), as

well as have distinct methylation profiles with clear
Journal of Human Genetics 93, 876–890, November 7, 2013 883
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Figure 5. Annotation of Functional Epigenetic Variation in Regulatory Elements
(A–C) DNA methylation sites assessed by the Illumina 450K array were correlated with regulatory elements in human adipocytes from
the NIH RoadMap Epigenomics Project with the use of the H3K4me1 (enhancer) and H3K4me3 (promoter) marks. Methylation profiles
(beta-values, x axis) of methylation sites overlapping (A) distal regulatory elements (enhancers, n ¼ 10,180), (B) promoter elements (n ¼
72,983), and (C) nonannotating regions (n ¼ 261,140) are plotted.
(D) Bar plot showing the proportion (%, y axis) of all methylation sites (blue bars, n ¼ 344,303), metQTL (orange bars, n ¼ 98,085),
metQTL overlapping with eQTL independently of tissue type (red bars, n ¼ 360), metQTL overlapping with eQTL in adipose tissue
only (green bars, n ¼ 70), metQTL overlapping disease loci (purple bars, n ¼ 3,583), and metQTL overlapping metabolic disease loci
(light blue bars, n ¼ 383) in enhancer (left) and promoter regions (right). *p < 0.05, **p < 10�4, Fisher’s exact test.
hypomethylated states in the annotated regulatory regions

(Figure 5). We then sought to correlate our epigenetic vari-

ants with their genomic location. For this purpose, we first

used the metQTL shown to overlap with an eQTL in the

same tissue as described above (n ¼ 444) and divided this

set of expression metQTL into those that were restricted

to adipose tissue alone (20%) and the remaining expression

metQTL. For both sets of sites, we noted significant enrich-

ment (p < 13 10�5) in proximal regulatory elements (pro-

moters) compared to all metQTLs (Figure 5D), which was

most likely due to the fact that eQTL themselves were en-
884 The American Journal of Human Genetics 93, 876–890, Novemb
riched in these regions. However, for the expression

metQTL restricted to adipose tissue, we also noted signifi-

cant enrichment (p ¼ 0.03) in distal regulatory (enhancer)

elements (Figure 5D), which is well in line with the

notion that enhancer elements are involved in tissue-spe-

cific gene regulation. Next, we examined metQTL that

overlapped with disease or trait loci reported in the

National HumanGenome Research Institute GWAS catalog

(accessed January 2, 2013). Of the 74,174 sequence variants

associatedwith at least onemethylation site (metSNPs) (see

above) and their proxies (R0 >0.8), 2,768overlappedwith at
er 7, 2013
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Figure 6. Example Region of a metQTL Overlapping with a BMI Locus Mapping to an Enhancer Element in Adipose Tissue
(A) The methylation site measured by the cg01884057 probe (red panel) mapped to an enhancer bin region (chr2: 25,149,200–
25,150,300) identified in four independent adipocyte samples included in the NIH Roadmap Epigenomics Project (blue panel). The
methylation site (cg01884057, red panel) was significantly associated (p ¼ 1.5 3 10�14) with the nearby rs713586 SNP (green panel),
which is also a GWAS locus for BMI. The rs713586 SNP was in perfect LD (R0 ¼ 1) with rs6749422 (black panel), recently identified
in the 1000 Genomes Project.
(B) Methylation profile of the cg01884057 methylation site; the beta-value (x axis) indicates the hypomethylated state.
(C) A scatterplot of the association between rs713586 genotypes (x axis) and cg01884057methylation (y axis) is represented by residuals
from the metQTL model after adjustment for confounders.
least one disease locus and were included here for func-

tional annotation. As we did for the expression metQTL,

we divided the set of sites into those that overlapped with

a metabolic disease locus (Table S8) and the remaining

disease or trait loci. Interestingly, for both sets we noted sig-

nificant enrichment (p < 0.0001) of metSNPs associated

with a disease locus in distal (enhancer) regulatory ele-

ments but that metQTL overlapping metabolic trait loci

had a slightly more pronounced effect (1.9-fold versus

1.7-fold) (Figure 5D). As proof of principle, we followed

up in more detail with one of the top metabolic disease

loci overlapping an enhancer metQTL, namely the SNP

rs713586, which is associated with body mass index

(BMI) from a large GWAS of almost 250,000 individuals49

and is a metQTL for the nearby cg01884057 site (chr2:

25,150,051) (Figures 6A–6C). The enhancer regionmapped

to chr2: 25,149,200–25,150,300 and included three addi-

tional CpG sites measured by the 450K array: cg08526959

(chr2: 25,149,334), cg22480783 (chr2: 25,149,622), and

cg15423357 (chr2: 25,149,977) (Figure 7). Apart from

cg01884057 (p ¼ 1.49 3 10�14), only cg15423357 (p ¼
3.3 3 10�11) was associated with the rs713586 SNP, and

both had low methylation levels. We next sought to fine

map and validate the methylation status and sequence-

dependent effect and thus performed WGBS experiments

in 30 adipose samples (Figure 7). In total, 41 methylation

sites in the enhancer region were measured by WGBS,

and the methylation levels of the four sites corresponding

to the 450K probes were significantly correlated (Spearman

rho ¼ 0.99). Because of our limited sample size for WGBS,

we restricted the replication of the sequence-dependent
The American
effect to the hypomethylated region showing an associa-

tion with rs713586 on the 450K array, i.e., chr2:

25,149,628–25,150,147. Our WGBS covered 23 CpG sites

in this region; however, only 9 of the 23 sites had measure-

ments from at least three individuals per rs713586-geno-

type group and were included in the replication analysis.

The overall direction of effect was in agreement with the

450K data, and a combined test of all CpG sites confirmed

the significant rs713586-genotype dependency of methyl-

ation status in the region (Spearman rho ¼ �0.21, p ¼
2.0310�3) (Figure 7). Interestingly, rs713586was inperfect

LD (i.e., LD ¼ 1) with an untyped 1000 Genomes SNP

(rs6749422, chr2: 25,150,011) that maps to the refined

enhancer region just downstream of our top methylation

association (Figure 7). More specifically, as shown by

RegulomeDB,50 rs6749422 directly overlaps with four tran-

scription factor binding sites identified by the ENCODE

project;51 these include USF1, previously linked to tran-

scriptional control of metabolic processes and metabolic

disorders.46,47 This is of interest because the refined

enhancer region is <10 kb upstream of ADCY3, which en-

codes a protein that belongs to the adenylate cyclase family

of enzymes responsible for the synthesis of cyclic AMP and

has been linked to obesity (MIM 601665)52 and metabolic

processes such as the insulin-signaling pathway53.
Discussion

We performed a large population-based methylation sur-

vey of >450,000 CpG sites across the genome in 648
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Figure 7. Validation of Disease-Linked
Enhancer Region by WGBS
(A) The methylation status (y axis) of
methylation sites in the complete enhancer
region (chr2: 25,149,200–25,150,300) was
measured by the Illumina450K array (red
bars) or WGBS (blue bars). The black arrow
indicates the top methylation site associ-
ated with the rs713586 SNP.
(B) WGBS replication analysis of the
methylation status (y axis) of nine methyl-
ation sites and rs713586 genotypes (x
axis). The black arrow indicates the top
CpG site associated with the rs713586
SNP on the Illumina450K array.
deeply phenotyped female twins from the MuTHER adi-

pose tissue resource by using the Illumina 450K array. In

this study, we integrated our methylation data with exist-

ing genetic and gene expression information,10 extending

our understanding of the regulation of global DNAmethyl-

ation patterns and the degree of interindividual variation.

For instance, we showed that there is remarkably low vari-

ance in globalmethylation patterns across healthy individ-

uals after technical and biological factors such as age are

taken into account.11 This invariability in methylation

levels has an impact on the discovery rate of the various

analyses performed and has a pronounced effect on global

heritability estimates and detected metQTL (Figure S13).

We also note that population variability in DNA methyl-

ation is suppressed in regions known to be important in

gene regulation, such as promoters, whereas variable

methylation sites are found in gene-body and intergenic

regions. These findings are in line with evidence showing

that epigenetic states at promoter regions are evolution-

arily conserved,54 and such regions are believed to have

low levels of variation. In parallel, we confirmed the in-

verse relationship of methylation states in promoter versus

gene-body regions in that CpG sites around the TSS were

shown to be hypomethylated, whereas clear hypermethy-

lation was seen for sites located in gene bodies.55 The dense

coverage of CpG sites across most RefSeq genes22 allowed a

comprehensive assessment of directionality for associa-

tions between DNA methylation and gene expression.
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First, we confirmed previous studies

showing only a slight enrichment

of negative correlations between

DNA methylation and gene expres-

sion.18,42 Second, when taking CpG

site variability into account, we found

evidence that the direction of the

effect of DNA methylation on the

expression of neighboring genes is

dependent on the genomic location

of the CpG site. As expected, signifi-

cant associations between promoter

DNA methylation and gene expres-

sion were found to be negative, but
there were indications of the opposite scenario (i.e., posi-

tive correlations) for associations between gene-body

(including the 30 UTR) DNA methylation and gene ex-

pression.43,44 This phenomenon has been suggested to

be related to elongation efficiency and prevention of

spurious initiation of transcription.45 Namely, a high level

of gene-body methylation might improve transcription

efficiency of actively transcribed genes by interfering

with nonproductive transcription initiation within tran-

scribed regions.44

With the advantage of a twin-study design, we were also

able to perform large-scale heritability analysis of DNA

methylation patterns not limited to promoter CpG sites,

as were previous studies.11,56 These nonpromoter (gene-

body and intergenic), hypermethylated CpGs were found

not only to be highly variable across individuals but also

to be regulated to a large extent by genetic factors. This

pattern was further supported by metQTL mapping

showing a high degree of sequence dependency of variable

CpG sites. However, the majority of these genetically

controlled CpG sites seem to be ‘‘neutral’’ without a clear

biological or functional mechanism such as changes in

gene expression or disease risk. This is, in fact, in agree-

ment with a recent report in which the mouse methylome

showed a high degree of sequence dependency of methyl-

ation sites occurring at bases adjacent to the CG site57 and

might indicate high sequence specificity for the DNA

methylation machinery even in the human methylome.



Nevertheless, we show examples of how functional epige-

netic variants important in gene regulation or disease

susceptibility can be identified and characterized by the

integration of methylome data with reference epigenomes.

Using ChiP-seq data from human cells differentiated into

adipocytes (from the NIH RoadMap Epigenomics Mapping

Consortium),23 we found that metQTL overlapping eQTL

restricted to adipose tissue or metabolic-trait or disease

loci were enriched in distal regulatory elements (i.e.,

enhancers). These enhancer elements were mostly hypo-

methylated, which is in line with previous findings of

the correlation between low methylation levels and open

chromatin.18,58 This is believed to occur to facilitate

chromatin accessibility for the cellular machinery and

thereby modulate the transcriptional potential of the un-

derlying DNA sequence.59 These findings also highlight

the tissue- or cell-specific nature of disease-associated

gene regulation and that, similar to transcriptomic ap-

proaches designed for understanding disease associations

and their underlying biological mechanisms, epigenomic

studies require samples that are directly targeted to the

disease or trait of interest. Our findings also support

recent reports of the enrichment of disease SNPs in active

chromatin measured by DNaseI hypersensitivity sites60 or

within enhancer elements specifically active in relevant

cell types,61 but our data indicate that this association is

due to genetically driven methylation variation occurring

at these regulatory elements. Using WGBS, we followed

up with one of the metabolic disease and adipose-tissue-

specific metQTL identified in our adipose 450K array anal-

ysis. The association mapped to an enhancer element

located ~10 kb upstream of ADCY3, which has been linked

to multiple metabolic diseases and processes.52,53 Our fine-

mapping efforts here suggest that the link between the

enhancer metQTL and the regulation of the metabolic-

disease-associated gene is through altered binding of a

transcription factor. This as the sequence variant (associ-

ated with adipose DNA methylation status and BMI from

large GWASs) seems to alter the binding of USF1, which

is known to be a transcription factor controlling the

expression of several genes involved in lipid and glucose

homeostasis.

In conclusion, we present a unique large-scale popula-

tion- and tissue-based methylome survey by the Illumi-

na450K array. Our results showed low levels of variation

in global CpG methylation, particularly in hypomethy-

lated promoter regions, which still represent a substantial

proportion of sites included on the 450K array. On the

other hand, gene-body methylation and intergenic CpG

methylation showed a different pattern: apart from being

more hypermethylated, they were also more variable

across individuals with a higher degree of heritable

sequence dependency. The exact biological role of this

phenomenon remains unclear and warrants continued

investigation. Finally, we show evidence that the presence

of functional relevant hypomethylated regions mapping

to regulatory elements specific to adipose tissue plays a
The American
key role in adipose-dependent gene regulation and meta-

bolic-disease susceptibility. These regions are, however,

only sparsely covered by the 450K array, and together

with the small fraction of methylation variation accessible

through this targeted array, our data highlight the need for

more comprehensive and unbiased disease-tailored studies

of CpG variation in the future.
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14. Joubert, B.R., Håberg, S.E., Nilsen, R.M., Wang, X., Vollset,

S.E., Murphy, S.K., Huang, Z., Hoyo, C., Midttun, O., Cupul-

Uicab, L.A., et al. (2012). 450K epigenome-wide scan identifies

differential DNAmethylation in newborns related tomaternal

smoking during pregnancy. Environ. Health Perspect. 120,

1425–1431.

15. Breitling, L.P., Yang, R., Korn, B., Burwinkel, B., and Brenner,

H. (2011). Tobacco-smoking-related differential DNA methyl-

ation: 27K discovery and replication. Am. J. Hum. Genet. 88,

450–457.

16. Kerkel, K., Spadola, A., Yuan, E., Kosek, J., Jiang, L., Hod, E., Li,

K., Murty, V.V., Schupf, N., Vilain, E., et al. (2008). Genomic

surveys by methylation-sensitive SNP analysis identify

sequence-dependent allele-specific DNA methylation. Nat.

Genet. 40, 904–908.

17. Gibbs, J.R., van der Brug, M.P., Hernandez, D.G., Traynor, B.J.,

Nalls, M.A., Lai, S.L., Arepalli, S., Dillman, A., Rafferty, I.P.,

Troncoso, J., et al. (2010). Abundant quantitative trait loci

exist for DNA methylation and gene expression in human

brain. PLoS Genet. 6, e1000952.

18. Bell, J.T., Pai, A.A., Pickrell, J.K., Gaffney, D.J., Pique-Regi, R.,

Degner, J.F., Gilad, Y., and Pritchard, J.K. (2011). DNAmethyl-

ation patterns associate with genetic and gene expression vari-

ation in HapMap cell lines. Genome Biol. 12, R10.

19. Drong, A.W., Nicholson, G., Hedman, A.K., Meduri, E.,

Grundberg, E., Small, K.S., Shin, S.Y., Bell, J.T., Karpe, F.,

Soranzo, N., et al.; MolPAGE Consortia. (2013). The presence

of methylation quantitative trait loci indicates a direct genetic

influence on the level of DNA methylation in adipose tissue.

PLoS ONE 8, e55923.

20. Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V.K., Attwood, J.,

Burger, M., Burton, J., Cox, T.V., Davies, R., Down, T.A.,

et al. (2006). DNA methylation profiling of human chromo-

somes 6, 20 and 22. Nat. Genet. 38, 1378–1385.

21. Irizarry, R.A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C.,

Onyango, P., Cui, H., Gabo, K., Rongione, M., Webster, M.,
er 7, 2013

http://www.sanger.ac.uk/resources/software/genevar/
http://www.sanger.ac.uk/resources/software/genevar/
http://www.muther.ac.uk
http://www.muther.ac.uk
http://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/
http://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/
http://www.omim.org


et al. (2009). The human colon cancer methylome shows

similar hypo- and hypermethylation at conserved tissue-

specific CpG island shores. Nat. Genet. 41, 178–186.

22. Bibikova, M., Barnes, B., Tsan, C., Ho, V., Klotzle, B., Le, J.M.,

Delano, D., Zhang, L., Schroth, G.P., Gunderson, K.L., et al.

(2011). High density DNA methylation array with single

CpG site resolution. Genomics 98, 288–295.

23. Chadwick, L.H. (2012). The NIH Roadmap Epigenomics

Program data resource. Epigenomics 4, 317–324.

24. Spector, T.D., and Williams, F.M. (2006). The UK Adult Twin

Registry (TwinsUK). Twin Res. Hum. Genet. 9, 899–906.

25. R Development Core Team. (2010). R: A language and envi-

ronment for statistical computing (Vienna: R Foundation for

Statistical Computing), ISBN 3-900051-07-0. http://www.

R-project.org.

26. Kent, W.J. (2002). BLAT—the BLAST-like alignment tool.

Genome Res. 12, 656–664.

27. Abecasis, G.R., Altshuler, D., Auton, A., Brooks, L.D., Durbin,

R.M., Gibbs, R.A., Hurles, M.E., and McVean, G.A.; 1000

Genomes Project Consortium. (2010). A map of human

genome variation from population-scale sequencing. Nature

467, 1061–1073.

28. Bates, D., Maechler, M., Bolker, B. (2011). lme4: linear mixed-

effects models using S4 classes, http://lme4.r-forge.r-project.

org/.

29. Storey, J.D., and Tibshirani, R. (2003). Statistical significance

for genomewide studies. Proc. Natl. Acad. Sci. USA 100,

9440–9445.

30. Visscher, P.M., Benyamin, B., and White, I. (2004). The use of

linear mixed models to estimate variance components from

data on twin pairs by maximum likelihood. Twin Res. 7,

670–674.

31. Teo, Y.Y., Inouye, M., Small, K.S., Gwilliam, R., Deloukas, P.,

Kwiatkowski, D.P., and Clark, T.G. (2007). A genotype calling

algorithm for the Illumina BeadArray platform. Bioinformat-

ics 23, 2741–2746.

32. Small, K.S., Hedman, A.K., Grundberg, E., Nica, A.C., Thor-

leifsson, G., Kong, A., Thorsteindottir, U., Shin, S.Y., Richards,

H.B., Soranzo, N., et al.; GIANT Consortium; MAGIC Investi-

gators; DIAGRAMConsortium; MuTHER Consortium. (2011).

Identification of an imprinted master trans regulator at the

KLF14 locus related to multiple metabolic phenotypes. Nat.

Genet. 43, 561–564.

33. Howie, B.N., Donnelly, P., and Marchini, J. (2009). A flexible

and accurate genotype imputationmethod for the next gener-

ation of genome-wide association studies. PLoS Genet. 5,

e1000529.

34. Aulchenko, Y.S., Ripke, S., Isaacs, A., and van Duijn, C.M.

(2007). GenABEL: an R library for genome-wide association

analysis. Bioinformatics 23, 1294–1296.

35. Aulchenko, Y.S., Struchalin, M.V., and vanDuijn, C.M. (2010).

ProbABEL package for genome-wide association analysis of

imputed data. BMC Bioinformatics 11, 134.

36. Chen, W.M., and Abecasis, G.R. (2007). Family-based associa-

tion tests for genomewide association scans. Am. J. Hum.

Genet. 81, 913–926.

37. Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Madden, P.A.,

Heath, A.C., Martin, N.G., Montgomery, G.W.,Weedon,M.N.,

Loos, R.J., et al.; Genetic Investigation of ANthropometric

Traits (GIANT) Consortium; DIAbetes Genetics Replication

And Meta-analysis (DIAGRAM) Consortium. (2012). Condi-

tional and joint multiple-SNP analysis of GWAS summary
The American
statistics identifies additional variants influencing complex

traits. Nat. Genet. 44, 369–375, S1–S3.

38. Shen, Y., Yue, F., McCleary, D.F., Ye, Z., Edsall, L., Kuan, S.,

Wagner, U., Dixon, J., Lee, L., Lobanenkov, V.V., and Ren, B.

(2012). A map of the cis-regulatory sequences in the mouse

genome. Nature 488, 116–120.

39. Johnson,M.D.,Mueller, M., Game, L., and Aitman, T.J. (2012).

Single nucleotide analysis of cytosine methylation by whole-

genome shotgun bisulphite sequencing. Curr. Protoc. Mol.

Biol. Chapter 21, 23.

40. Bibikova, M., Le, J., Barnes, B., Saedinia-Melnyk, S., Zhou, L.,

Shen, R., and Gunderson, K.L. (2009). Genome-wide DNA

methylation profiling using Infinium� assay. Epigenomics

1, 177–200.

41. Doi, A., Park, I.H., Wen, B., Murakami, P., Aryee, M.J., Irizarry,

R., Herb, B., Ladd-Acosta, C., Rho, J., Loewer, S., et al. (2009).

Differential methylation of tissue- and cancer-specific CpG

island shores distinguishes human induced pluripotent stem

cells, embryonic stem cells and fibroblasts. Nat. Genet. 41,

1350–1353.

42. Zhang, Y., Rohde, C., Tierling, S., Jurkowski, T.P., Bock, C.,

Santacruz, D., Ragozin, S., Reinhardt, R., Groth, M., Walter,

J., and Jeltsch, A. (2009). DNA methylation analysis of chro-

mosome 21 gene promoters at single base pair and single allele

resolution. PLoS Genet. 5, e1000438.

43. Laurent, L., Wong, E., Li, G., Huynh, T., Tsirigos, A., Ong, C.T.,

Low, H.M., Kin Sung, K.W., Rigoutsos, I., Loring, J., and Wei,

C.L. (2010). Dynamic changes in the human methylome

during differentiation. Genome Res. 20, 320–331.

44. Ball, M.P., Li, J.B., Gao, Y., Lee, J.H., LeProust, E.M., Park, I.H.,

Xie, B., Daley, G.Q., and Church, G.M. (2009). Targeted and

genome-scale strategies reveal gene-body methylation signa-

tures in human cells. Nat. Biotechnol. 27, 361–368.

45. Jjingo, D., Conley, A.B., Yi, S.V., Lunyak, V.V., and Jordan, I.K.

(2012). On the presence and role of human gene-body DNA

methylation. Oncotarget 3, 462–474.

46. Rada-Iglesias, A., Ameur, A., Kapranov, P., Enroth, S., Komor-

owski, J., Gingeras, T.R., and Wadelius, C. (2008). Whole-

genome maps of USF1 and USF2 binding and histone H3

acetylation reveal new aspects of promoter structure and

candidate genes for common human disorders. Genome Res.

18, 380–392.

47. Shoulders, C.C., and Naoumova, R.P. (2004). USF1 implicated

in the aetiology of familial combined hyperlipidaemia and the

metabolic syndrome. Trends Mol. Med. 10, 362–365.

48. Heintzman, N.D., Hon, G.C., Hawkins, R.D., Kheradpour, P.,

Stark, A., Harp, L.F., Ye, Z., Lee, L.K., Stuart, R.K., Ching,

C.W., et al. (2009). Histone modifications at human

enhancers reflect global cell-type-specific gene expression.

Nature 459, 108–112.

49. Speliotes, E.K., Willer, C.J., Berndt, S.I., Monda, K.L., Thorleifs-

son, G., Jackson, A.U., Lango Allen, H., Lindgren, C.M., Luan,
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