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A fast nonlinear regression method for estimating permeability
in CT perfusion imaging
Edwin Bennink, Alan J Riordan, Alexander D Horsch, Jan Willem Dankbaar, Birgitta K Velthuis and Hugo W de Jong

Blood–brain barrier damage, which can be quantified by measuring vascular permeability, is a potential predictor for hemorrhagic
transformation in acute ischemic stroke. Permeability is commonly estimated by applying Patlak analysis to computed tomography
(CT) perfusion data, but this method lacks precision. Applying more elaborate kinetic models by means of nonlinear regression
(NLR) may improve precision, but is more time consuming and therefore less appropriate in an acute stroke setting. We propose a
simplified NLR method that may be faster and still precise enough for clinical use. The aim of this study is to evaluate the reliability
of in total 12 variations of Patlak analysis and NLR methods, including the simplified NLR method. Confidence intervals for the
permeability estimates were evaluated using simulated CT attenuation–time curves with realistic noise, and clinical data from
20 patients. Although fixating the blood volume improved Patlak analysis, the NLR methods yielded significantly more reliable
estimates, but took up to 12� longer to calculate. The simplified NLR method was B4� faster than other NLR methods, while
maintaining the same confidence intervals (CIs). In conclusion, the simplified NLR method is a new, reliable way to estimate
permeability in stroke, fast enough for clinical application in an acute stroke setting.
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INTRODUCTION
Computed tomography (CT) perfusion (CTP) imaging, or dynamic
contrast enhanced CT, is frequently used for the evaluation of
acute stroke.

It has previously been hypothesized that blood–brain barrier
damage is a predictor for hemorrhagic transformation in acute
stroke.1–3 With CTP imaging, blood–brain barrier damage can be
quantified by measuring vascular permeability. Along with other
perfusion parameters, including cerebral blood volume (CBV) and
flow (CBF), vascular permeability is a tissue property that can be
estimated by comparing tissue attenuation–time curves with the
curve of a reference artery or arterial input function (AIF). While
CBF and CBV can be measured by imaging the first-pass bolus
passage, leakage of contrast agent to the extravascular space is a
slower process, only discernible in a delayed phase, and therefore
requiring longer scan times. In stroke imaging, permeability is
most frequently estimated using linearized regression, that is, by
graphical analysis of a Patlak plot.1,3–6 This technique transforms
the data in the attenuation–time curves so that, in case of
irreversible leakage, the data points lie on a straight line when the
capillary tracer concentration reaches steady state. The perme-
ability transfer constant Ktrans is the slope of this line, and the
relative blood volume is the intersection with the y axis. Patlak
analysis is used in, e.g., Extended Brilliance Workspace 4.5 (Philips
Healthcare, Best, The Netherlands), syngo Volume Perfusion-CT
Neuro 2010 (Siemens Healthcare, Erlangen, Germany), and Vitrea
fX 6.4 (Toshiba Medical Systems, Otawara-shi, Japan).

The Patlak method is preferred in the acute stroke setting,
because it is fast, despite some inherent drawbacks. First, due to
the linearized regression, only the steady-state data points, that is,

the last part of the scan, can be used. The estimated values are
therefore dependent on the definition of the onset of this steady
state, and potentially useful information in the first part of the
signal is disregarded. Second, linear least-squares regression
assumes that the errors on the samples are normally distributed.
For linearized data, this is not the case and therefore the result will
not be an optimal least-squares fit.7 Third, other parameters, such
as the CBV and CBF, are estimated using a different method, which
usually includes Gaussian or gamma variate curve fits, or a
regularized inverse filter.8 Because two different methods are used
for estimating parameters that essentially describe the same tissue
model, the results may disagree. For example, the CBV, which
should measure the intravascular volume only, may be
overestimated by methods that do not take into account the
additional extravascular distribution volume due to increased
permeability of the blood–brain barrier.9,10

As an alternative to the Patlak method, the use of a tissue
perfusion model applied with nonlinear regression (NLR) uses the
full length of the attenuation–time curves, does not transform the
measurement errors, and allows for a simultaneous measurement
of all perfusion parameters. For these reasons, NLR methods may
provide a superior alternative to the use of Patlak plots in stroke
imaging.2,11,12 However, NLR methods rely on iterative algorithms
that are relatively time consuming. A rapid diagnosis is crucial for
treatment of acute stroke; and therefore, these methods may not
be practical in an acute stroke setting.

The purpose of this study was to compare the reliability and
computation time of permeability estimation using various
implementations of the Patlak method and NLR methods using
clinical and simulated data. In addition, a novel simplified NLR
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method is proposed as a faster potential alternative to existing
NLR methods.

MATERIALS AND METHODS
This section first describes a first-pass bolus model that is required for the
calculation of some of the Patlak methods. Second, details are provided for
the theory and technical implementation of different Patlak and NLR
methods. Third, a novel method for NLR, based on the adiabatic
approximation to the tissue homogeneity (TH) (AATH) model,13 is
introduced. Table 1 summarizes all in this study included methods for
estimating permeability. Finally, methods for evaluating the models’
reliability of estimating Ktrans in both simulated data and clinical CTP scans
are presented.

First-Pass Bolus Fitting
Some implementations of the Patlak plot (described below) require
estimates of the CBV and time-to-peak (TTP). To obtain these values, and
estimates for the CBF and mean transit time (MTT), the attenuation–time
curves can be analyzed using a broad range of methods. Despite that more
sophisticated methods exist for estimating the CBF and MTT, this study
uses gamma variate curve fitting of the first-pass bolus for obtaining the
CBV and TTP, because the variability in outcome between the methods for
estimating these parameters was found to be very small.8

A gamma variate fit gives a robust estimate of the area under the curve
(AUC) and TTP of the first-pass bolus in the attenuation–time curve.14–16

Subsequently, the CBV can be estimated by dividing the AUC of the tissue
curve by the AUC of the AIF.10 The bolus arrival time (BAT), which is in this
study used to define the start of contrast enhancement, is defined as the
0.05% quantile of the gamma variate fit (Figure 1B).

Patlak Linearized Regression
An underlying assumption of Patlak analysis is that the vascular leakage is
irreversible during the acquisition time. In that case, the total tracer
concentration in the tissue, Ct(t), can be described as a function of the
capillary concentration Cc(t), the intravascular blood volume Vi, and a
transfer constant Ktrans that represents the flow from the intravascular to
the extravascular space:

CtðtÞ¼ K trans
Zt

0

CcðtÞdtþ Vi CcðtÞ

If both sides of the equation are divided by Cc(t), then a parametric
relationship is found that should be linear when the capillary

concentration reaches a steady state:

yðtÞ¼ CtðtÞ
CcðtÞ

¼ K transxðtÞþ Vi ð1Þ

xðtÞ¼

Rt
0

CcðtÞdt

CcðtÞ
Equation 1 shows that when a linear fit y(t)¼ ax(t)þ b is applied to the

Patlak plot of the delayed phase3 of the attenuation–time curves, the slope
of the fit (a) and its intersection with the y axis (b) give an estimation of the
transfer constant Ktrans and the blood volume Vi, respectively.

The onset of the delayed phase, in which steady state is reached, is in this
study empirically defined as the arterial TTP plus 3.5� the standard
deviation of the first-pass bolus, measured using a gamma variate curve fit
as described above. This is a reliable method, because gamma variate fits
give a robust estimate of the width and position of the first-pass bolus peak.

Patlak Analysis with a Fixed Offset. The blood volume can be read from
the Patlak plot (Equation 1). Alternatively, if an estimate of Vi is available
from, e.g., first-pass bolus analysis, then Ktrans can be estimated more
robustly, using the prior estimated CBV as a fixed offset.17

For comparison, both the ‘standard’ and the ‘fixed’ Patlak methods are
examined (Table 1).

Patlak Analysis with Delay Correction. In CTP imaging, the arterial
concentration Ca(t) rather than the capillary concentration Cc(t) is measured
to solve Equation 1. In comparison with Ca(t), the average capillary tracer
concentration can be affected by an arterial delay and the transit time in the
tissue. Schneider et al18 suggested correcting for such a delay by incorporating
the difference in TTP between the tissue curve and the AIF, dTTP, taken from
gamma variate curve fits to the first-pass bolus, into Equation 1:

yðtÞ¼ CtðtÞ
Ccðt� dTTPÞ

xðtÞ¼

Rt� dTTP

0
CcðtÞdt

Ccðt� dTTPÞ

In line with this, both the ‘standard’ and ‘fixed’ Patlak methods are also
extended with a delay correction (Table 1). The gamma variate fits to the AIF
and tissue curves provide a robust estimate of the TTP values if the leakage is
small.

Nonlinear Regression
A Perfusion Model for Nonlinear Regression. Tissue perfusion is frequently
modeled as a linear time-invariant system. Under that assumption the
dynamics of the tracer concentration in the tissue can be described as the
convolution of the AIF with a characteristic impulse response function (IRF).
An IRF can be thought of the attenuation–time curve of a small tissue
volume in response to an infinitesimal short AIF.

The NLR technique in this study uses a mathematical tissue response
model to describe the IRF. The convolution of the measured AIF with a
computed IRF gives an estimate of the true attenuation–time curve of the
tissue volume. Non-linear regression is used to iteratively adapt any of the
parameters in the mathematical model, such as the blood volume and
transit time, to minimize the error between this estimate and the
measured attenuation–time curve.

Sawada et al19 and Sourbron and Buckley12 found that the detailed TH
model, describing the blood flow using a complex set of differential
equations,20 fitted the physiology of the brain the best, because of the
high density and tortuous nature of the brain capillary network. The full TH
model, however, lacks a closed-form time domain solution. Lawrence and
Lee13 noticed that, because the contrast agent concentration in the
extravascular space changes slowly relative to that in the intravascular
space, the IRF of the TH model can be very well approximated by a box
function followed by an exponential decay. In this AATH, a box function
with a width of tt seconds (the transit time) represents the vascular phase,
and an exponential decay represents the parenchymal tissue phase:

QAATHðtÞ¼ Fð1�Uðt� ttÞÞþ K transUðt� ttÞe�
Ktrans

Ve
ðt� ttÞ ð2Þ

In Equation 2, U(t) is the unit step function, F is the plasma flow, and Ve

is the extravascular distribution volume. Note that the intravascular

Table 1. An overview of the studied methods and their free and fixed
parameters, according to Equation 5

Method
Free

parameters Vi tm Ktrans Ve tD

Patlak 2 | 0 | N 0
Patlakþdelay 3 | 0 | N |a

Patlak fixed 2 |a 0 | N 0
Patlak
fixedþdelay

3 |a 0 | N |a

AATH 4 | | | | 0
AATHþdelay 5 | | | | |
NLR 3 | | | N 0
NLRþdelay 4 | | | N |
NLRþVe 4 | | | | 0
NLRþVeþdelay 5 | | | | |
Simpl. NLR 3 | | | N 0
Simpl.
NLRþdelay

4 | | | N |

Abbreviations: AATH, adiabatic approximation to the tissue homogeneity;
NLR, nonlinear regression.
tm, 0 means that the method does not account for a transit time, Ve, N
assumes irreversible leakage, and tD, 0 indicates a delay-sensitive method.
aEstimated using gamma variate curve fitting.
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distribution volume Vi (the CBV) equals tt� F. Because this model gives
estimates for tt and F as opposed to models that only estimate Vi, this type
of model is often referred to as a ‘distributed parameter’ model, in contrast
to ‘lumped parameter’ models like the extended Tofts model.21

The AATH model describes the tracer concentration dynamics in a small
volume containing a single capillary vessel with a uniform (plug) flow. In
reality, however, brain tissue is heterogeneous and even a small volume
contains capillaries with variable lengths. This heterogeneity causes a small
tissue volume to have a distribution of transit times P(tt;tm), rather than one
unique transit time tt. tm is known as the mean transit time, or MTT. When
this distribution is taken into account, the full model that is used in this
study becomes:

Qðt; tmÞ¼
Z1

0

QAATHðt; ttÞPðtt ; tmÞdtt ð3Þ

In this equation, QAATH(t;tt) is the IRF of the AATH model for a unique
transit time tt and P(tt;tm) is the probability distribution of transit times for tm.

Bredno et al22 found, using highly detailed simulations, that an
exponential decay with a delay of a� tm is a good approximation for
P(tt;tm) in case a¼ 0.632. The equation for this distribution can be written as:

Pðtt tmÞ¼ kt UðuÞe� kt u;with u¼ tt � atm and kt ¼
1

ð1� aÞtm
ð4Þ

Solving the model assumes knowledge about the capillary concentration.
In practice, due to resolution and noise limits, the AIF is measured in a large
artery, often located away from the tissue of interest, so extra travel time for
the contrast to arrive in the tissue needs to be accounted for. This is

particularly important in the study of tissue regions that are fed through
collateral routes. It has been shown that the performance of other
deconvolution methods is improved by making them delay insensitive.23,24

This can be performed by introducing an additional parameter for the delay,
tD. In the rare case that a collateral artery is chosen for the AIF, tD could even
be negative at the contralateral side. By substituting Equations 2 and 4 into
Equation 3, and introducing tD, the following solution is obtained:

QðtÞ¼ FðUðt� tDÞ�UðuÞÞþ FUðuÞðð1� pÞe� kt u þ pe� kp uÞ;with;

u¼ t� tD� atm; kp ¼
EF
Ve
; kt ¼

1
ð1� aÞtm

; and p¼ E
1� kp=kt

ð5Þ

The parameter E (0pEp1) in this equation is the fraction of the flow that
leaks into the extravascular space, i.e., Ktrans equals E� F.

The AATH model (Equation 2), and also the tracer kinetic models used by
Larson et al,25 are subclasses of Q(t) in which a approximates 1 and tD¼ 0.
The extended Tofts model, frequently used in the analysis of dynamic
contrast enhanced magnetic resonance images, reduces complexity by
combining the flow and transit time into a single variable for the blood
volume (a lumped parameter), requiring that tm approximates 0 and tD¼ 0.
The IRF for the standard Patlak model,4 i.e., assuming irreversible leakage,
would require that tm approximates 0, tD¼ 0 and Ve¼N.

Simplified Nonlinear Regression. Nonlinear regression with five unknown
variables is a computational intensive task. Bottlenecks involve the
calculation of exponentials, divisions, and a convolution operation in each
iteration.

However, the computational complexity is highly reduced by two
simplifications to Q(t). Assuming that a approximates 1 and Ve¼N, the
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Figure 1. An overview of the arterial input function (AIF), and simulated impulse response functions (IRFs) and tissue attenuation–time curves.
(A) The full measured AIF. (B) The first 50 seconds of the AIF showing the bolus arrival time (BAT) and time-to-peak (TTP), estimated using a
gamma variate fit. (C) The default AATH IRF with a mean transit time (MTT) of 12 seconds, a cerebral blood flow (CBF) of 15mL/min per 100 g,
and irreversible leakage with a Ktrans of 0.5mL/min per 100 g. (D) A simulated tissue attenuation–time curve, created by convolving the
measured AIF (A) with the calculated IRF (C), and adding Gaussian noise with a standard deviation of 1 HU (dots). (E) An example of Q(t) for
Vi¼ 5mL/100 g, tm¼ 5 seconds, tD¼ 0 second, and no leakage (solid line), and Q(t) for Vi¼ 3mL/100 g, tm¼ 12 seconds, tD¼ 3 seconds, and
reversible leakage with Ktrans¼ 5mL/min per 100 g, and Ve¼ 10mL/100 g (dashed line). (F) Simulated tissue attenuation–time curves, created
by convolving the measured AIF (A) with the IRFs in (E). AATH, adiabatic approximation to the tissue homogeneity; HU, hounsfield units.
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two exponentials can be reduced to0 and 1, respectively, and Q(t) can be
written as the sum of two step functions:

QSðtÞ¼ lim
a!1� ;Ve!1

QðtÞ¼ FUðt� tDÞ� ð1� EÞFUðt� tD� ttÞ

What is even more important, is that it is now no longer necessary to
apply a convolution in each iteration. The convolution of Ca(t) (the AIF)
with a shifted unit step function U(t� tD) equals:

Zt

�1

CaðtÞUðt� tD� tÞdt¼
Zt� tD

0

CaðtÞdt;8tXtD

The integral of Ca(t) just needs to be calculated once, and the
convolution of the Ca(t) with QS(t) can be reduced to two interpolations
into this integral, at t-tD and t-tD-tt, respectively.

This simplified version of Q(t) can be used to give estimates of tm (or
MTT), F, Ktrans, and tD that would be found if the full model was used. These
estimates are also used as initial parameters to initialize fitting the full
model.

Model Variations
A total of 12 different methods were compared. Both Patlak and the NLR
methods include parameters that are either free for estimation or fixed to a
predefined value. The full tissue response model Q(t) (Equation 5) has five
perfusion parameters, Vi, tm, Ktrans, Ve, and tD. Table 1 gives an overview of
all methods and parameters. The initial values for NLR were Vi¼ 4 mL/
100 g, tm¼ 4 seconds, Ktrans¼ 1.5 mL/min per 100 g, Ve¼ 20 mL/100 g, and
tD¼ 1 second, and the initial step sizes were2 mL/100 g, 5 seconds, 1.5 mL/
min per 100 g, 25 mL/100 g, and 2 seconds, respectively. The initial
parameters for the full NLR model are optimized by first applying the
simplified NLR model. For all NLR methods, a generic Nelder-Mead
downhill simplex method26,27 with linear constraints was used for
optimization.

If global optima are found, which is not guaranteed, then increasing the
number of free parameters will result in a better fit (a higher R2), but as a
counter-effect it may decrease the reliability of the estimated values. In
other words, adding complexity to a model may not necessarily improve
the results.

All methods were implemented in a similar manner in C routines that are
accessible in Matlab (version 2011b, The MathWorks Inc., Natick, MA, USA)
through the Matlab MEX programming interface.

Simulations were applied to gain insight in the response of the models
to noise and varying perfusion parameters, and CT brain perfusion scans
were analyzed to estimate the reliability of the measured permeability in
clinical practice.

Simulated Data
To evaluate in a setting with controlled noise levels and perfusion
parameters, tissue attenuation–time curves were simulated by convolving
a measured AIF with a generated IRF, and adding Gaussian noise. An AIF
(Figure 1A) was extracted from a clinical CTP brain scan as described
below.

The AATH model20,13 (Equation 2) was used to generate the IRFs,
because the TH model is thought to match the physiology of the brain
better than other published models.19,12 The blood flow F was kept
constant at a rate of 15 mL/min per 100 g, which is comparable to an
ischemic penumbra,28 and the leakage was assumed to be irreversible.

The noise level, Ktrans, tm, and delay were varied between the
simulations. Four sets of simulations were made. The first is a series of
Monte Carlo simulations in which the Ktrans was randomized between 0
and 2 mL/min per 100 g, the tm between 4 and 20 seconds, and the delay
between 0 and 5 seconds. In all, 1,000 random simulations were made at
noise levels of 0.5, 1.0, and 2.0 Hounsfield units (HU) (s.d.).

In the remaining three sets, one out of three parameters was varied
while the others were fixed to 1 HU for the noise level, 0.5 mL/min per
100 g for the Ktrans, 12 seconds for the tm. The delay was fixed to 0 second.
In the second set, only the standard deviation of the noise was varied
between 0 and 2 HU, in the third set only the Ktrans was varied between 0
and 2 mL/min per 100 g, and in the fourth set only tm was varied between
4 and 20 seconds.

The simulated attenuation curves were analyzed using all methods listed
in Table 1, while keeping track of the mean, standard error, and average
approximate standard error of the estimated Ktrans values.

Figures 1A, 1C, and 1D give an overview of the measured AIF, and the
default IRF, and attenuation–time curve. Both the IRF and the AIF were
band limited using a Bartlett kernel (triangular) with a full width at half
maximum of 4 seconds. Figures 1E and 1F show how the shape of Q(t)
(Equation 5) and the resulting attenuation curves change with different
parameters.

Computed Tomography Brain Perfusion Scans
Data Acquisition. The CTP scans of 20 acute ischemic stroke patients that
participated in the Dutch Acute Stroke Trial (NCT00880113) were included
(chronological order). Dutch Acute Stroke Trial is large prospective
multicenter observational cohort study, approved by the institutional
medical ethics committee (METC), and in accordance with the Good
Clinical Practice guidelines as provided by the International Conference on
Harmonisation (ICH-GCP) and Dutch act on medical research involving
human subjects (WMO).

For CTP, 40 mL of nonionic contrast agent (Iopromide, Ultravist, 300 mg/
mL iodine; Bayer HealthCare Pharmaceuticals, Berlin, Germany) was
injected intravenously at a rate of 6 mL/s followed by a 40-mL saline flush
at a rate of 6 mL/s. The scans were acquired using a Philips Brilliance iCT
scanner (Philips Healthcare) at 80 kVp and 150 mAs/rot and a field-of-view
of B200� 200 mm2 with an axial coverage of 65 mm at most. The total
acquisition time was 210 seconds, divided into 25 frames with a 2-second
interval, followed by 6 frames with a 30-second interval (Figure 1A). The
scans were reconstructed in a 512� 512 matrix with filtered back-
projection and a Philips UB filter.

Preprocessing. The open source registration toolbox Elastix29 was used to
register the original, 3D high-resolution CTP data (voxel size
0.39� 0.39� 0.83 mm3) to the first time frame. Next, slabs of six adjacent
registered slices were averaged to obtain 8 to 13 slabs of 5 mm per volume.

Noise reduction is crucial in CTP analysis. Because of the limited radiation
dose, the unfiltered scans have a very low signal-to-noise ratio, especially in
the areas with low perfusion where blood–brain barrier damage is to be
expected. Sophisticated noise filtering, where e.g. temporal information is
used to adapt the filter kernel to its spatial neighborhood, is therefore
desirable.

A temporal Gaussian filter with a standard deviation of 4 seconds,
followed by a 3D bilateral filter (the time-intensity profile similarity filter, or
TIPS)30 with a spatial standard deviation (sd) of 4 mm and a profile-similarity
standard deviation (sz) of 50 HU2 were applied to reduce the noise with a
minimum loss of resolution.

Arterial Input Function. The AIF was semiautomatically selected either in
an internal carotid or in the basilar artery by drawing a circular region of
interest in which the attenuation curve with the highest enhancement was
chosen. To correct the AUC of the AIF for partial volume effect, a venous
output function was in the same way semiautomatically selected in a great
sinus perpendicular to the slices,31 which is in line with the clinical scan
protocol. A gamma variate curve was fitted to both the AIF and venous
output function to estimate their AUCs, the arterial BAT, and the steady-
state concentration time (see First-Pass Bolus Fitting section).

Postprocessing. Only the voxels that were classified as penumbra (tissue
at risk) were used for statistical analysis. This was performed because the
signal-to-noise ratio of the attenuation–time curves in the infarct
(irreversible ischemia) is low, which might hamper reliable measurements.
The Ktrans in the remainder of the brain (healthy tissue) should in theory be
nearly zero.

To extract the penumbra and exclude vessels, tissue types in the brain
were segmented based on the CT values in the first frames of the filtered
scan, before the BAT. By removing voxels with a CT value of o17 HU or
455 HU (unenhanced), air, fat, and bone are excluded from the analysis,
while gray and white matter remain. Within the brain tissue, the infarct and
penumbra were defined based on the CBV and relative MTT that were
estimated by the simplified NLR method.

To calculate the relative MTT, a symmetry plane was manually drawn to
separate the hemispheres. The original MTT map is mirrored over this
plane and blurred by a 3D Gaussian kernel with a standard deviation of
3 mm. The relative MTT values are found by dividing the original MTT map
by the mirrored, blurred map.
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Wintermark et al32 found that the CBV most accurately describes the
infarct, with an optimal threshold of 2.0 mL/100 g, and that the relative
MTT most accurately describes the penumbra, with an optimal threshold of
145% and the infarct excluded. A CBV threshold of 9 mL/100 g was used to
exclude vessels.

A correction factor kH¼ (1�HLV)/(1�HSV) was applied to correct the
tracer concentration for the difference between the hematocrit in large
vessels (AIF) and small vessels (arterioles and capillaries).10 The values used
for HLV and HSV are 0.45 and 0.25, respectively.33 This correction affects all
perfusion parameters that scale with the plasma concentration, i.e., the
CBV, CBF, Ktrans, and Ve.

Statistical Analysis. Besides the Ktrans estimate itself, the approximate
standard error on the estimated Ktrans for each method was calculated in all
voxels. In all, 95% confidence intervals (CIs) were calculated by applying
Student’s t-distribution to these standard errors. Average CIs are more
suitable for estimating the reliability than the standard deviation for two
reasons. First, the standard deviation might represent a true variability
instead of an error, which is what we like to measure. Second, the standard
deviation might be biased due to constraints to the estimated parameter,
i.e., Ktrans cannot be negative, nor can it be larger than the flow.

The estimated values and CIs in the penumbra regions were averaged
per patient and a Wilcoxon signed-rank test was applied to each pair of
methods to test if the differences between the methods were significant
(Po0.001).

RESULTS
Simulated Data
Figure 2A shows the standard error on the Ktrans estimates in the
Monte Carlo simulations for each method and at different noise
levels. Figures 2B to 2G show graphs of the average Ktrans

estimates and CIs versus the varied input parameters (noise level,
Ktrans, and tm). A narrower CI indicates a more reliable estimate.
The results for the six delay corrected methods (Table 1) were very
similar to the uncorrected methods, and for that reason the results
for the delay corrected methods are not shown to make the
graphs more readable. The NLR and simplified NLR methods
showed very similar results, which caused these lines to overlap in
all of the plots.

Because the steady-state time was defined as the TTP plus 3.5�
the standard deviation of the first-pass bolus, 9 time frames were
included for Patlak analysis.

The results showed that noise gives a positive bias to the
average Ktrans estimates (Figure 2B), affecting the standard Patlak,
AATH, and NLRþ Ve the most. Figure 2D shows that, at the default
noise level of 1.0 HU, all methods had a positive bias for small
Ktrans values, while the methods that assume irreversible leakage
(Ve¼N) gave unbiased estimates for larger Ktrans values. The bias
for the methods that assume reversible leakage (AATH and NLRþ
Ve) is also reflected in the high standard errors in Figure 2A.
Figure 2F shows that the average Ktrans is not affected by the MTT
for transit times shorter than 12 seconds. For long transit times,
the AATH and NLRþ Ve methods overestimated the Ktrans, while
the standard Patlak method returned underestimated Ktrans values.

In all cases with noise, the NLR methods with irreversible
leakage were found to have the smallest CIs, while the standard
Patlak method had the largest CI, implying that it is least reliable
(Figures 2C, 2E, and 2G). All methods gave estimates of which the
width of the CI scaled linearly with the noise level (Figure 2C).
Figure 2E shows that the confidence of the estimation did not
scale with the Ktrans for the methods that assume irreversible
leakage (Ve¼N). The methods that assume reversible leakage,
AATH and NLRþ Ve, showed an increased CI for Ktrans values in the
order of 1 mL/min per 100 g. For Ktrans values higher than 2 mL/
min per 100 g (not shown in the graph), however, the CI of these
methods decreases again to reach a steady state of 0.4 mL/min
per 100 g at a Ktrans of 10 mL/min per 100 g, while CIs of the other
methods are unaffected. In line with Figure 2F, Figure 2G shows
that the average CI was not affected by the MTT for transit times

shorter than 12 seconds. For long transit times, the AATH, NLRþ
Ve, and standard Patlak methods showed an increased CI.

Computed Tomography Brain Perfusion Scans
The Ktrans and CI maps for Ktrans were generated for 20 CTP scans
(Figure 3).

There was a large variance in Ktrans and CI between the patients
(Table 2), but the Wilcoxon signed-rank tests (Table 3) showed that
the average CIs were significantly different between most
methods that assume irreversible leakage.

Because the steady-state time for Patlak analysis was defined as
the TTP plus 3.5� the standard deviation of the first-pass bolus,
on average 9 time frames were included for Patlak analysis.

Figure 4A, and Table 2 together with Table 3 show that the Ktrans

values that are estimated using the NLR methods with irreversible
leakage (Ve¼N) were significantly more reliable than the Patlak
methods. The introduction of reversible leakage, as in the AATH
method and NLRþ Ve, more than doubled the width of the CI of
the estimation. The difference in reliability between the full and
simplified NLR methods was found to be very small.

Figure 4A also shows that fixating the CBV significantly
improved the reliability of the Patlak estimates.

The delay correction had a minor effect on the CIs. With P values
higher than 0.001, the CIs of the standard Patlak, AATH, NLR,
NLRþ Ve, and simplified NLR methods were not significantly
different from the delay corrected versions. The delay corrected
CBV-fixed Patlak method performed slightly but significantly
worse than its delay-sensitive version (Po0.001).

Also, the MTT distribution parameter a had a minor effect. The
CI of the NLRþ Ve method (a¼ 0.632) was not significantly
different from the interval of the AATH method (a¼ 1). The CIs of
the simplified NLR and simplified NLRþdelay methods (a¼ 1)
were slightly but significantly smaller than respectively the NLR
and NLRþdelay methods (a¼ 0.632).

Figure 4B gives an overview of the average computation time
for each method. It is not surprising that the simplest method,
standard Patlak, was the fastest with 0.3 second per slice
(512� 512 pixels and 31 time frames). The other Patlak methods
require additional input provided by a gamma variate fit,
extending the computation time to 5.9 seconds per slice. The
simplified NLR methods had computation times of respectively 5
and 9 seconds per slice, where the other NLR methods required
between 19 and 45 seconds.

DISCUSSION
This study uses CIs to compare the reliability between different
methods for estimating Ktrans values. The ‘reliability’ can be
thought of as a quantity that is inversely proportional to the width
of these CIs. The experiments showed that the simplified NLR
method has a CI that is a bit smaller than the full NLR methods,
and significantly smaller than the Patlak methods in both the
simulations and clinical measurements.

‘Reliability’ is a nonscientific term that should be used with care.
Some ‘reliability metrics’, like the Akaike information criterion,34

quantify the goodness of fit of a model. For two reasons, however,
this type of metric is not applicable to this study. First, the Patlak
fits are applied to different (linearized) data than the nonlinear fits;
and therefore, the goodness of fit between these methods may
not be compared. Second, the reliability of a single parameter,
Ktrans, is of importance, rather than the goodness of fit of the
complete model. Not all time frames have an equal contribution
to the estimated Ktrans, and therefore the CI, which is specific to
this parameter, is more appropriate.

A wider CI means a larger standard deviation in repeated
measurements. For Ktrans values close to zero, the probability
distribution is skewed because the estimates are constrained to
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positive values, and therefore the mean will have a positive bias.
This phenomenon is visible in Figures 2B and 2D. The estimated CI,
however, appears to be independent of the value for Ktrans, which
makes it a valid measure for evaluating the reliability of the
methods, even if the true Ktrans is close to zero. It has been shown
that the estimates from the clinical data are in line with the
simulations, for which reason it can be concluded that the
variation in average Ktrans between the methods has to be
addressed to a variation in the CIs rather than a bias in estimates.

The standard Patlak method was found to be two to three times
less reliable than the NLR and simplified NLR method in both the

simulated and clinical cases. However, fixating the CBV to a value
estimated with a more sophisticated method, which is usually
available anyway, roughly doubles its reliability. This means that
fixating the CBV in the Patlak plot is a simple but very effective
way to enhance the reliability of the permeability estimates in
general.

The standard Patlak method showed a decrease in reliability for
long transit times. The performance of this method could in those
cases probably be increased by determining the steady state of
the tissue attenuation curve instead of the AIF, as was performed
in this study. A longer MTT means that it takes more time for the
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Figure 2. Graph (A) shows standard errors of the Ktrans estimates on Monte Carlo simulated attenuation curves with a noise s.d. of respectively
0.5, 1.0, and 2.0 HU. The other graphs show average Ktrans estimates (B, D, F) and confidence intervals (CIs) (C, E, G) of the simulated data.
A narrower CI suggests a more reliable estimate. The nonlinear regression (NLR) and simplified NLR methods showed very similar results,
which caused these lines to overlap in all of the plots. AATH, adiabatic approximation to the tissue homogeneity; HU, hounsfield units;
MTT, mean transit time.
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capillary concentration to reach a steady state and therefore fewer
samples should be included in the Patlak plot.

The addition of a delay time tD as an extra parameter had a
minor effect on the reliability of the Ktrans. It has although
been proven that delay-insensitive methods, i.e., methods that

incorporate tD, give better estimates for the CBV, CBF, and MTT.8

Therefore, and because the CIs for the NLR methods did not
increase despite the introduction of an extra-free parameter, it can
be concluded that tD is an appropriate additional parameter for
the NLR methods.

The shape of the MTT distribution, controlled by the parameter
a in Equation 5, is another feature that could improve the
credibility of the IRF and therefore enhance the reliability of the
Ktrans estimates. The methods that use a¼ 0.632 instead of a¼ 1
have IRFs that are thought to be more realistic,17 but none of
those methods showed a significant narrower CI on the clinical
data, nor did the simulations show significant differences between
these methods. Although this parameter might increase the
accuracy and reliability of other perfusion parameters, such as the
CBF and MTT, it did not affect the estimation of Ktrans.

The simulations showed that the AATH and NLRþ Ve methods,
both assuming reversible leakage, overestimate Ktrans in case the
leakage is virtually irreversible (Figure 2D). This is most likely
caused by the error in the estimated extravascular distribution
volume, Ve (Equations 2 and 5). In case Ve is underestimated, i.e.,
the model overestimated the washout from the extravascular
space, then Ktrans needs to be larger to compensate for the
measured concentration levels. In theory, a Ve of nearly zero allows
high Ktrans values without noticeable leakage, because any leaked
contrast is washed out instantly. The reliability of the AATH and
NLRþ Ve methods increases with larger Ktrans values, in the order
of 2 to 10 mL/min per 100 g, which can be explained by the fact
that a higher permeability results in better Ve estimates. Therefore,
it cannot be concluded from our study that AATH and NLRþ Ve

perform worse than the other NLR methods in general. Models
that account for reversible leakage are more applicable in

Figure 3. An example of (A) an unfiltered computed tomography (CT) perfusion (CTP) frame, (B) a filtered CTP frame with the penumbra mask
as overlay, (C) a mean transit time (MTT) parameter map (seconds) measured using first-pass bolus fitting, and (D) a Ktrans parameter map (mL/
min per 100 g) measured with the simplified nonlinear regression (NLR) method.

Table 2. The Ktrans values and 95% confidence intervals (mL/min per
100g) in the clinical data and in the simulations (default parameters)

Avg. Ktrans Avg. 95% CI width

Method
Clinical

data Simulation
Clinical

data Simulation

Simpl. NLR 0.39±0.23 0.59 0.82±0.29 0.67
Simpl.
NLRþdelay

0.36±0.21 0.57 0.82±0.29 0.66

NLR 0.34±0.21 0.53 0.85±0.31 0.69
NLRþdelay 0.33±0.19 0.53 0.85±0.32 0.67
Patlak fixed 0.43±0.33 0.57 1.42±0.49 0.93
Patlak
fixedþdelay

0.45±0.35 0.58 1.53±0.56 1.03

AATH 0.87±0.89 1.40 1.95±0.94 1.50
NLRþ Veþdelay 0.72±0.73 0.85 1.97±1.06 1.25
AATHþdelay 0.83±0.88 0.95 2.04±1.07 1.21
NLRþ Ve 0.77±0.77 1.10 2.18±1.20 1.46
Patlak 0.73±0.45 0.69 2.65±1.33 2.11
Patlakþdelay 0.78±0.48 0.96 2.78±1.45 2.10

Abbreviations: AATH, adiabatic approximation to the tissue homogeneity;
CI, confidence interval; NLR, nonlinear regression; Ve, extravascular
distribution volume.
The values are ordered to the width of the confidence interval in the
clinical data. The average confidence intervals are visualized in the graph
in Figure 4A.
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pathologies with high vascular permeability, such as tumors, and
in those particular cases they will likely give more reliable
estimates.

On many points, the NLR method provides a more sound
theoretical basis than Patlak analysis for permeability analysis, and
gamma variate fits or deconvolution8,35 for perfusion analysis.
First, the NLR method does not make any assumptions of the
shape of the attenuation curves themselves, but rather on the

process that transforms the AIF into a tissue curve. The curves do
not necessarily need to have a gamma variate-like profile, nor do
they have to reach a steady state. A potential second pass bolus
due to recirculation does not hamper the analysis. Second, at
about tm seconds after the BAT, the permeability will start to affect
the shape of the attenuation–time curve measured in the tissue,
including part of the first-pass bolus. As opposed to the Patlak
method, which uses only steady-state time frames, the NLR
methods include all time frames. This means that no potentially
useful information is wasted, and the results do not depend on
the definition of the steady state. Third, because the NLR methods
do not transform the attenuation curves, the (approximate)
normal distribution of the measurement errors is preserved,
which fulfills the requirements for proper least squares fitting. In
linearized regression using a Patlak plot, this is no longer the case.
Values are divided by Cc(t), which is a nonlinear operation that
distorts the measurement errors. Fourth, all perfusion parameters,
including permeability, are measured using a single method in
which a change in one parameter affects all others. This reduces
the bias in estimates that are influenced by other relevant factors
that a method does not account for. For example, if the
permeability is significant, then the intravascular blood volume
can be biased if this is estimated by a method does not account
for leakage into the extravascular volume.

A disadvantage of NLR is that it is an iterative method, and so a
straightforward implementation is time consuming. This is most
likely the reason why currently this technique is not much used in
CTP analysis yet. The simplified NLR method, however, tackles two
bottlenecks by omitting the need for convolutions and the
calculation of exponentials, and is thereby at least four times
faster than the full NLR methods. By further increasing the
performance using, e.g., parallel computing or GPU acceleration
the analysis of high-resolution volumes in a clinical setting might
be feasible.

In conclusion, the CI, and thereby the reliability, of the simplified
NLR method is similar to the full NLR methods, and better than the
Patlak methods in both the simulations and clinical measure-
ments. The simplified NLR analysis just takes 5 seconds per
512� 512 slice, making it suitable for time-critical clinical use. The
simplified NLR method therefore seems to be a superior
alternative to Patlak analysis. Further research is required to
evaluate the predictive value of the simplified NLR method for
hemorrhagic transformation in acute ischemic stroke.

The techniques described in this study are potentially applic-
able to other purposes as well, like tumor assessment using
dynamic contrast enhanced magnetic resonance imaging or
positron emission tomography, even though the signal-to-noise
ratio and kinetics might differ.

Table 3. P values for the Wilcoxon signed-rank tests on the 95% CIs for Ktrans between the different methods

Patlak Patlakþ delay
Patlak
fixed

Patlak
fixedþ delay AATH AATHþ delay NLR NLRþ delay NLRþ Ve NLRþ Veþ delay

Simpl.
NLR

Patlakþdelay 0.001
Patlak fixed 0 0
Patlak
fixedþdelay

0 0 0

AATH 0.056 0.035 0.015 0.052
AATHþdelay 0.126 0.073 0.012 0.030 0.018
NLR 0 0 0 0 0
NLRþdelay 0 0 0 0 0 0 0.823
NLRþ Ve 0.232 0.145 0.009 0.017 0.005 0.153 0 0
NLRþ Veþdelay 0.048 0.030 0.017 0.062 0.737 0.014 0 0 0.002
Simpl. NLR 0 0 0 0 0 0 0 0.002 0 0
Simpl.
NLRþdelay

0 0 0 0 0 0 0 0 0 0 0.695

Abbreviations: AATH, adiabatic approximation to the tissue homogeneity; CI, confidence interval; NLR, nonlinear regression; Ve, extravascular distribution volume.
Probabilities smaller than 0.001 are considered as significant and written as 0.
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Figure 4. (A) The average 95% confidence interval (CI) of Ktrans for of
each method. More reliable estimates have narrower CIs. (B) The
average computation per slice (512� 512 pixels) for each of the
methods on a low-end desktop PC. Note that the y axis is
logarithmic. The Patlak methods that are extended with delay
and/or fixed cerebral blood volume (CBV) require input from the
gamma variate fit-based method. AATH, adiabatic approximation to
the tissue homogeneity.
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