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Abstract

Rationale Deficient response inhibition is a prominent fea-
ture of many pathological conditions characterised by im-
pulsive and compulsive behaviour. Clinically effective
doses of catecholamine reuptake inhibitors are able to im-
prove such inhibitory deficits as measured by the stop-signal
task (SST) in humans and other animals. However, the
precise therapeutic mode of action of these compounds in
terms of their relative effects on dopamine (DA) and nor-
adrenaline (NA) systems in prefrontal cortical and striatal
regions mediating attention and cognitive control remains
unclear.

Objectives We sought to fractionate the effects of global
catecholaminergic manipulations on SST performance by
using receptor-specific compounds for NA or DA. The re-
sults are described in terms of the effects of modulating
specific receptor subtypes on various behavioural measures
such as response inhibition, perseveration, sustained atten-
tion, error monitoring and motivation.

Results Blockade of «2-adrenoceptors improved sustained
attention and response inhibition, whereas «l and (31/2
adrenergic receptor antagonists disrupted go performance
and sustained attention, respectively. No relevant effects
were obtained after targeting DA D1, D2 or D4 receptors,
while both a D3 receptor agonist and antagonist improved
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post-error slowing and compulsive nose-poke behaviour,
though generally impairing other task measures.
Conclusions Our results suggest that the use of specific
pharmacological agents targeting «2 and (3 noradrenergic
receptors may improve existing treatments for attentional
deficits and impulsivity, whereas DA D3 receptors may
modulate error monitoring and perseverative behaviour.
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Introduction

The discovery that drugs increasing catecholamine levels in
prefrontal cortex (PFC) improve cognitive and behavioural
deficits in disorders characterised by impulsivity (Bradley
1937; Oades 1987) has opened the way for the investigation
of the role of dopamine (DA) and noradrenaline (NA) in
behavioural inhibition and attention. A key question in the
psychopharmacology of impulsive behaviour is whether the
effects of anti-impulsivity drugs are mainly mediated by DA,
NA or both (de Wit et al. 2002; Eagle et al. 2008; Robbins and
Amnsten 2009), although this is not a simple task due to the
complex interactions between the two catecholaminergic sys-
tems in the PFC (e.g., Antelman and Caggiula 1977; Pan et al.
2004). Noradrenergic projections from the locus coeruleus
(LC) and dopaminergic neurons arising from the ventral teg-
mental area converge in the medial PFC (mPFC; Berger et al.
1974; Lindvall and Bjorklund 1974; Thierry et al. 1973).
There, the NA transporter participates in the reuptake of DA
(Carboni and Silvagni 2004; Moron et al. 2002; Tanda et al.
1997), compensating for the paucity of dopamine transporter
(DAT) sites in this area (Ciliax et al. 1995; Sesack et al. 1998).
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The main goal of the present investigation is to better define
the differential contribution of specific noradrenergic and
dopaminergic agents on stop-signal task (SST) performance,
which has been used extensively in the assessment of motor
impulsivity in humans.

The SST measures the ability to stop an already initiated
response as well as the speed of the inhibitory processes (i.e.,
the stop-signal reaction time, SSRT; Logan 1994). Response
inhibition is impaired in several psychiatric disorders
characterised by impulsive behaviour (Lipszyc and Schachar
2010), especially in patients with attention deficit/hyperactivity
disorder (ADHD; Aron and Poldrack 2005; Schachar et al.
1995; Verbruggen and Logan 2008). Stimulant and non-
stimulant ADHD medications include methylphenidate and
atomoxetine as the prototypical drugs of these two classes,
respectively. Both have comparable efficacy in ADHD (Hazell
et al. 2011; van Wyk et al. 2012), although psychostimulants
remain widely used for this purpose (Wilens 2008). However,
their exact mechanism of action is still unknown. Rodent
studies have shown that methylphenidate and atomoxetine
increase in vivo extracellular levels of NA and DA in PFC,
whereas only methylphenidate increases subcortical DA levels
(Bymaster et al. 2002). Thus, the positive effects of
atomoxetine and methylphenidate on SSRT may not be medi-
ated exclusively by NA. Results obtained after the administra-
tion of various classes of agonist and antagonists at
catecholaminergic receptors may contribute in advancing our
understanding of the neural substrates and cognitive functions
targeted by clinically effective compounds.

Several studies have investigated effects of adrenoceptor
agonists and antagonists on attention and impulsivity in both
human and non-human subjects. The «2 receptor agonist
guanfacine has been proposed as a potential treatment for
ADHD and as a useful alternative to psychostimulant medi-
cation (Scahill et al. 2001; Taylor and Russo 2001). However,
previous studies failed to find any improvement of guanfacine
on SST performance in humans (Muller et al. 2005) and rats
(Bari et al. 2009). «l-Adrenoceptor agonists improve
sustained attention in rats, whereas «1 antagonist administra-
tion has the opposite effect and abolishes the positive effects
of the agonist (Puumala et al. 1997). Antagonists at the ol
receptor also counteract the beneficial effects of methylpheni-
date (Berridge et al. 2012) and of the selective NA reuptake
inhibitor (SNARI) reboxetine (Liu et al. 2009). In general «1-
adrenergic receptors are thought to influence behavioural
states and arousal levels in synergy with [3-adrenoceptors
(Berridge and Espana 2000; Stone and Quartermain 1999).
Thus, «2-, «1- and (3-adrenoceptors may well be implicated
in attention and response control as measured by the SST.

Although previous reports have attributed to DA an impor-
tant role in behavioural activation, rather than inhibition
(Eagle et al. 2008), recent findings have demonstrated a more
complex role for dopaminergic neurotransmission during SST
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performance: blocking D2 receptors in the dorso-medial stri-
atum prolonged SSRT, whereas D1 receptor antagonism in the
same area improved stopping (Eagle et al. 2011). Moreover, in
humans and other animals, striatal dopamine D2/D3 receptors
represent an important link between impulsivity and drug
addiction (Caprioli et al. 2013; Dalley et al. 2007; Volkow et
al. 2007). Dopamine D3 receptors modulating locomotor
activity, and the reinforcing properties of drugs and food
(Barik and de Beaurepaire 2005; Caine and Koob 1993;
Daly and Waddington 1993; Duarte et al. 2003a; Pilla et al.
1999), are mainly located in the nucleus accumbens, cerebel-
lum, olfactory tubercle and islands of Calleja (Bouthenet et al.
1991; Sokoloff et al. 1990). However, their exact function is
not very well understood. Thus, since DA D1- and D2-like
receptors may have opposite effects on impulsivity (Pattij et
al. 2007; Pezze et al. 2007; van Gaalen et al. 2006), the
systemic administration of selective compounds could pro-
duce results not observed previously on SST performance.
The dopamine D4 receptor gene (DRD4), coding for a G-
protein coupled receptor primarily found in cortico-limbic
areas (Ariano et al. 1997; Oak et al. 2000), has been one of
the most consistently implicated genes in ADHD (Faraone et
al. 2001; Holmes et al. 2002; LaHoste et al. 1996; Langley et
al. 2004; Smalley et al. 1998). The DRD4 7-allele repeat has
been positively associated with novelty-seeking and impulsiv-
ity (Colzato et al. 2010; Congdon et al. 2008), and shown to
affect prefrontal grey matter volume in normal and ADHD
subjects (Durston et al. 2005). Because of the high levels of
D4 receptors in PFC and its high affinity for NA (Lanau et al.
1997; Newman-Tancredi et al. 1997), it is conceivable that
drugs acting at D4 receptors may play a role in response
inhibition as measured by the SST.

To better understand the differential contribution of the
compounds tested on SST performance, we analysed several
additional measures that were not reported in previous inves-
tigations using the rat SST. These include the intra-individual
variability of reaction times (SDGoRT) and the post-error
slowing (PES) that have been extensively investigated in the
human literature and are found to be altered in ADHD, im-
pulsive subjects and several pathological conditions (e.g.,
Adams et al. 2011; Baldwin et al. 2004; Boonstra et al.
2005; Epstein et al. 2006, 2011; Fitzpatrick et al. 1992;
Frank et al. 2007; Jones et al. 2008; Kaiser et al. 2008;
Kollins et al. 2008; MacDonald et al. 2009; Nandam et al.
2010; Spencer et al. 2009). High intra-individual variability of
reaction times is probably the most replicated and stable
finding in children with ADHD (Russell et al. 2006) and is
considered diagnostic of ‘lapses of attention’ (Castellanos et
al. 2006; Leth-Steensen et al. 2000). Although relatively few
studies have reported SDGoRT in rats, reaction time variabil-
ity seems to predict attentional performance in both normal
animals and animals made distractible by experimental ma-
nipulations (Hausknecht et al. 2005; Loos et al. 2012;
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Narayanan et al. 2006). On the other hand, PES depends on
the ability of the subject to adjust ongoing performance on
the basis of negative feedback (Rabbitt 1966). PES is thus
regarded as a measure of performance monitoring (Botvinick
etal. 2001; Kerns et al. 2004) and of the ability to dynamically
implement cognitive control over one's behaviour (Gilmour et
al. 2012). On trials following stop errors, normal subjects
display slower reaction times as an attempt to improve per-
formance. Comparing reaction times before and after a stop
error in rats performing the SST produces a measure that is
sensitive to pharmacological manipulations, partly confirming
its construct validity. Other secondary variables reported that
are specific to rodent behavioural testing are the reward col-
lection latency (RCL) and nose-poke perseveration during TO
periods (NP/TO), putative measures of motivation and com-
pulsive behaviour, respectively.

Materials and methods

Subjects were male Lister Hooded rats purchased from
Charles River, UK, in all the experiments. Rats were housed
in groups of four, under a reversed 12:12-h light—dark cycle
(lights off at 07:30), and were tested during the dark phase of
this cycle. For behavioural training and testing, rats were food-
restricted and maintained at 85 % of their free-feeding body
weight feeding them 15 g of standard laboratory chow (Purina
Rat Chow) on rest days and 10 g on SST days plus reinforcer
pellets (Test Diet, 45 mg precision-weight, purified ingredient
rodent tablets, Sandown Scientific). Water was freely avail-
able except during testing. All experiments were conducted in
accordance with the United Kingdom Animals (Scientific
Procedures) Act, 1986.

Behavioural training

Rats were trained following a procedure modified from Eagle
and Robbins (2003) and written in Visual Basic by A. C. Mar
to perform the SST. Subjects were first habituated to the
testing apparatus where they learned to collect free pellets
from the food well. On the next day, rats were presented with
the right lever extended into the box and gradually learned to
press it to receive a reward pellet into the food well. Collection
of the reward started the subsequent trial with the right lever
re-introduced into the box. When the animals reliably com-
pleted a session of 100 trials within 30 min on 2 consecutive
days, they were presented with the left lever and learned to
press it to extend the right one, which will result in the delivery
of the reward if pressed within 30 s. The limited hold (LH) —
the time available for the rats to press the right lever after
pressing the left one — was progressively shortened until the
rats reliably completed 100 trials with an LH of 5 s. Stop trials
were then introduced using a stop-signal tone (4,500 Hz,

~80 dB) that lasted until the end of the LH period and the
number of total trials was set to 210, to be completed within
30 min. The LH and stop-signal duration were made gradually
shorter over several sessions until they were kept constant for
each animal (final LH was 1.2 s). The tone length was further
shortened until it reached 200 ms. For all sessions, the task
was initiated when the rats nose-poked into the central food
well. During go trials the rats were rewarded with a food pellet
for pressing the left then the right lever in sequence before the
LH ended. If the rats failed to press the right lever within the
LH, they received a time-out period (TO; 5 s darkness, no
levers available) and the trial was recorded as a go error. The
latency of the go response (go reaction time [GoRT]) is the
time elapsed from the left to the right lever presses (Fig. 1).
Stop trials were delivered pseudo-randomly on 20 % of
total trials. Stop trials began in the same manner as a go trial,
but after pressing the left lever, the stop-signal was played and
animals were rewarded if they refrained from pressing the
right lever for the duration of the LH. If the rats pressed the
right lever after the stop-signal was played, they were
punished with a TO, but if they pressed the right lever before
the occurrence of a stop-signal in a stop trial, that trial was re-
classified as a go trial. During training, stop-signals were
played as soon as the rats pressed the left lever (zero delay
[ZD]), whereas during baseline and testing sessions stop-
signals were played at a pre-determined delay (stop-signal
delay [SSD]). Four different SSDs were used (mean GoRT
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Fig. 1 Schematic illustration of the SST. A standard session consists of
210 trials to be completed within 30 min. On 20 % of the trials (stop
trials), a stop-signal will be played after the left lever has been pressed and
after a variable stop-signal delay (SSD), which is based on the mean
reaction time (mR7T) of the subjects on previous sessions: zero delay (ZD),
mRT —350 or mRT —150 ms. The stop-signal instructs the animal that the
go response to the right lever has to be inhibited in order to obtain the
reward. On the remaining 80 % of the trials (go trials), the left and right
levers have to be pressed in rapid sequence and the go reaction time
(GoRT) has to be shorter than the limited hold (LH; 1.2 s) in order to
receive a reward, which is delivered in the central food well (picture
modified from Bari et al. 2011)
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[mRT]: =350, —250, —150, and —50 ms) plus ZD pseudo-
randomly interspersed among go trials in order to draw the
baseline inhibition function (Logan 1994). For test sessions,
two SSDs were used and were calculated from the mRTs
averaged from three previous baseline sessions at ZD, and
these were individual mRTs —350 and —150 ms for all the
experiments. Rats were excluded from the experiment if they
displayed one of the following characteristics during baseline
sessions: (1) inverted inhibition function (i.e., better stop
accuracy with longer SSDs); (2) too low or too high average
stop accuracy (not within the 20-80 % range; Band et al.
2003); (3) go accuracy below 80 %. Given the complexity
of the task and the elevated number of assumptions required
by the model to be met by the subjects in order to reliably
calculate the SSRT, a relatively high number of animals has to
be excluded from the final data analysis, a problem encountered
also in experiments with human subjects (e.g., Castellanos and
Tannock 2002; Solanto et al. 2001).

SSRT calculation

SSRTs were estimated using the ‘race model’ protocol de-
scribed by Logan (1994). Briefly, GoRTs were rank-ordered
for each SSD and the nth GoRT was selected from the ranked
list. The n value was obtained by multiplying the number of
GoRTs in the distribution by the probability of responding on
stop trials at one given SSD. To obtain the SSRT, the respec-
tive SSDs were subtracted from the nth GoRT. SSRTs were
then averaged to give a single estimate for each rat for each
test session. SSRT and stop accuracy (i.e., percent of stop trials
in which the go response was correctly inhibited) were
adjusted for the presence of omission errors on go trials
(go errors) in order to correct for the stop trials when
an inhibition could not be attributed to a successful
stop, but could be accounted for by distraction or inat-
tention. In other words, this procedure adjusts for those
successful stop trials where the animals would not have
completed the go response whatever the trial type (go or
stop). Adjustment was performed using the correction
factor of Tannock et al. (1989): adjusted p(innibity=0b-
served p(inhibit)_p(omission)/l_p(omission)a where P(inhibit) is
the stop accuracy and pomissiony 1S 1—g0 accuracy,
expressed as ratios.

Secondary variables

Dependent variables analyzed in the following experiments
include mRT (the latency of the go response averaged over
the number of correct go trials), stop accuracy (presented as
a percentage of total stop trials) and go accuracy (presented
as a percentage of total go trials).

Some additional measures to those previously described for
the rat SST were analysed: the within-subject standard
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deviation of reaction times during go trials (SDGoRT), which
is considered diagnostic of ‘lapses of attention’ (Castellanos et
al. 2006; Leth-Steensen et al. 2000) or of an inability to sustain
stimulus—response contingencies (Picton et al. 2007). PES,
which is derived from the difference between GoRTs on trials
immediately affer, and GoRTs on trials immediately before, a
stop error. This latter variable is considered as a measure of
performance monitoring/adjustment (Gehring et al. 1993; Li
et al. 2006b; Schachar et al. 2004) in the human literature but,
since rats usually show a decrease in GoRT after a failed stop
trial, it is usually a negative value (see discussion). A signif-
icant change in PES in the experiments here described is
interpreted as a change in the capacity of the animal to use
errors to guide subsequent behaviour and/or as a variation in
speed—accuracy trade-off strategy. Finally, the number of
nose-pokes made into the food well during TO periods (total
nose-pokes divided by the total number of TO periods;
NP/TO), thus when there is no programmed consequence for
this action, is considered as a measure of perseveration and the
latency to collect the reward from the food well (RCL) is
interpreted as a measure of motivation.

Drugs

Drug doses were adapted from available published data or
chosen from previous dose-response curve experiments and
published functional neurochemistry data. Solutions were
freshly prepared every day. Different groups of animals were
used for each drug and at least 2 days were allowed between
drug injections. During the time between the administration of
the compound and the beginning of the task, animals where
singly housed in holding cages and left undisturbed in a quiet
room. All drugs were administered via intraperitoneal injec-
tions at a volume of 1 ml/kg and according to a randomized
Latin square design, unless otherwise stated.

Atipamezole (a2 adrenoceptor antagonist)

A group of 14 animals (350-400 g) were injected with the
highly selective o2 antagonist atipamezole (Pertovaara et al.
2005; Antisedan, Pfizer). Atipamezole (0.03, 0.1, 0.3 mg/kg,
plus vehicle) was diluted in 0.9 % saline and administered
45 min before test sessions (Haapalinna et al. 1998; Scheinin
et al. 1988; Sirvio et al. 1993; Virtanen et al. 1989). Three
animals were excluded from the final analysis for violation of
the race model assumptions (final n=11).

Prazosin (ol adrenoceptor antagonist)

Fourteen subjects weighing between 370 and 450 g were
administered prazosin (0.05, 0.15, 0.5 mg/kg, plus vehicle),
which was dissolved in double distilled water (DDW) and
administered at a volume of 2 ml/kg, 45 min before test
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sessions. Drug doses were chosen based on published studies
(e.g., Darracq et al. 1998; Selken and Nichols 2007). Two
subjects have been excluded from the final analysis in this
study because of violation of the race model assumptions
(final n=12).

Propranolol (3 1/2 adrenoceptor antagonist)

A group of fourteen animals (370-470 g) was administered
propranolol (0.3, 1.5, 3 mg/kg, plus vehicle) which was
dissolved in DDW and injected 45 min before test sessions
(Hahn and Stolerman 2005). Three subjects violated the race
model assumptions and were excluded (final n=11).

DA D1 and D2 receptor antagonists

Two groups of eighteen animals (320440 g) were admin-
istered the selective DA D1 receptor antagonist SCH-23390
(Sidhu et al. 1986) and the DA D2/3 receptor antagonist
sulpiride, both purchased from Sigma-Aldrich. For
sulpiride, doses were 1, 5, 10 mg/kg, plus vehicle (0.9 %
saline) injected 45 min before test and the solution adjusted
with hydrochloric acid to give a pH of ~6 (Lacroix et al.
2003; Passetti et al. 2003; Sorge and Clarke 2009). SCH-
23390 doses were 1, 5, 10 pg/kg, plus vehicle (0.9 % saline)
administered 45 min before testing (Koffarnus et al. 2011;
van Gaalen et al. 2006). Five animals from each group were
excluded from the final analysis, because of violation of the
race model assumptions (final n=13+13).

DA D3 receptor agonist and antagonist

Two groups of twenty two rats weighing between 320 and
450 g were administered the DA D3 receptor-preferring ago-
nist 7-OH-PIPAT or the antagonist nafadotride both purchased
from Tocris (Bristol, UK). Doses were: nafadotride, 0.3, 1,
3 mg/kg, plus saline; 7-OH-PIPAT, 0.1, 0.3, 1 mg/kg, plus
saline (Flietstra and Levant 1998; Khroyan et al. 1997; Levant
and Vansell 1997). Both drugs were injected 30 min before test
sessions. Six rats from the nafadotride experiment (final n=16)
and three from the 7-OH-PIPAT one (final n=19) were exclud-
ed from the final analysis for not performing according to the
requirements of the SST.

DA D4 receptor agonist and antagonist

Two groups of 15 rats weighing between 360 and 470 g
received the DA D4 selective agonist PD 168,077 or the DA
D4 selective antagonist L-745,870. These compounds were
purchased from Tocris (Bristol, UK) and dissolved in 0.9 %
saline solution and 20 % {3-hydroxypropyl-cyclodextrin, re-
spectively. Doses were 0.5, 1, 5 mg/kg, plus vehicle, for both
drugs (Koffarnus et al. 2011; Nayak and Cassaday 2003). Five

rats from each group were excluded from the final statistical
analysis because of violation of the race model assumptions
(final n=10+10).

Data analysis

Repeated measure ANOVA was used for all the experiments
with drug dose level as a within-subjects factor and Sidak's
post-hoc adjustment for multiple comparisons was applied if a
main effect was found. Mauchly’s test of sphericity was used
and Huynh-Feldt corrected degrees of freedom rounded to the
nearest integer are presented when the assumption of homo-
geneity of covariance was violated. All tests of significance
were performed at «=0.05. Graphs and tables display means
and their standard errors (SEM); asterisks indicate signifi-
cance at the level of p<0.05 (*) or p<0.01 (**).

Results
Effects of atipamezole

Atipamezole (Fig. 2) significantly affected SSRT (F330)=
3.09, p<0.05). Post-hoc tests showed that SSRT was de-
creased (i.e., speeded) at 0.3 mg/kg compared with the
vehicle condition (p<0.05). ANOVA also revealed a main
effect of the drug on mRT (F(3 30)=3.46, p<0.05). However,
Sidak corrected post-hoc analyses did not show any signif-
icant differences between doses. No significant effect (ns)
was detected for stop accuracy (F(330)=0.43, ns), go accu-
racy (F(3’30):0.74, ns), PES (F(1’14):1.9, I'IS), NP/TO
(F(2,18y=2.64, ns) and RCL (F(324)=0.71, ns). There was a
significant main effect of the drug on SDGoRT (F(330)=
5.16, p<0.01; Table 1). According to pairwise comparisons
the highest dose (0.3 mg/kg) significantly decreased
SDGoRT compared to vehicle (p<0.05).

Effects of prazosin

Prazosin administration did not affect SSRT (F/333)=0.61, ns;
Fig. 3). ANOVA revealed a main effect of the drug on mRT
(F3,33=10.66, p<0.01). Both 0.15 mg/kg (»p<0.05) and
0.5 mg/kg (p<0.01) increased mRT compared with vehicle,
according to post-hoc analyses. Stop accuracy was not affected
(F3,33y=1.44, ns), but there was a significant main effect on go
accuracy (F333)=8.9, p<0.01). Post-hoc analyses revealed that
at 0.5 mg/kg go accuracy was significantly lower compared
with vehicle (p<0.01) and 0.05 mg/kg (p<0.05). SDGoRT was
also significantly affected by prazosin administration (3 33y=
3.26, p<0.05). Pairwise comparisons, however, showed no
significant differences after Sidak’s correction. There was no
difference regarding PES (£{; 14)=0.55, ns) and RCL (£{; ;6=
2.31, ns), while a significant difference was found for NP/TO
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Fig. 2 Atipamezole

(2 agonist) administration
significantly decreased SSRT at
0.3 mg/kg compared with the
vehicle condition. There was
only a significant main effect of
the drug on mRT. Stop and go
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There was no effect of propranolol on SSRT (F3 309,=2.16,

ns; Fig. 4) and stop accuracy (£330,=0.05, ns). mRT was

Table 1 Effects of noradrenergic compounds on the secondary SST measures

Drug Dose (mg/kg) SDGoRT (ms) PES (ms) NP/TO RCL (ms)

Atipamezole

(02 ago) Veh 150.2 (9.6) 13.1 (58.2) 2.4 (0.2) 506.3 (24.2)
0.03 143 (9.8) -91.9 (30.1) 2.7 (0.1) 490.3 (26.5)
0.1 138.5 (8) —54.6 (28.6) 2.5(0.1) 491.3 (24.4)
0.3 123.9 (6.5)* —46.7 (25.6) 2.9(0.2) 472.6 (27.5)

Prazosin

(ol ant) Veh 155.6 (9.6) =76 (12.4) 2.3 (0.3) 534.8 (34.4)
0.05 160.4 (10.6) —83.5 (18.5) 1.7 (0.2)* 589.5 (32.5)
0.15 173.2 (7.9) —253 (21.1) 1.5 (0.1) 627 (43.4)
0.5 172.1 (7.8) —24.7 (76.7) 1.5(0.2) 581.3 (34.5)

Propranolol

(B 1/2 ant) Veh 140.7 (11.2) —95.5 (21.7) 1.9 (0.2) 523.9 (35.9)
0.3 144.9 (11.2) —99.7 (23.7) 2.3 (0.3) 503.9 (39.8)
1.5 156 (10.7) —81.9 (17.4) 2.2(0.3) 500 (36.9)
3 159.6 (11.5)* —101.2 (20.9) 2.4(0.2) 513.4 (40.9)

Values represent means and their standard errors (between brackets). Atipamezole and propranolol significantly decreased SDGoRT at the dose of
0.3 and 3 mg/kg, respectively. Prazosin significantly decreased the number of nose-pokes made during the time-out periods at 0.05 mg/kg only. All
the other secondary variables were not affected by these drugs

SDGoRT standard deviation of go reaction time, PES post-error slowing, NP/TO nose pokes during time-out periods, RCL reward collection

latency, ago agonist, ant antagonist

*p<0.05 vs. vehicle

@ Springer



Psychopharmacology (2013) 230:89-111

95

Fig. 3 Administration of the SSRT mRT
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significantly affected by the drug (£330)=3.41, p<0.05),
but pairwise comparisons reported no significant differences
between doses. There was also a significant main effect
on go accuracy (F(330)=3.51, p<0.05), but no signifi-
cant differences after correcting for multiple compari-
sons. Propranolol significantly affected SDGoRT (F(330)=
3.82, p<0.05; Table 1) and pairwise comparisons showed that
it was higher after the 3 mg/kg dose, compared with the
vehicle condition (p<0.05). There was no effect on PES
(F(3’26):O.3, IIS), NP/TO (F(3,30):1.63, ns) and RCL
(F(2’20)20.31, ns).

Effects of D1 and D2 receptor antagonists

SCH-23390 (Fig. 5 and Table 2) had no significant
effect on SSRT (F(3,36):1~1) l'lS), mRT (F(3,36):0~949
ns), stop accuracy (F(336=1.81, ns), go accuracy
(F(3,36):1'29) IlS), SDGoRT (F(3,36):1~339 IlS), NP/TO
(F(1’13):1.96, l’lS), PES (F(3,36)=0-73a ns) or RCL
(F(3’36):O.67, ns).

Sulpiride administration (Fig. 6 and Table 2) did not
affect SSRT (F(336)=1.49, ns), mRT (F336=1.23, ns) or
go accuracy (F3,36)=1.58, ns). There was a significant main
effect to impair stop accuracy (F(3,36)=3.0, p<0.05).
Pairwise comparisons showed that at 10 mg/kg the animals
displayed higher stop accuracy compared to 5 mg/kg.
SDGoRT was not changed by sulpiride administration
(F(3,36)=1-3: I'IS) and PES (F(3,36)=0-71: ns) and NP/TO
(F2,22y=1.38, ns) were also left unchanged. There was a
trend towards a significant effect on RCL (F(336=2.75,
p=0.057).

0.05 0.15 0.5 Veh 005 0.15 0.5
Prazosin mg/kg

Prazosin mg/kg
Effects of DA D3 receptor agonist and antagonist

7-OH-PIPAT administration (Fig. 7) had no effect on SSRT
(F3,54=1.17, ns). The drug, however, had a strong effect to
slow mRT (F(3,54y=31.24, p<0.01). Pairwise analyses
showed that all doses slowed mRT compared with vehicle
(»<0.01) and that at the highest dose (I mg/kg) mRT was
slower compared with all the other conditions (p<0.01). 7-
OH-PIPAT also affected stop accuracy (£3s4=3.10, p<
0.05), but pairwise comparisons did not detect significant
differences between doses. Repeated measures ANOVA
showed that 7-OH-PIPAT administration significantly af-
fected go accuracy (F230)=34.11, p<0.01). According to
post-hoc pairwise comparisons, 1 mg/kg impaired go accu-
racy compared with all the other conditions (p<0.01),
0.3 mg/kg also being different from the vehicle condition
(»<0.01). There was no effect of the drug on SDGoRT
(F(2,42y=0.77, ns), but a main effect was detected for PES
(F236)=7.31, p<0.01; Table 2). In this case, the highest
dose (1 mg/kg) increased PES compared with the vehicle
(»<0.01) and the 0.1 mg/kg (p<0.05) conditions. Also,
0.3 mg/kg increased PES compared with 0.1 mg/kg
(»<0.05), but not compared with vehicle. ANOVA revealed
a significant effect on NP/TO (F(531y=4.25, p<0.05) and
RCL (F(2,41y=3.87, p<0.05); only in this latter case,
pairwise comparisons showed that the highest dose
(1 mg/kg) slowed the rats compared with the vehicle condi-
tion (p<0.05), but failed to find a significant difference
between doses for NP/TO.

Repeated-measures ANOVA revealed a main effect of
nafadotride on SSRT (F(3,45)=3.49, p<0.05; Fig. 8);
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Fig. 4 Propranolol SSRT mRT
(p 1/2 antagonist) 400 1200
administration caused only a
significant main effect on mRT 300 10001
and go accuracy without - — 800
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pairwise comparisons showed that the highest dose
(3 mg/kg) significantly slowed SSRT compared with vehicle
controls (p<0.05). A main effect of the drug on mRT was
also found (F(,35)=11.78, p<0.01). Post-hoc analyses re-
vealed that 3 mg/kg of nafadotride slowed mRT compared
with both vehicle (p<0.01) and 0.3 mg/kg (p<0.01), while
mRT at 1 mg/kg was slower only compared with the
0.3 mg/kg dose (p<0.05). No effects of nafadotride were

Fig. 5 The dopamine D1
receptor antagonist SCH 300

Propranolol mg/kg

Veh 0.3 1.5 3
Propranolol mg/kg

detected on stop accuracy (F345=2.26, ns) and SDGoRT
(F3,45)=2.58, p=0.065, ns). Go accuracy was affected by
the drug (F(122)=21.57, p<0.01) only at the highest dose
(3 mg/kg) at which it was lower compared with all the other
conditions (p<0.01). There was a main effect of the drug on
PES (F(3.45y=5.39, p<0.01; Table 2), with the highest dose
(3 mg/kg) making the animals significantly slower after a
stop error (p<0.05). ANOVA revealed a significant effect of

SSRT mRT

23390 had no effect on
any of the main variables
of the SST
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Table 2 Effects of dopaminergic compounds on the secondary SST measures

Drug Dose SDGoRT (ms) PES (ms) NP/TO RCL (ms)

SCH 23390 ng/kg

(D1 ant) Veh 109.6 (8.2) —7.6 (23.2) 34 (1.1) 452.2 (29.1)
1 100.2 (7) -17.6 (14.1) 45 (2.1) 468 (28.4)
5 100.6 (8) 4 (21.5) 3.7(1.7) 469.7 (33.1)
10 106.8 (9.1) —10.9 (16.2) 2.4(0.7) 473.6 (33)

Sulpiride mg/kg

(D2 ant) Veh 133.1 (8.1) -29 (21.5) 3.5(0.4) 516.9 (30.3)
1 122.1 (8.6) —24.4 (19.3) 3.1(0.4) 522.3 (28.2)
5 124.3 (6) —43.8 (18) 3.9 (0.6) 478.5 (28.4)
10 132.5 (7.5) —12.4 (17.6) 3.6 (0.4) 500.6 (33.1)

7-OH-PIPAT mg/kg

(D3 ago) Veh 140 (6.1) —68 (26.3) 2.3(0.4) 469.3 (31.2)
0.1 1453 (5.4) —44.7 (22.1) 1.8 (0.2) 530 (40)
0.3 149.9 (4.9) 68 (26.3) 1.6 (0.2) 555.4 (32.2)
1 142.9 (5.2) 60.2 (17.1)** 1.2 (0.1) 596.3 (43.6)*

Nafadotride mg/kg

(D3 ant) Veh 140.3 (8.4) =71.5 (27.8) 2(0.1) 505.2 (47.7)
0.1 139.1 (8.6) —60.6 (24.3) 2(0.2) 499.2 (50.7)
0.3 142.2 (8) —58.1 (22.3) 2 (0.1) 501.9 (40.7)
1 153.3 (6.2) 25.8 (28.2)* 1 (.09)* 499.6 (32.9)

PD-168,077 mg/kg

(D4 ago) Veh 138.1 (10.4) —63.8 (21) 2.8 (0.2) 462 (26.3)
0.5 140.5 (7.2) —63.7 (15.3) 2.8(0.3) 4442 (28.9)
1 134.8 (8.4) —56.2 (26.5) 2.7(0.2) 442 (32.9)
5 132.7 (8.3) —11.9 (28.8) 2.7(0.2) 462.9 (34.5)

L-745,870 mg/kg

(D4 ant) Veh 135.9 (8.5) —54.3 (19.3) 2.7 (0.4) 514.7 (34.1)
0.5 129.3 (6.1) —4.5 (25) 2.6 (0.3) 501.5 (32)
1 127.3 (10.8) —57.1 (23.9) 2.4 (0.3) 500 (35.1)
5 1332 (11.4) —25.9 (34.2) 23(0.2) 511.9 (34.8)

Values represent means and their standard errors (between brackets). SCH 23390 did not affect any of the secondary SST variables. Sulpiride
administration had no significant effect on SDGoRT, PES, or NP/TO. Sulpiride effects only approached significance for RCL (p=0.057). The highest
dose of 7-OH-PIPAT (1 mg/kg) produced a significant increase in PES compared with vehicle (p<0.01) and with the 0.1 mg/kg condition (p<0.05). The
same drug also increased PES (p<0.05) at the dose of 0.3 mg/kg compared with 0.1 mg/kg only. There was only a main effect of 7-OH-PIPAT on NP/TO,
while 1 mg/kg of this drug significantly prolonged the latency to collect the reward from the food well (RCL; p<0.05). Nafadotride administration
significantly increased and decreased PES and NP/TO, respectively. Finally, administration of PD-168,077 or L-745,870 had no significant effects on any

of the secondary SST variables

SDGoRT standard deviation of go reaction time, PES post-error slowing, NP/TO nose pokes during time-out periods, RCL reward collection

latency, ago agonist, ant antagonist
*p<0.05 and **p<0.01 compared with vehicle

the drug on NP/TO (F (3 45=13.7, p<0.01), but not on RCL
(F(2,24y=0.015, ns). Pairwise comparisons showed that, at
the highest dose (3 mg/kg), NP/TO was significantly lower
than in all the other conditions (p<0.05).

Effects of DA D4 agonist and antagonist

There was a main effect of PD-168,077 to prolong SSRT
(F3,27y=4.92, p<0.01; Fig. 9). Pairwise comparisons

showed that 5 mg/kg significantly increased SSRT com-
pared with 0.5 mg/kg (p<0.05). PD-168,077 administra-
tion did not significantly influence mRT (F(3,7,=2.88,
p=0.054, ns), stop accuracy (F(2,17)=0.77, ns) or go
accuracy (F(2,14=1.08, ns). SDGoRT (F(5,14=0.17, ns)
and PES (F(327y=1.29. ns) were also not affected by the
drug at any of the doses tested (Table 2). There was no
significant effect on RCL (F(227,=0.25, ns) or NP/TO
(F(])]g):().ll, nS).
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Fig. 6 The dopamine D2 SSRT mRT
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There was no effect of L-745,870 on SSRT (£327,=0.76,
ns; Fig. 10), mRT (£(327)=1.92, ns), stop accuracy (F3 »7)=
0.81, ns), SDGORT (F37,=0.25, ns) or PES (F3 ,7y=0.76,
ns). There was a main effect of the drug on go accuracy
(F327y=8.02, p<0.01) and post-hoc analyses showed that
the highest dose (5 mg/kg) impaired go accuracy compared
with vehicle and 0.5 mg/kg (p<0.05). There was no effect of
the drug on NP/TO (F(;21y=0.45, ns) or RCL (Fi»35=
0.092, ns; Table 2).

Sulpiride mg/kg

Sulpiride mg/kg

Discussion

We aimed to characterise mechanisms underlying the benefi-
cial effects on SST performance in rats of catecholamine
reuptake blockers and other agents used for the treatment of
disorders such as ADHD that exhibit impulsive behaviour.
Commonly used stimulant and non-stimulant medications act
globally on the catecholaminergic systems and that lead to
unwanted side effects as well as preventing the formulation of

Fig. 7 Administration of the SSRT mRT
dopamine D3 receptor agonist 400 1400
7-OH-PIPAT produced strong *%
detrimental effects, specifically 300 1200 1T
on go measures. mRT was ’zéa‘ __ 1000 . *%x F*
longer than vehicle at all the = 2
doses tested (p<0.01) and the T 200 E 800
highest dose was also different @ € 600
from all the other conditions 100
(»<0.01). Go accuracy was 400/( /(
lower at 1 mg/kg (p<0.01 0 0 ‘ ‘ ‘ ‘ ‘ ‘ ‘
compared with all the other Veh 0.1 0.3 1 veh 0.1 0.3 1
conditions) and at 0.3 mg/kg 7-OH-PIPAT mg/kg 7-OH-PIPAT mg/kg
(»<0.01) compared with
vehicle (Veh). **p<0.01 Stop accuracy Go accuracy
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Fig. 8 Nafadotride

(D3 antagonist) significantly
increased SSRT at 3 mg/kg
compared with vehicle
administration (p<0.05). The
same dose produced longer
mRT (p<0.01 compared with
vehicle) and lower go accuracy
(»<0.01 compared with all the
other conditions). At the

dose of 0.3 mg/kg mRT was
faster than both 1 (»p<0.05)
and 3 mg/kg (»p<0.01).
*p<0.05; **p<0.01
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hypotheses regarding the mechanisms by which these drugs
affect specific executive functions. To parcel out the contribu-
tion of different receptors, we also analysed secondary vari-
ables of the SST for rats that are commonly reported in
experiments with human subjects. Variations of these mea-
sures in response to specific receptor activation or blockade
can aid the interpretation of the standard SST measures, the
comparison with human data and the understanding of the
underlying cognitive processes affected by therapeutic drugs

acting as so-called cognitive enhancers.

Fig. 9 The dopamine D4
receptor agonist PD-168,077
only affected SSRT which
was slower at 5 mg/kg
compared with the 0.5 mg/kg
condition *p<0.05
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Effects of noradrenergic ligands

We showed that atipamezole, a very selective and potent o2-
adrenergic receptor antagonist (Haapalinna et al. 1997,
Virtanen 1989), speeded SSRT at the 0.3 mg/kg dose and
decreased response variability (i.e., improved sustained atten-
tion). From the present results, it seems that the speeding of
inhibitory processes and the improved sustained attention after
atipamezole administration are not necessarily causally related
since stop accuracy was not significantly affected by this drug.
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Fig. 10 The DA D4 receptor
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This pattern of results apparently contrasts with previous
evidence of a deleterious effect of the less selective o2 recep-
tor antagonists idazoxan and yohimbine on attention and
impulsivity (Arnsten and Li 2005; Rowe et al. 1996; Sun et
al. 2010; Swann et al. 2005, 2013). However, these results
might be non-specific to &2 receptor antagonism because the
more selective drug atipamezole improves attention and other
cognitive functions (Devauges and Sara 1990; Haapalinna et
al. 1998; Lapiz and Morilak 2006; Mervaala et al. 1993;
Pertovaara et al. 2005), consistent with the present findings.
Alternatively, the different attentional and inhibitory require-
ments of the SST, compared to other behavioural tasks, may
be the reason for this discrepancy. On the other hand, «2
receptor agonist administration has deleterious consequences
on attention (Smith and Nutt 1996) and target detection
(Brown et al. 2012; Coull et al. 2004) in some studies, but
positive effects in others (Fernando et al. 2012). Thus, a better
understanding of the effects of drugs acting directly at the
noradrenergic o2 receptor requires a more specific definition
of the cognitive construct measured as well as the knowledge
of the a2 receptor subtype affected by the drug.
Atipamezole’s positive effects on cognitive tasks are
thought to be mediated mainly through its actions on pre-
synaptic «2 receptors to which it preferentially binds at low
doses, while post-synaptic &2 receptors have been implicated
in the memory improvements seen after «2 receptor agonist
administration (Ji et al. 2008), especially in animals with
memory impairments (Arnsten and Cai 1993; Arnsten et al.
1988; Berridge et al. 1993; Franowicz and Arnsten 1998;
Rama et al. 1996). Similarly, the beneficial effects of
atipamezole on cognition are most reliably seen in aged or
poor performing subjects, or in situations of increased
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attentional demand (Coull et al. 1996; Haapalinna et al.
1998, 2000; Jakala et al. 1992; Sirvio et al. 1993). These
baseline-dependent effects are consistent with the finding that
atipamezole increases NA turnover rate significantly more in
the brains of aged than that of young adult rats (Haapalinna et
al. 2000), suggesting that it acts by restoring optimal levels of
noradrenergic transmission. These results, however, do not rule
out the possibility that atipamezole’s positive effects are medi-
ated also by DA, since this and other «2-adrenergic receptor
antagonists increase DA release in the rat mPFC (Devoto et al.
2001; Gobert et al. 1997; Gresch et al. 1995; Matsumoto et al.
1998; Yamamoto and Novotney 1998), possibly via indirect
activation of «l receptors (Anden et al. 1982).

Blocking «l-adrenergic receptors by prazosin increased
mRT and decreased go accuracy and NP/TO, consistent with
a mild sedative effect of this drug (Berridge and Espana 2000)
and, more generally, with the role of «l adrenoceptors in
locomotor activity and arousal (Sirvio and MacDonald 1999).
Prazosin inhibits the electrically or pharmacologically-evoked
release of DA in the nucleus accumbens and PFC, as well as the
locomotor enhancing effects of amphetamine and cocaine
(Darracq et al. 1998; Drouin et al. 2002; Gioanni et al. 1998).
These secondary effects of prazosin on the dopaminergic sys-
tem are consistent with the disruptive effects on go performance
observed here. Moreover, since mRT and go accuracy are often
considered as secondary measures of sustained attention
(Castellanos and Tannock 2002; Lijffijt et al. 2005, 2006;
Overtoom et al. 2002), the effects of prazosin on SST perfor-
mance are indicative of detrimental effects on attention but not
impulsivity, in keeping with previous results on five-choice
serial reaction time task (5-CSRTT) performance (Hahn and
Stolerman 2005; Puumala et al. 1997).
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The effect of propranolol administration on SST variables
was similar to that of prazosin. Both drugs mainly affected go
performance, although for propranolol the effects were
not significant after adjusting for multiple comparisons.
Propranolol blocks both 31- and (32-adrenergic receptors
(Sibley et al. 1986) and has been shown to impair attentional
performance in humans (De Martino et al. 2008; Strange and
Dolan 2007) and rats (Hahn and Stolerman 2005), which is
consistent with the increase in response variability (SDGoRT)
observed in the present study. Recently, Pattij and co-workers
(2012) have shown that selective 31 and (32 adrenoceptor
agonists improve attention and impulsivity in the 5-CSRTT
(Bari et al. 2008; Robbins 2002). These results are
consistent with the evidence that methylphenidate-induced
premature responses in the 5-CSRTT can be abolished by
co-administration of the (31/2 antagonist propranolol
(Milstein et al. 2010). Taken together with the present results,
this evidence confirms the important contribution of both «1
and {3-adrenergic receptors in attentional processes and stim-
ulus detection.

The results described above are consistent with the sug-
gestion that NA acts post-synaptically to enhance stimulus-
evoked neural responsiveness and to regulate tonic sponta-
neous firing during attentional tasks (Aston-Jones et al.
2000; Berridge and Waterhouse 2003). The positive effects
of atomoxetine (Robinson et al. 2008) and atipamezole
(present experiment) on SST performance, point to a bene-
ficial role of increasing NA neurotransmission in forebrain
areas, although achieved by different mechanisms. NA re-
uptake blockers like atomoxetine increase extrasynaptic NA
content which in turn decreases spontaneous noradrenergic
system activity through «2-adrenoceptor stimulation at the
level of the LC (Bari and Aston-Jones 2013; De Sarro et al.
1987; Fernandez-Pastor et al. 2005; Grandoso et al. 2004;
Szabo and Blier 2001), while atipamezole increases prefron-
tal NA release by disrupting the feedback inhibitory mech-
anism (Gobert et al. 1997). These differences are reflected in
the behavioural performance of the animals on the SST, with
atomoxetine causing an increase in mRT and Go accu-
racy in addition to its SSRT-speeding effects (Bari et al.
2009), whereas atipamezole is devoid of sedative effects
at functionally relevant doses (present results). The mo-
tor slowing effects of atomoxetine reflect indirect activation of
inhibitory «2 autoreceptors, while the improvements in go
accuracy may possibly be due to indirect activation of «l
adrenoceptors. In summary, the advantages of enhancing nor-
adrenergic neurotransmission via &2 receptor antagonism
rather than blocking NA reuptake are at least twofold: it pre-
vents (1) the «2 pre-synaptic autoreceptor-mediated negative
feedback on NA activity (Gobert et al. 1997) and (2) the post-
synaptic «2 receptor-mediated decrease in stimulus-evoked
neural responsiveness (Carr et al. 2007; Ji et al. 2008)
(Table 3).

Table 3 Summary of the effects of noradrenergic receptor and trans-
porter manipulations

Variables SNARI* al ant 0o2ago® o2ant P 1/2ant
SSRT 4 - i 4 -
mRT i T i M M
Stop accuracy  — - 4 - -
Go accuracy fr 3 3 - -
SDGoRT - M - 4 i
PES na - na - -
NP/TO 4 4 4 - -
RCL - - - - -

In general, increasing noradrenergic neurotransmission by either
blocking its reuptake or 2 presynaptic autoreceptors positively affects
response inhibition (SSRT) and attention-related measures (SDGoRT),
whereas decreasing noradrenergic function by «2 agonists impairs gen-
eral performance on the SST. Moreover, 1 antagonism specifically and
detrimentally affects go performance, while 3 receptor antagonism dis-
rupts sustained attention (higher SDGoRT)

SSRT stop-signal reaction time, mRT mean reaction time, SDGoRT
standard deviation of go reaction time, PES post-error slowing,
NP/TO nose pokes during time-out periods, RCL reward collection
latency, ' increased, { decreased, — no change in the specific measure,
na not available, ago agonist, ant antagonist, SNARI selective nor-
adrenaline reuptake inhibitor, M main effect only

Data for SNARI (atomoxetine) and o2 ago (guanfacine) are from Bari
et al. (2009)

Effects of dopaminergic ligands

From the results obtained after SCH-23390 or sulpiride ad-
ministration, at least at the doses used here, it seems that
blocking DA D1 or D2 receptors separately does not influence
SST performance. In keeping with the present results, system-
ic administration of the mixed D1/D2 DA receptor antagonist
cis-flupenthixol did not alter SST performance up to doses
that impaired the ability of the animals to complete the task
and also failed to antagonise the beneficial effects of methyl-
phenidate or modafinil (Eagle et al. 2007). We chose low dose
levels for the drugs used in the present experiments in order to
preserve the receptor specificity of the compound tested,
although it is possible that these doses were too low for
SCH-23390 and sulpiride to elicit significant behavioural
effects on SST performance. However, previous studies have
found significant effects on impulsivity in the 5-CSRTT after
10 ng/kg of SCH-23390 (Koskinen and Sirvio 2001; van
Gaalen et al. 2006) and increased risk-aversion after 5 pug/kg
(St Onge and Floresco 2009).

On the other hand, sulpiride is known to preferentially
affect PFC DA receptors at low doses (Bowers 1984;
Kaneno et al. 2001; Kaneno et al. 1991; Kohler et al. 1981;
Scatton 1977; Thierry et al. 1986) and to cause place aversion
at doses as low as 1 mg/kg (Karami and Zarrindast 2008).
Higher doses than the ones used in the present investigation
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may have produced spurious impairments on SST perfor-
mance by negatively affecting locomotor activity and incen-
tive motivation. For instance, sulpiride infused directly into
the dorso-medial striatum generally impairs SST performance
in rats (Eagle et al. 2011), but does not affect 5-CSRTT
performance when infused in the mPFC (Granon et al.
2000). Finally, the near-significant effect of sulpiride on
RCL is consistent with the increased motivation for food
caused by low doses of this drug (Guyon et al. 1993).

The DA D3-preferring agonist 7-OH-PIPAT selectively
and negatively influenced motor- and motivation-related mea-
sures, without significantly affecting stop-related variables. 7-
OH-PIPAT slowed mRT, RCL and decreased go accuracy,
consistent with published reports on its strong effects on
locomotor activity (e.g., Khroyan et al. 1997). On the other
hand, nafadotride administration slowed SSRT and mRT, and
decreased go accuracy and NP/TO at 3 mg/kg. The detrimen-
tal effects of nafadotride at doses higher than 1 mg/kg are in
agreement with the strong cataleptic effect of this drug (Sautel
et al. 1995). Nafadotride displays greater selectivity for D3
over D2 receptors in vivo only at doses below ~3 mg/kg when
administered via intraperitoneal injection (Levant and Vansell
1997). Thus, since the effects observed in the present exper-
iment are significantly different from the control condition
only at 3 mg/kg, it is possible that they are partly due to the
drug’s action on D2 receptors. Both nafadotride and 7-OH-
PIPAT increased performance monitoring/adjustment as mea-
sured by PES, which may be mediated by the mesolimbic DA
system where D3 receptors are located (Sokoloff et al. 1990;
Stanwood et al. 2000). Although all the behavioural effects of
D3 ligands arose in a context of psychomotor depression, the
increase in PES cannot be readily assimilated to motor im-
pairments for the way this variable is calculated. However, for
both compounds, the beneficial effects on performance con-
trol or compulsive nose-poking did not translate in improved
stopping. The relatively similar effects produced by adminis-
tration of D3-preferring agonist and antagonist are puzzling,
but not surprising. For instance, both agonist (Duarte et al.
2003b) and antagonist (Vorel et al. 2002) have been shown to
attenuate cocaine-induced conditioned place preference.
Finally, the similarity of the behavioural effects elicited by
nafadotride and 7-OH-PIPAT may be due to the characteristic
biphasic dose—effect relationship exhibited by D3 ligands on
motivated behaviour (e.g., Depoortere et al. 1996, 1999;
Khroyan et al. 1997).

DRD4 knock-out mice do not show enhanced levels of
impulsivity in delay discounting and go/no-go tasks.
However, these animals display enhanced novelty-seeking
behaviour (Helms et al. 2008) and impaired response inhibi-
tion in the murine version of the continuous performance task
(Young et al. 2011). Contrary to expectations, in the present
experiments D4 receptor ligands were ineffective on most
SST measures. PD-168,077 mildly slowed SSRT and L-
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745,870 impaired go accuracy at the higher dose tested. Our
results concur with the finding that the presence of a DRD4
polymorphism (7-repeat allele) in children with ADHD does
not influence inhibitory processes as measured by the go/no-
go task and SST, although these subjects display faster and
less accurate response style in neuropsychological tasks com-
pared to non carriers (Langley et al. 2004). Together, these
results suggest that the modulation of impulsive behaviour by
D4 receptors may depend on the long term effects of their
reduced function in the DRD4 7-repeat allele carriers and on
the pre-existing state of the dopaminergic and noradrenergic
systems. Acute treatment with dopaminergic compounds
targeting the D4 receptor may be insufficient in altering in-
hibitory performance in normal subjects. Baseline-dependent
effects have been described for tasks depending on fronto-
striatal circuitry in rodents (Milstein et al. 2010; Zhang et al.
2002, 2004) and primates (Arnsten et al. 2000; Jentsch et al.
1999) after administration of D4 antagonists, suggesting that
D4 modulation may normalize naturally or chemically altered
levels of catecholamines in the PFC. The present study did not
take into account baseline differences in performance on
response inhibition and is thus not suited to detect such effects.
However, future studies will need to investigate the effects of
chronic administration of D4-targeting drugs as well as a
wider range of doses of the D4 agonist PD-168,077, which
had a biphasic effect on SSRT and may have stronger effects at
very low doses (e.g., Nayak and Cassaday 2003) (Table 4).

Relevance of secondary SST variables

Here we showed, for the first time in the rat, a dissociation
between SSRT and SDGoRT measures; the first assessing the
speed of the inhibitory processes (Logan 1994) and the second
the intra-individual variability of the go response (Tannock et
al. 1995; Teicher et al. 2004). Both measures represent poten-
tial endophenotypes to be used as ‘biomarkers’ (Gottesman
and Gould 2003; Rommelse et al. 2008) that would help the
diagnosis and treatment of clinical disorders such as ADHD
and schizophrenia (Castellanos and Tannock 2002; Gilmour et
al. 2012; Vaurio et al. 2009). In the present experiments,
systemically administered atipamezole improved performance
on both SSRT and SDGoRT, whereas propranolol, and to a
lesser extent prazosin, selectively impaired SDGoRT. These
data complement previous reports on the efficacy of
psychostimulants in modulating the trial-to-trial variability
of the go response (Baldwin et al. 2004; Boonstra et al.
2005; Epstein et al. 2006, 2011; Fitzpatrick et al. 1992;
Nandam et al. 2010; Spencer et al. 2009) and point to a
possible involvement of noradrenergic neurotransmission in
this behavioural measure (Frank et al. 2007; Kollins et al.
2008; Lee et al. 2010).

In rats, the intra-individual variability of reaction times
has been previously shown to increase following various
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Table 4 Summary of the effects of dopaminergic manipulations on the
SST variables

Variables DARI® Dl ant D2ant D3 ago D4 ant D4 ago

SSRT
mRT

Stop accuracy

|

|
&
p=

|

Go accuracy
SDGoRT - - - - -
PES - - -
NP/TO
RCL - - -

|

|

|
=2 2 =

|

|

Increasing dopaminergic subcortical neurotransmission by GBR 12909
administration disrupts go and stop performance, whereas D1 and D2
receptor antagonists do not influence any of the variables considered.
Administration of D3 receptor agonist and antagonist have similar
effects, principally affecting motor behaviour. Notably, D3 receptor
manipulation is the only one affecting variables related to motivation
(RCL) and error processing (PES). Finally, D4 receptor antagonism
decreases go accuracy, while administration of the agonist of the same
receptor does not produce any significant effect

SSRT stop-signal reaction time, mRT mean reaction time, SDGoRT
standard deviation of go reaction times, PES post-error slowing, NP/
TO nose pokes during time-out periods, RCL reward collection latency,
{ increased, { decreased, — no change in the specific measure, ago
agonist, ant antagonist, DARI dopamine reuptake inhibitor, M main
effect only

#The data for GBR 12909 are from Bari et al. (2009)

manipulations that cause distractibility, such as distractors
presented during reaction time tasks, PFC inactivation and
pre-natal alcohol intoxication (Hausknecht et al. 2005;
Narayanan et al. 2006). Experimental manipulations known
to decrease reaction time variability in rodents are increased
stimulus salience and, like in humans, stimulant administra-
tion (Sabol et al. 2003). Rodent models of ADHD, such as
the spontaneously hypertensive rat, also display highly var-
iable reaction times (Perry et al. 2010b), which suggests a
genetic origin for this behavioural trait (Loos et al. 2012;
Perry et al. 2010a). Few studies have investigated the rela-
tionship between reaction time variability and performance
in the 5-CSRTT. Loos et al. (2012) reported a strong corre-
lation between response accuracy (the main attentional mea-
sure of the 5-CSRTT) and intra-individual response
variability in mice, which is consistent with findings in
humans performing an analogous attentional task (Bidwell
et al. 2007; Klein et al. 2006). They also identified a quan-
titative trait locus in common for the two attentional mea-
sures on chromosome 16, suggesting that response accuracy
and response variability in the 5-CSRTT share underlying
genetic origins.

In contrast to human subjects and for rats performing
other tasks, rats in the SST show a speeding of GoRT after
a stop error. One possible reason for this discrepancy may be
the presence of the TO period after a stop error, since it is

known that PES decreases as a function of the inter-trial
(Rabbitt and Rodgers 1977), or the response—stimulus
(Danielmeier and Ullsperger 2011; Jentzsch and Dudschig
2009) interval. Alternatively, subjects may perceive the
probability of occurrence of two consecutive stop trials to
be low, or they may simply respond impulsively (i.e., faster)
after having received punishment (5 s TO). In future studies,
eliminating the TO period or varying the percentage of stop
trials in a session could help to elucidate the differences in
PES between humans and rats performing the SST. Here we
considered a positive departure from this baseline post-error
‘speeding’ as an improvement in the capacity of the animal
to dynamically adjust ongoing behaviour in order to in-
crease stop accuracy.

Error monitoring, conflict detection and the subsequent
adjustment of performance are known to depend on the
dorso-medial PFC in humans and rats (Brown and Braver
2005; Chevrier et al. 2007; Falkenstein et al. 2000; Kerns et
al. 2004; Li et al. 2008; Modirrousta and Fellows 2008;
Narayanan and Laubach 2008; Ridderinkhof et al. 2004;
Swick and Turken 2002), and on dopaminergic signalling
therein (Chevrier and Schachar 2010; de Bruijn et al. 2004;
Holroyd and Coles 2002; Kattoulas et al. 2010; Kramer et al.
2007). Moreover, these evaluative and regulative functions are
found to be impaired in ADHD children (Korenblum et al.
2007; O'Connell et al. 2009; Schachar et al. 2004) and other
patient populations.

The present data suggest that DA D3 receptors are in-
volved in the PES component of the SST, consistent with
previous literature on the role of DA in error-monitoring and
behavioural adjustment (Chevrier and Schachar 2010; de
Bruijn et al. 2004; Hester et al. 2012; Holroyd and Coles
2002; Nandam et al. 2012; Nieuwenhuis et al. 2002; Wardle
et al. 2012; Zirnheld et al. 2004).

The presence of D3 mRNA in key fronto-striatal loops
involved in drug-seeking, relapse to drug addiction and
impulsive/compulsive behaviour is consistent with their role
in motivation and self-control (Everitt and Robbins 2005;
Heidbreder and Newman 2010; Koob and Le Moal 1997).
Interestingly, the D3 receptor agonist pramipexole has been
associated to the pursuit of risky behaviours (i.e., patholog-
ical gambling) in Parkinson’s disease patients receiving this
medication (Dodd et al. 2005; Szarfman et al. 2006).
However, these effects usually develop only after months
of escalating dosage (Dodd et al. 2005), which may explain
the inconsistency with the risk-adverse behaviour (St Onge
and Floresco 2009) and the increase in post-error behav-
ioural adjustment (present investigation) observed in rats
after acute D3 agonist administration. Finally, recent evi-
dence described a significant effect of cabergoline (Nandam
et al. 2012), a compound with D3 receptor affinity compa-
rable to that of pramipexole (Gerlach et al. 2003) on error
awareness, consistent with the present results.
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Summary and conclusions

Converging evidence points to noradrenergic neurotrans-
mission being primarily involved in the therapeutic effects
of anti-ADHD drugs (Biederman and Spencer 1999;
Robbins and Arnsten 2009). Reduced NA neurotransmis-
sion caused by a hypofunctional DA {3-hydroxylase — the
enzyme responsible for synthesizing NA from DA — pro-
duces executive deficits including inattention and impulsiv-
ity (Bellgrove et al. 2006; Hess et al. 2009; Kieling et al.
2008). Moreover, the stimulant methylphenidate preferen-
tially releases NA in PFC at clinical doses (Berridge et al.
2006; Kuczenski and Segal 2002), which may underlie its
efficacy on ADHD symptoms. Finally, the SNARI
atomoxetine improves attention in ADHD patients (Barry
et al. 2009; Chamberlain et al. 2007; Maziade et al. 2009),
healthy volunteers (Chamberlain et al. 2006a; Marquand
et al. 2011) and rodents (Blondeau and Dellu-Hagedorn
2007; Navarra et al. 2008; Robinson et al. 2008). Thus,
any attempt to dissect the beneficial effects of generally
increasing NA levels in the brain to more specific
receptor-mediated modulation of higher cognitive func-
tions, would improve the quality and safety of available
pharmacotherapy.

In the present investigation, propranolol administration
impaired attentional performance as observed in humans
(De Martino et al. 2008; Strange and Dolan 2007). These
results suggest that (3-adrenergic agonists may be used ther-
apeutically to improve response inhibition and attention, in
keeping with the findings that 3-adrenoceptor agonists im-
prove response accuracy and impulsivity in the 5-CSRTT
(Pattij et al. 2012). Conversely, excessive (3-adrenoceptor
stimulation as occurs during stress or acute drug withdrawal,
may impair cognitive processes (Chamberlain et al. 2006b;
Kelley et al. 2005), and 3-adrenoceptor blockade is able to
reverse this impairment (Alexander et al. 2007; Kelley et al.
2007). Similarly, blockade of «2-adrenoceptors represents a
promising target mechanism for future pharmacological
treatments of cognitive impairments (Coull et al. 1996;
Haapalinna et al. 2000; Sahakian et al. 1994), whereas D3
receptor modulation by pharmacological agents may im-
prove deficits in error monitoring and performance adjust-
ment, which are commonly observed in schizophrenia,
ADHD and drug addiction (Carter et al. 2001; Gilmour et
al. 2012; Li et al. 2006a; Rubia et al. 2005). Further inves-
tigation is warranted to better validate SDGoRT and PES as
useful measure, respectively, of sustained attention and dy-
namic performance adjustment in the rodent SST. Such
efforts will contribute to the improvement of the rodent
SST as a tool for the screening of drugs directed at amelio-
rating attention and response control as well as for the
investigation of behavioural and cognitive deficits charac-
teristic of ADHD and related disorders.
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