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Kinetics and Energetics of Biomolecular Folding and Binding
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ABSTRACT The ability of biomolecules to fold and to bind to other molecules is fundamental to virtually every living
process. Advanced experimental techniques can now reveal how single biomolecules fold or bind against mechanical force,
with the force serving as both the regulator and the probe of folding and binding transitions. Here, we present analytical expres-
sions suitable for fitting the major experimental outputs from such experiments to enable their analysis and interpretation. The
fit yields the key determinants of the folding and binding processes: the intrinsic on-rate and the location and height of the acti-
vation barrier.
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Dynamic processes in living cells are regulated through
conformational changes in biomolecules—their folding
into a particular shape or binding to selected partners. The
ability of biomolecules to fold and to bind enables them
to act as switches, assembly factors, pumps, or force- and
displacement-generating motors (1). Folding and binding
transitions are often hindered by a free energy barrier. Over-
coming the barrier requires energy-demanding rearrange-
ments such as displacing water from the sites of native
contacts and breaking nonnative electrostatic contacts, as
well as loss of configurational entropy. Once the barrier is
crossed, the folded and bound states are stabilized by
short-range interactions: hydrogen bonds, favorable hydro-
phobic effects, and electrostatic and van der Waals attrac-
tions (2).

Mechanistic information about folding and binding
processes is detailed in the folding and binding trajectories
of individual molecules: observing an ensemble of mole-
cules may obscure the inherent heterogeneity of these
processes. Single-molecule trajectories can be induced,
and monitored, by applying force to unfold/unbind a
molecule and then relaxing the force until folding or
binding is observed (3–5) (Fig. 1). Varying the force relax-
ation rate shifts the range of forces at which folding or
binding occurs, thus broadening the explorable spectrum
of molecular responses to force and revealing conforma-
tional changes that are otherwise too fast to detect. The
measured force-dependent kinetics elucidates the role of
force in physiological processes (6) and provides ways to
control the timescales, and even the fate, of these pro-
cesses. The force-dependent data also provides a route to
understanding folding and binding in the absence of
force—by extrapolating the data to zero force via a fit to
a theory.

In this letter, we derive an analytical expression for the
distribution of transition forces, the major output of force-
relaxation experiments that probe folding and binding pro-
cesses. The expression extracts the key determinants of
these processes: the on-rate and activation barrier in the
absence of force. The theory is first developed in the context
of biomolecular folding, and is then extended to cover the
binding of a ligand tethered to a receptor. In contrast to un-
folding and unbinding, the reverse processes of folding and
binding require a theory that accounts for the compliance of
the unfolded state, as well as the effect of the tether, to
recover the true kinetic parameters of the biomolecule of
interest.

In a force-relaxation experiment, an unfolded biomole-
cule or unbound ligand-receptor complex is subject to a
stretching force, which is decreased from the initial
value F0 as the pulling device approaches the sample at
speed V until a folding or binding transition is observed
(Fig. 1) (3–5). Define S(t) as the probability that the
molecule has not yet escaped from the unfolded (implied:
or unbound) state at time t. When escape is limited by
one dominant barrier, S(t) follows the first-order rate
equation

_SðtÞhdSðtÞ
dt

¼ �k)ðFðtÞÞSðtÞ;

where k)(F(t)) is the on-rate at force F at time t.
Because, prior to the transition, the applied force decreases
monotonically with time, the distribution of transition
forces, p(F), is related to S(t) through pðFÞdF ¼ _SðtÞdt,
yielding

pðFÞ ¼ �k)ðFÞ
_FðFÞ e

�
R F

F0

k)ðF0Þ
_FðF0Þ dF0

: (1)
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FIGURE 1 Schematic of the output from a force-relaxation

experiment. The applied force is continuously relaxed from the

initial value F0 until the biomolecule folds or binds, as signified

by a sharp increase in the measured force. From multiple re-

peats of this experiment, distributions of the folding or binding

forces are collected (inset). Fitting the force distributions with

the derived analytical expression yields the key parameters

that determine the kinetics and energetics of folding or binding.

FIGURE 2 Contributions to the free energy profile for folding

(inset) and binding (main figure). The derived expression (Eq.

2) extracts the on-rate and the location and height of the activa-

tion barrier to folding. When applied to binding data, the expres-

sion extracts the parameters of the ligand-tether-receptor (LTR)

potential ~G0 (x); the proposed algorithm (Eqs. 3 and 4) removes

the contribution of the tether potential Gteth(x) to recover the pa-

rameters of the intrinsic ligand-receptor (LR) potential G0(x).
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Here _FðFÞhdFðtÞ=dt<0 is the force relaxation rate. The
proper normalization of p(F) is readily confirmed by inte-
grating Eq. 1 from the initial force F0 to negative infinity,
the latter accounting for transitions that do not occur by
the end of the experiment. Note that the expression for the
distribution of folding/binding forces in Eq. 1 differs from
its analog for the unfolding process (7) by the limits of inte-
gration and a negative sign, reflecting the property of a
relaxation experiment to decrease the survival probability
S(t) by decreasing the force. Converting the formal expres-
sion in Eq. 1 into a form suitable for fitting experimental
data requires establishing functional forms for k)(F) and
_FðFÞ and analytically solving the integral. These steps are
accomplished below.

The on-rate k)(F) is computed by treating the conforma-
tional dynamics of the molecule as a random walk on the
combined free energy profile G(x,t) ¼ G0(x) þ Gpull(x,t)
along the molecular extension x. Here G0(x) is the intrinsic
molecular potential and Gpull(x,t) is the potential of the pull-
ing device. When G(x,t) features a high barrier on the scale
of kBT (kB is the Boltzmann constant and T the temperature),
the dynamics can be treated as diffusive. The unfolded re-
gion of the intrinsic potential for a folding process, unlike
that for a barrierless process (8), can be captured by the
function

G0ðxÞ ¼ DGz n

1� n

� x

xz

� 1
1�n � DGz

n

� x

xz

�
;

which has a sharp (if n¼ 1/2, Fig. 2, inset) or smooth (if n¼
2/3) barrier of height DGz and location xz. The potential of a
pulling device of stiffness kS is Gpull(x,t)¼ kS/2(X0 – Vt – x)

2

with an initial minimum at X0 (corresponding to F0).
Applying Kramers formalism (9) to the combined potential
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G(x,t), we establish the analytical form of the on-rate at
force F(t),

k)ðFÞ ¼ k0

�
1þ kS

kUðFÞ
�1

n�1
2
�
1þ nFxz

DGz

�1
n�1

� e

bDGz
"
1�

�
1þ kS

kUðFÞ
� 2n

1�n
�1�

1þ nFxz

DGz

�1
n

#
;

where k0 is the intrinsic on-rate, b h (kBT)
�1, and
kUðFÞ ¼ n

ð1� nÞ2
DGz

xz2

�
1þ nFxz

DGz

�2�1
n

is the stiffness of the unfolded biomolecule under force F

(see the Supporting Material for details on all derivations).
The full nonlinear form of Gpull(x,t) was necessary in
the derivation because, in contrast to the typically stiff
folded state, the unfolded state may be soft (to be exact,
1/2kS x

z2(F) << kBT may not be satisfied) and thus easily
deformed by the pulling device. Because of this deforma-
tion, the folding transition faces an extra contribution (regu-
lated by the ratio kS/kU(F)) to the barrier height, typically
negligible for unfolding, that decreases the on-rate in addi-
tion to the applied force F.

The last piece required for Eq. 1, the loading rate _FðFÞ, is
computed as the time derivative of the force F(t) on the
unfolded molecule at its most probable extension at time t:

_FðFÞ ¼ �kSV

1þ kS=kUðFÞ:

Finally, we realize that the integral in Eq. 1 can be solved

analytically exactly, both for n ¼ 1/2 and n ¼ 2/3, resulting



FIGURE 3 Force histograms from folding (left) and binding

(right) simulations at several values of the force-relaxation

speed (in nanometers per second, indicated at each histogram).

Fitting the histograms with the analytical expression in Eq. 2

(lines) recovers the on-rate and activation barrier for folding or

binding (Table 1).

TABLE 1 On-rate and the location and height of the activation

barrier from the fit of simulated data to the theory in Eq. 2

Folding k0 (s
�1) xz (nm) DGz (kBT) n

True 9.5 � 103 2.2 2.0 —

Fit 8 5 2 � 103 2.2 5 0.2 1.8 5 0.5 0.54a

Binding (LTR) ~k0 (s
�1) ~xz (nm) D~G

z
(kBT) n

True 28 1.56 1.7 —

Fit 24 5 3 1.57 5 0.09 1.8 5 0.4 0.53a

Binding (LR) k0 (s
�1) xz (nm) DGz (kBT) —

True 2.8 3.0 4.0 —

Fit 2.7 5 0.2 2.9 5 0.1 4.1 5 0.1 —

aFixed at value that minimized least-squares error.
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in the analytical expression for the distribution of folding
forces:

pðFÞ ¼ k)ðFÞ�� _FðFÞ��e
� k)ðFÞ
bj _FðFÞjxz

�
1þ kS

kUðFÞ
� n

n�1
�
1þ nFxz

DGz

�1�1
n

:

(2)

Equation 2 can be readily applied to (normalized) histo-

grams from force-relaxation experiments to extract the pa-
rameters of the intrinsic kinetics and energetics of folding.
Being exact for n¼ 1/2 and n¼ 2/3, Eq. 2 is also an accurate
approximation for any n in the interval 1/2< n< 2/3 as long
as kS ( kU (F) (see Fig. S1 in the Supporting Material). For
simplicity, in Eq. 2 we have omitted the term containing F0

as negligible if F0 is large enough to prevent folding events.
The solution in Eq. 2 reveals properties of the distribution

of folding forces that distinguish it from its unfolding coun-
terpart (7):

1. The distribution has a positive skew (Fig. 3), as intui-
tively expected: the rare folding events occur at high
forces when the barrier is still high.

2. Increasing the relaxation speed shifts the distribution to
lower forces (Fig. 3): faster force relaxation leaves less
time for thermal fluctuations to push the system over a
high barrier, causing transitions to occur later (i.e., at
lower forces), when the barrier is lower.

3. The stiffness kS and speed V enter Eq. 2 separately,
providing independent routes to control the range of
folding forces and thus enhance the robustness of a fit.

The application of the above framework to binding exper-
iments on a ligand and receptor connected by a tether (3) in-
volves an additional step—decoupling the effect of the
tether—to reconstruct the parameters of ligand-receptor
binding. Indeed, the parameters extracted from a fit of
experimental histograms to Eq. 2 characterize the ligand-
tether-receptor (LTR) potential (~k0, ~x

z, D~G
z
, n) (Fig. 2).

The parameters of the natural ligand-receptor (LR) potential
(k0, x
z, DGz) can be recovered using three characteristics of

the tether: contour length L; persistence length p; and exten-
sion D‘ of the tether along the direction of the force in the
LTR transition state. The values of L and p can be deter-
mined from the force-extension curve of the tether (10);
these define the tether potential Gteth(x) (Fig. 2). The value
of D‘ can be found from an unbinding experiment (7) on
LTR and the geometry of the tether attachment points (see
Fig. S3). Approximating the region of the LR potential be-
tween the transition and unbound states as harmonic, with
no assumptions about the shape of the potential beyond xz,
the ligand-receptor barrier parameters are then

xz ¼ a� 1

a� 2
~xz; DGz ¼ ða� 1Þ2

2ða� 2Þ~x
zFteth

�
D‘þ ~xz

�
; (3)

and the intrinsic unimolecular association rate is

k0z~k0
ðbDGzÞ32�
bD~G

z�1
n�1

2

�
~xz

xz

�2

ebðD~G
z�DGzÞ: (4)

Here, the force value FtethðD‘þ ~xzÞ is extracted from the
z
force-extension curve of the tether at extension D‘þ ~x and

a ¼
2
�
D~G

z � GtethðD‘Þ þ Gteth

�
D‘þ ~xz

��
~xzFteth

�
D‘þ ~xz

� ;

where Gteth(x) is the wormlike-chain potential (see Eq. S13

in the Supporting Material). Equations 3–4 confirm that a
tether decreases the height and width of the barrier (see
Fig. 2), thus increasing the on-rate.

In Fig. 3, the developed analytical framework is applied
to folding and binding force histograms from Brownian dy-
namics simulations at parameters similar to those in the
analogous experimental and computational studies (3,5,11)
(for details on simulations and fitting procedure, see the
Supporting Material). For the stringency of the test, the sim-
ulations account for the wormlike-chain nature of the mo-
lecular unfolded and LTR unbound states that is not
explicitly accounted for in the theory. With optimized
binning (12) of the histograms and a least-squares fit, Eqs.
2–4 recover the on-rate, the location and the height of the
Biophysical Journal 105(9) L19–L22
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activation barrier, and the value of n that best captures how
the kinetics scale with force (Table 1). The accuracy of the
extracted parameters can be enhanced by ensuring that the
data sets possess:

1. Multiple relaxation speeds,
2. Folding/binding events at low forces, and
3. A large number of events at each speed.
SUPPORTING MATERIAL

Three figures, 29 equations and supplementary information are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(13)01071-0.
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