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Abstract To improve evaluations of cortical and subcorti-
cal diffusivity in neurological diseases, it is necessary to
improve the accuracy of brain diffusion tensor imaging
(DTI) data segmentation. The conventional partial volume
segmentation method fails to classify voxels with multiple
white matter (WM) fiber orientations such as fiber-crossing
regions. Our purpose was to improve the performance of
segmentation by taking into account the partial volume
effects due to both multiple tissue types and multiple WM
fiber orientations. We quantitatively evaluated the overall
performance of the proposed method using digital DTI
phantom data. Moreover, we applied our method to human
DTI data, and compared our results with those of a conven-
tional method. In the phantom experiments, the convention-
al method and proposed method yielded almost the same
root mean square error (RMSE) for gray matter (GM) and
cerebrospinal fluid (CSF), while the RMSE in the proposed
method was smaller than that in the conventional method for
WM. The volume overlap measures between our segmenta-
tion results and the ground truth of the digital phantom were
more than 0.8 in all three tissue types, and were greater than
those in the conventional method. In visual comparisons for
human data, the WM/GM/CSF regions obtained using our
method were in better agreement with the corresponding
regions depicted in the structural image than those obtained
using the conventional method. The results of the digital
phantom experiment and human data demonstrated that our
method improved accuracy in the segmentation of brain
tissue data on DTI compared to the conventional method.

Keywords DTI . Brain tissue segmentation . Digital DTI
phantom . Partial volume effect . Multiple-tensor estimation

Introduction

Diffusion tensor imaging (DTI) measures the diffusion dis-
placement properties of water, and provides a series of maps
that reflect the different characteristics of the diffusion prop-
erties in different brain tissues [1, 2]. Maps derived from the
DTI data are utilized for detecting graymatter (GM) and white
matter (WM) microstructural abnormalities in neurodegener-
ative diseases such as Alzheimer’s disease [3–8].

Recently, in order to study the cortical and subcortical
diffusivity in neurological and neurodegenerative diseases, a
few methods of brain tissue segmentation using DTI data
have been proposed [9–12]. Some approaches utilize the
registration with structural magnetic resonance image
(MRI) (e.g. a T1-weighted image) segmented into WM,
GM and cerebrospinal fluid (CSF) regions [9, 10]. However,
due to the imperfect registration between structural MRI and
DTI, these methods suffer from misclassification of the
voxels, which may result in erroneous interpretation of the
DTI data [9, 10]. These misclassified voxels may lead to
misinterpretation of the diffusion property when analyzing
the diffusivity in a tissue from a neurodegenerative disease.
In particular, CSF voxels erroneously assigned to the GM
region by misregistration due to geometric distortion in echo
planar imaging may result in significant deviation of the
measured apparent diffusion coefficient (ADC) value in the
GM region [9, 10]. Another approach is based on a Hidden
Markov Random Field model and the Expectation-
Maximization (HMRF-EM) algorithm [11]. This method
can classify each voxel as a unique tissue type (categorized
as a hard segmentation method) in the DTI space without
the need for any registration. Since the current voxel size of
DTI data is approximately 2 mm, the accuracy of the hard
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segmentation approach is limited by partial volume effects
[12, 13]. To avoid both these problems, the partial volume
segmentation method has been proposed, which conducts
brain tissue segmentation in DTI space without any regis-
tration, and estimates the partial volume fractions of tissue
types within a voxel [12]. However, in DTI data, the partial
volume effects within the voxel derive not only from the
presence of multiple tissue types, but also from the presence
of multiple WM fiber orientations. It is known that the
presence of multiple WM fiber orientations such as fiber-
crossing and fiber-branching regions results in low fraction-
al anisotropy (FA) values for WM voxels due to the partial
volume effect [14]. Because this method does not take into
account the partial volume effect due to multiple WM fiber
orientations, WM voxels with fiber-crossing and/or fiber-
branching regions tend to be misclassified as GM.

To improve evaluations of cortical and subcortical diffusivity
in neurological diseases using clinical DTI data, it is necessary to
improve the accuracy of brain DTI data segmentation. A number
of methods have been proposed to deal with the problem of
partial volume averaging of themultiple fiber orientations in DTI
tractography methods [15–19]. Instead of DTI data, some ap-
proaches are based on high angular resolution diffusion imaging
(HARDI) data, which estimates the multiple fiber orientations
within a single voxel [20]. Because HARDI requires the appli-
cation of a number of gradient orientations (e.g., in one study
[20], 126 diffusion gradient orientations were applied, resulting
in a total scan time of 40 min), it is difficult to use in routine
clinical practice. Other approaches based on DTI data are multi-
ple tensor fitting techniques, which decompose the partial
volume-averaged tensor to multiple tensors within the same
voxel [18, 19, 21]. These methods can be applied to the DTI
data acquired by clinical magnetic resonance (MR) sequences.

In this paper, we propose a partial volume DTI segmenta-
tion method to improve segmentation performance in the
presence of multiple WM fiber orientations. In the proposed
method, which uses multiple-tensor estimation, we take into
account the partial volume effects due to both multiple tissue
types, which were used in conventional method, and multiple
WM fiber orientations. In this study, our aim was to develop
the segmentation method for DTI data acquired by clinical
MR sequencewhich does not require high b values. In order to
evaluate the performance of our method, we compared its
results with those of the conventional method using both a
digital DTI phantom and human DTI data.

Materials and Methods

Partial Volume Segmentation for Multiple Tissue Types

First, we will describe briefly the conventional partial
volume segmentation for multiple tissue types. The

maps of three eigenvalues (λ1, λ2, and λ3), ADC, and
FA are used to estimate the partial volume fractions of
WM, GM, and CSF in each voxel. Let Y=[y11, y21, …,
yN1, y12, …, yij, …, yNL]

T be the obtained map, and yij
denote the intensity at voxel i of map j (1≤ i≤N, 1≤ j≤L,
where N is the number of voxels and L is the total
number of maps, i.e., L=5 in this study). Let M=[mi1,
mi2, .. mik .., miK]

T be the partial volume fraction, and
mik denotes the fraction of tissue type k within voxel i,

where K is the number of tissues,
PK

k¼1 mik ¼ 1, 0≤
mik≤1. Let Φ be a model parameter set of the tissue
class in the obtained map Y. Assuming that the partial
volume fraction M and the tissue class parameter set Φ
are independent, the posterior distribution of M and Φ
given the obtained map Y is expressed as

P M ;Φ Yjð Þ ¼ P Y jM ;Φð ÞPðMÞP Φð Þ
PðY Þ / P Y jM ;Φð ÞPðMÞP Φð Þ

ð1Þ
By taking the logarithm of Eq. 1, the likelihood energy

function U(M, Φ|Y) is given by

U M ;Φ Yjð Þ / U Y jM ;Φð Þ þ UðMÞ þ U Φð Þ; ð2Þ
where U(Y|M, Φ) is the likelihood energy function of the
obtained map Y, and U(M) and U(Φ) are the prior energy
functions of the partial volume fraction M and tissue class
parameter set Φ, respectively. By minimizing the likelihood
energy function U(M, Φ|Y) instead of maximizing the pos-
terior distribution P(M, Φ|Y), we can estimate the partial
volume fraction M using the maximum a posteriori (MAP)
approach. The posterior energy function U is given by

U ¼
XL
j¼1

XN
i¼1

XK
k¼1

m2
ik yij
�� � vjk

��2 þ a
XN
i¼1

XK
k¼1

X
r2Ni

kr mikk � mrkk2

þ
XN
i¼1

bi 1�
XK
k¼1

mik

 !
;

ð3Þ

where Ni is the first-order neighborhood of voxel i, α is a
fixed parameter, κr is a scaling factor reflecting the differ-
ence among different orders of neighbors in a Markov
random field model, and βi is a Lagrange multiplier under

the condition of
PK

k¼1 mik ¼ 1. Taking the partial derivative
with respect to mik and setting the result to zero, we obtain

mik ¼
bi þ 2a

P
r2Ni

krmrk

2
PL
j¼1

jjyij � vjk jj2 þ 2a
P
r2Ni

kr

; ð4Þ

where βi is found by substituting Eq. 4 into
PK

k¼1 mik ¼ 1.
The tissue segmentation is performed by assigning a tissue
type to each voxel based on the largest partial volume fraction
among WM, GM, and CSF contained within the voxel [12].
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Multiple-Tensor Estimation for Multiple WM Fiber
Orientations

In the conventional method, WM voxels with multiple fiber
orientations tend to be misclassified as GM because of their
low FAvalues, a consequence of the partial volume effect of
the diffusion tensors. In general, the WM fiber-crossing and
fiber-branching voxels are adjacent to WM voxels. There-
fore, we assumed that the WM voxels with multiple fiber
orientations misclassified into the GM region by partial
volume segmentation would be adjacent to the WM voxels.
After extracting the voxels adjacent to WM voxels from the
GM region, we applied multiple-tensor estimation to these
voxels.

For the WM voxels with multiple fiber orientations,
multiple-tensor estimation is used to decompose the
partial volume-averaged tensor to multiple tensors in
different multiple fiber compartments within the same
voxel [20]. In a diffusion-weighted MR image, the
observed MR signal Si from a single diffusion compart-
ment is given by

Si ¼ S0 exp �bgTi Dgi
� �

; ð5Þ

where b is the b value, S0 is the signal intensity with b
=0 s/mm2, i.e., the signal intensity of the non-diffusion
weighted image, gi is the unit vector of the ith diffusion
encoding gradient, and D is the diffusion tensor [22].
Under some assumptions [14, 20], the observed signal
in the presence of multiple fiber orientations is
expressed as a finite mixture of n compartments:

Si ¼ S0
Xn
j¼1

fj exp �bgTi Djgi
� �

; ð6Þ

where fj is the apparent volume fraction of the voxel
with diffusion tensor Dj. In this multiple tensor model,
it is assumed that voxels contain one tissue type, i.e.,
WM only. Therefore, in Eq. 6, the S0 of each compart-
ment is the same. However, in our method, we assumed
that each compartment contains either WM or GM, i.e.,
S0 is different from compartment to compartment. Thus,
Eq. 5 is rewritten as follows:

Si ¼
Xn
j¼1

fjS0;j expð�bgTi DjgiÞ; ð7Þ

where S0,j is the component of the non-diffusion
weighted image intensity in the jth compartment. In this

study, we adopted a two-tensor model as found in the
literature [18, 19, 21]:

Si ¼ fS0;1 exp �bgTi D1gi
� �

þ 1� fð ÞS0;2 exp �bgTi D2gi
� �

: ð8Þ

In this model, we estimated the parameters, i.e., f, S0,1,
S0,2, and the elements of tensors D1 and D2 for a given

measured signal bSi by minimizing the cost function. We
define the cost function as follows:

C f ; S0;1; S0;2;D1;D2

� �

¼
Xl
i¼1

bSi � Si
Si

 !2

þ a 1� e1;2 � e1;WM

�� ��� �
; ð9Þ

where l is the number of diffusion encoding gradients. The
first term of Eq. 9 represents the normalized square error,
and the second term represents the smooth regularization
constraint to ensure voxel-to-voxel coherence. We suppose
that at least one diffusion tensor, D2, of the two tensors
within a voxel, D1 and D2, is related to the diffusion tensor
at the neighboring WM voxel. In order to reflect the con-
tinuous nature of fibers along neighboring WM voxels, we
added the inner product between the principal eigenvector
e1,2 of the tensor D2 and the principal eigenvector e1,WM of
the neighboring WM voxel to the cost function. The vari-
able a is a weighting factor, and was set to 0.1 in this study.
A downhill simplex optimization method is used to
minimize the cost function [23]. In order to avoid local
minima in optimization, we used several different restart
points (ten in this study) as described in the literature
[20]. Initial values on each start point for the minimi-
zation were generated by using random values in the
following way: the apparent volume fraction f was gen-
erated at random in the range from 0 to 1. S0,2 was
generated by adding the Gaussian random number with
a standard deviation of 5 % of the S0 to the measured
S0 at the neighboring WM voxel. S0,1 was derived from
S0= fS0,1+(1− f)S0,2. The elements of the tensor D1 were
generated at random in the range from 10−4 to 10−5.
Each element of the tensor D2 was generated by adding
the Gaussian random number with a standard deviation
of 5 % to the corresponding element of the diffusion
tensor at the neighboring WM voxel. Based on the
tensors D1 and D2, the combination of the components
in the voxels was checked to determine whether it was
a WM–WM combination or not using a threshold of FA

J Digit Imaging (2013) 26:1131–1140 1133



=0.25. In the case of WM–WM combinations, the dif-
fusion tensor at the voxel of interest was replaced with
the tensor having the higher FA value of the two ten-
sors. Then, the partial volume fractions of WM, GM,
and CSF in the voxel were recomputed based on Eqs. 3
and 4.

Digital DTI Phantom

For the design of the digital DTI phantom, we followed the
description of a numerical phantom and the geometry of the

tissue objects proposed by Alexander et al. [24]. Figure 1
shows the digital DTI phantom images (a, b, and c) used in
this study, which were obtained by rendering the numerical
phantom (d) in the object space.

Let xc∈R3 be the point in a continuous object space corre-
sponding to the center of a voxel of the digital DTI phantom
image, and xi∈N be a neighboring point of xc, where N is the
set of 5×5×5 neighboring points within the voxel. The diffu-
sion tensor of the tissue object in xi is given by

Dxi ¼ λ1xie1xie
t
1xi

þ λ2xi e2xi e
t
2xi

þ λ3xie3xie
t
3xi
; ð10Þ

Table 1 Summary of the eigenvalues and the non-diffusion weighted image intensity, S0, used to generate the simulated image intensities for each
voxel in the digital DTI phantom data

λ1 [10
−6 mm2/s] λ2 [10

−6 mm2/s] λ3 [10
−6 mm2/s] S0

WM N(1300,150) N(550,40) N(550,40) N(200,100)

GM N(1000,100) N(800,60) N(660,50) N(270,14)

CSF N(3200,100) N(3200,100) N(3200,100) N(900,45)

These values were set in accordance with the literature, and were added to values generated at random from the Normal distribution. N(a,b)
indicates the normal distribution with mean a and standard deviation b

Fig. 1 Digital DTI phantom
images: a sagittal view, b
coronal view, and c axial view.
d Schematic diagram of the
phantom object in the object
space. a and c Sagittal and axial
cross sections along the dotted
lines on panel d, respectively. e
FA map, f ADC map,
respectively
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where λ1xi,λ2xi, andλ3xi are eigenvalues of the object tissue in
xi, and e1xi, e2xi, and e3xi are their corresponding eigenvectors.
The simulated image intensity at a voxel in xc is modeled by

Sxc ¼
X
xi2N

aS0 xið Þ exp �bgTDxig
� �þ n; ð11Þ

where b is the b value, S0(xi) is the non-diffusion
weighted image intensity of the object tissue in xi, g
is the unit vector of the diffusion-encoding gradient, n
is the Gaussian noise with a standard deviation of 5 %
of the image intensity, α is a weighting factor, and i is
a site within a voxel. In the fiber-crossing voxel, be-
cause the subsample point is included in two different
objects of the WM fiber tract simultaneously, we decide
which object to choose by random value. Figure 1e and
f shows the FA map and ADC map, respectively. As
shown in Fig. 1e, the WM fiber-crossing area in the FA
map has low FA values due to the partial volume effect
of the diffusion tensors: these FA values approach those
in the GM area.

Table 1 shows the eigenvalues (10−6 mm2/s) and S0
of each tissue object; the eigenvalues were set in accor-
dance with the literature [25], and were added to values
generated at random from the Normal distribution. The
other parameters in this phantom model were the same
as the values and distributions described in the literature
[24]. The synthetic DTI phantom data consisted of six
diffusion-weighted image volumes (b=800 s/mm2) and
an unweighted image volume (b=0 s/mm2) with a 128×
128 in-plane resolution and 40 slices (field of view

[FOV]: 230×230 mm2, 3 mm thick). The voxel size
was 1.8×1.8×3 mm3, which is the same as that of the
voxels used in our clinical data.

Evaluation on Digital DTI Phantom

Based on the known partial volume fractions of tissue
types within a voxel in the ground truth data of the
digital DTI phantom, we assessed the performance of
our proposed method and the conventional method [12]
in the estimation of the partial volume fractions. To
investigate the estimation error rate of each tissue class,
we used the root mean square error (RMSE) described
in the literature [26]. The RMSE of the partial volume
fraction of tissue type k is given by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

bmik � mikð Þ2 N=
r

; ð12Þ

where mik and bmik are the true partial volume fraction
and estimated partial volume fraction of the tissue type
k within voxel i, respectively, and N is the number of
voxels in which the partial volume fraction of tissue
type k is nonzero in the ground truth data.

In further quantitative evaluation, we used the vol-
ume overlap measure between the segmentation result
and the ground truth data, each voxel of which was
assigned a tissue type label. The volume overlap mea-
sure used in this study is given by

Table 2 The root mean square error (RMSE) between the true partial volume fraction and estimated partial volume fraction of each tissue type on
the whole volume and on the slices including the maximum fiber-crossing area and single fiber area of the digital DTI phantom

Whole volume The slice including the maximum fiber-crossing
area

The slice including the single fiber
area

WM GM CSF WM GM CSF WM GM CSF

Conventional method 0.269 0.102 0.065 0.326 0.113 0.050 0.168 0.085 0.063

Proposed method 0.241 0.113 0.062 0.240 0.121 0.048 0.174 0.088 0.060

Table 3 Volume overlaps between segmentation results and ground truth in each tissue type on the whole volume and on the slices including the
maximum fiber-crossing area and single fiber area of the digital DTI phantom

Whole volume The slice including the maximum fiber-crossing
area

The slice including the single fiber
area

WM GM CSF WM GM CSF WM GM CSF

Conventional method 0.677 0.945 0.926 0.668 0.878 0.941 0.824 0.968 0.923

Proposed method 0.860 0.954 0.928 0.839 0.921 0.942 0.817 0.967 0.924
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J S;Gð Þ ¼ S \ Gj j
S [ Gj j ; ð13Þ

where S is the volume data of the segmented tissue
image and G is the volume data of the same type tissue
image in the ground truth data.

Human DTI Data

The use of the human data was approved by our Institutional
Review Board. Written informed consent was obtained from
the subjects. MR imaging was performed on a 1.5-Tesla
clinical scanner (Magnetom Symphony, Siemens, Erlangen,
Germany) with an eight-channel phased-array coil. For five
healthy volunteers, DTI data covering the whole brain were
acquired using a single-shot echo-planar imaging pulse se-
quence with repetition time (TR)=8,600 ms and echo time
(TE)=119 ms. The DTI data consisted of diffusion-
weighted image volumes acquired using a six-directional
diffusion encoding scheme at a b value of 800 s/mm2 and
a non-diffusion weighted image volume (b=0 s/mm2). Each
volume had 40 axial slices with a 128×128 in-plane reso-
lution (FOV: 230×230 mm2, 3 mm thickness), and the
resultant voxel size was 1.8×1.8×3.0 mm3.

In addition, in order to compare the segmentation results
with the structural images visually, T1-weighted images of the
same subject were obtained using an MPRAGE (magnetiza-
tion prepared rapid gradient echo) sequence (TR=2,090 ms,

TE=3.93 ms, inversion time [TI]=1,100 ms, flip angle=15°).
Each slice had a 256×256 in-plane resolution (FOV: 230×
230 mm2, 1 mm thickness). These original images were
converted into isotropic three-dimensional (3D) images with
a voxel size of 0.898 mm. The resultant 3D volume data had
256×256×137–161 voxels.

We evaluated the brain tissue segmentation results by
visual comparisons of the segmented regions with the struc-
tural images, because we did not have a ground truth in
human DTI data.

Results

Digital DTI Phantom Studies

Table 2 shows the RMSE between the true partial
volume fraction and the estimated partial volume frac-
tion of each tissue type based on the whole volume and
on the slices including the fiber-crossing area and single
fiber area of the digital DTI phantom. Because only
three out of 40 slices included the fiber-crossing area,
we investigated the RMSE not only for the whole
volume (40 slices) but also for the slice including the
maximum area of fiber crossing. Whereas the RMSE of
the conventional method and proposed method were
almost the same for GM and CSF, the RMSE of the
proposed method was smaller than that of the conven-
tional method for WM in the slice including the maxi-
mum area of fiber crossing.

Fig. 2 Digital DTI phantom study. The maps of a the true partial
volume fractions in the ground truth data, b partial volume fractions
estimated by the conventional method, and c partial volume fractions
estimated by proposed method. Yellow arrows point to fiber-crossing

areas. Note that the partial volume fractions of WM, GM, and CSF in a
voxel, which ranged from 0 to 1, are respectively assigned to red,
green, and blue components in the color image, which ranged from 0 to
255

Fig. 3 Digital DTI phantom
study. a The ground truth of
hard segmentation, b
segmentation result using the
conventional method, and c
segmentation result using
proposed method
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Table 3 shows the volume overlaps between ground truth
and segmentation results using the conventional method and
our proposed method for each tissue type. In all three tissue
types in the whole volume and the slices including the max-
imum area of fiber crossing and single fiber area, the values of
volume overlap in the proposed method were more than 0.8.
In WM in the axial slice including maximum area of fiber
crossing, the value of volume overlap was improved from
0.668 to 0.839 by applying our multiple-tensor estimation.
In WM region in the single fiber area, the values of volume
overlap by the conventional method and proposed method
were almost the same.

Figure 2a–c shows the maps of the true partial volume
fractions in the ground truth data and estimated partial
volume fractions by the conventional method and proposed
method, respectively. These images correspond to the axial
slice including the maximum area of fiber crossing (yellow
arrow) as demonstrated in Tables 2 and 3. Figure 3a–c shows
the ground truth of hard segmentation and segmentation results
based on partial volume fractions using the conventional method
and proposed method, respectively. Figures 2 and 3 show that
WM fiber-crossing regions are misclassified into the GM region
by the conventional method, but could be discriminated as WM
by our proposed method.

Fig. 4 Images in five healthy
volunteers at the level of corona
radiata, which include many
voxels with more than one fiber
orientation. a The FA maps, b
the estimated partial volume
fraction maps obtained by the
conventional method, c the
estimated partial volume
fraction maps obtained by
proposed method, and the
structural images (T1-weighted
images). Yellow arrows point to
the parietal deep WM area.
Note that in panels b and c, the
partial volume fractions of
WM, GM, and CSF in the
voxel, which ranged from 0 to
1, are respectively assigned to
red, green, and blue
components in the color image,
which ranged from 0 to 255
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Human DTI Data Study

To assess the performance of our proposed method, we
present the estimated partial volume fraction maps of the
human DTI data, and compare them with the results using
the conventional method. Figure 4 shows the results in five
healthy volunteers, at the level of corona radiata, which
includes many WM voxels with more than one fiber orien-
tation as analyzed in the literature [15]. Columns (a), (b), (c)
and (d) show the FA maps, the estimated partial volume
fraction maps obtained by the conventional and proposed
methods, and the structural images (T1-weighted images),
respectively. Figure 5 shows the example of the results at the
external capsule level. The partial volume fractions of WM,
GM, and CSF in a voxel, which ranged from 0 to 1, were
respectively assigned to red, green and blue components in
the color image, which ranged from 0 to 255.

Discussion

We evaluated the performance of the conventional method
and proposed method quantitatively using digital DTI phan-
tom data. As shown in Table 2, the RMSE in both methods
were in the range between 0.048 and 0.326: these errors
were comparable to those (range from 0.1 to 0.3) in the
literature [26, 27]. However, it should be noted that a direct
comparison cannot be made because the signal/noise ratio,
image resolution and the phantom image were different
from those used in the literature. We also assessed the

performance of the two methods using the volume overlap
measure. As shown in Table 3, although the performance of
the segmentation in the fiber-crossing region was improved
by applying the multiple-tensor estimation, some WM
voxels were still depicted as GM in the center area of the
fiber-crossing region (Fig. 3c). Our two-tensor estimation
model utilizes the diffusion tensor of the neighboring WM
voxel in Eqs. 8 and 9. By applying the proposed method to
the WM crossing voxel, the diffusion tensor at the voxel was
decomposed into the two diffusion tensors by minimizing
the cost function in Eq. 9. Then, the multiple-tensor estima-
tion was applied to the voxel adjacent to the new WM
voxels estimated by the proposed method. By applying the
proposed method iteratively in this manner, the estimation
error might accumulate. Because our proposed method
checks the voxel from the edge of the crossing area to the
center, some voxels in the center area of the fiber-crossing
region may not have been extracted as WM due to the
accumulated error.

We applied the conventional method and proposed meth-
od to human DTI data, and assessed the brain tissue seg-
mentation results visually because we did not have a ground
truth in human data. Columns (b) and (c) in Figs. 4 and 5
show the results obtained by the two methods. Figure 4
shows the slice at the level of the corona radiata, which
includes many WM voxels with more than one fiber orien-
tation [15]. It is known that the WM voxels in fiber-crossing
and/or fiber-branching regions tend to have low FA values
due to the partial volume effect [14]. As shown in Fig. 4, the
voxels in the parietal deep WM area have low FA values

Fig. 5 Images (top) at the external capsule level and magnifications
(bottom) of the region. a The FA maps, b the estimated partial volume
fraction maps obtained by the conventional method, c the estimated

partial volume fraction maps obtained by proposed method, and d the
structural images (T1-weighted images). Yellow arrows point to the
external capsules
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(yellow arrow in Fig. 4a), but these voxels have image
intensity corresponding to WM in the T1-weighted images
(yellow arrow in Fig. 4d). It seems that the conventional
method tended to misclassify these WM voxels with low FA
values as GM. As shown in column (c) of Fig. 4, the
segmentation performance at these voxels was improved
by applying the multiple-tensor estimation. The WM re-
gions estimated by proposed method more closely simulated
the WM regions depicted in the T1 images than those esti-
mated by the conventional method. Whereas the segmenta-
tion performance of the WM region is improved by applying
the multiple-tensor estimation, WM region might be over-
estimated due to the aforementioned accumulated error. In
our future work, we plan to perform quantitative evaluations
or comparisons of both methods.

As demonstrated in the literature [12], the conventional
partial volume segmentation method has several advantages
over the hard segmentation method based on the HMRF-EM
algorithm [11]. For example, the external capsules and the
putamen were depicted by the conventional method as WM
and GM, respectively, whereas it was difficult to identify the
external capsules and the putamen using the HMRF-EM
method. Figure 5 shows the results at the external capsule
level. In visual comparisons, these structures are correctly
identified by both methods (yellow arrows). Thus, our pro-
posed method improved the segmentation performance in
the WM fiber-crossing area, while maintaining similar seg-
mentation accuracy in other areas. These results suggest that
our proposed method, which takes into account the partial
volume effects due to both multiple tissue types and multi-
ple WM fiber orientations, was able to perform a reasonable
segmentation of the brain tissue on DTI data. The improve-
ment of the segmentation accuracy may reduce the risk of
misinterpreting the diffusion property when studying the
cortical and subcortical diffusivity in neurodegenerative
disease.

In this paper, we consider the segmentation for DTI data
acquired in routine clinical practice. However, recently the
diffusion imaging techniques with more gradient orientations
such as Q-ball imaging [28] and diffusion kurtosis imaging
[29] are used in clinical [30]. The information provided by
these imaging is used to improve WM fiber tractography [31].
In our future work, we plan to apply the conventional method
and proposed method to these data. We will investigate the
performance of these methods by using digital phantom data
in terms of the number of gradient orientations and signal-to-
noise ratio.

Conclusions

We have presented an extension of the conventional
partial volume segmentation to improve the segmentation

performance in fiber-crossing areas by applying multiple-
tensor estimation. The proposed method takes into account
the partial volume effects due to both multiple tissue types and
multiple WM fiber orientations. The results of the digital DTI
phantom experiment and human DTI data demonstrate that
our method improves segmentation accuracy compared with
the conventional method.
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