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Abstract Socioeconomic status (SES) is an important
reserve variable which has been shown to benefit the
aging brain’s macrostructure. However, it remains un-
known whether SES affects age-related changes in the
brain’s white matter (WM) microstructure. Here, we
used diffusion tensor imaging to explore the relationship
between SES and three components of the diffusion
tensor [fractional anisotropy (FA), axial diffusivity, and
radial diffusivity (DR)]. Participants were 40 (16 male)
cognitively normal young adults (mean age=33.3 years,
SD=4.27) and 44 (19 male) cognitively normal com-
munity dwelling seniors (mean age=66.2 years, SD=
7.5). Age-related FA declines were observed across a
large portion of the WM skeleton. However, seniors

with high SES showed lower age-related WM integrity
declines in three frontal tracts: the right anterior corona
radiata and bilateral portions of WM underlying the
superior frontal gyri (SFG–WM). Positive SES–FA cor-
relations were primarily driven by negative DR–SES
correlations, suggesting that SES may buffer age-related
declines in myelin. The functional significance of high
SES in these frontal tracts was demonstrated through
positive correlations with working memory performance.
Possible mechanisms through which SES may attenuate
the effects of age on frontal WM integrity are discussed.

Keywords Socioeconomic status . Diffusion tensor
imaging .White matter . Brain imaging . Aging .

Reserve

Introduction

Human aging results in well-established declines in the
brain’s macrostructure (Good et al. 2001; Smith et al.
2007). However, at least some age-related macrostructural
declines can be attenuated by positive lifestyle variables.
For example, a number of neuroimaging studies have
demonstrated that specific lifestyle variables such as ex-
ercise, leisure activities, education, and occupation can
have a positive impact on cortical structure in aging
(Brayne et al. 2010; Colcombe et al. 2006; Sole-Padulles
et al. 2009). These anatomically based structural benefits
of positive lifestyle variables may contribute to individual
differences in clinically manifested cognitive deficits
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(Stern et al. 1995a, b). For example, at the simplest level,
larger brains can sustain more age-related pathology (Satz
1993). This phenomenon is commonly referred to as brain
reserve and reflects quantitative differences in brain struc-
ture (i.e., brain volume, neuronal, or synaptic density) that
allow some people to cope with neurodegeneration better
than others (Stern 2009).

In recentyears, it hasbecome increasinglyapparent that
socioeconomic status (SES) is an important reserve vari-
able in aging (Marengoni et al. 2011; Singh-Manoux et al.
2011). Variations in SES have been linked with marked
differences in cognition and behavior across the life span
(Hackman and Farah 2009; Hackman et al. 2010). High
SEShasbeen linkedwith increased exposure to cognitive-
ly stimulating environments compared to low SES
(Hackman et al. 2010) and is associated with a lower risk
of developing dementia (Stern et al. 1994; Valenzuela and
Sachdev 2006). In contrast, low SES has been linkedwith
greater exposure to life stressors and reducedbrainvolume
in aging (Bartres-Faz et al. 2009; Sole-Padulles et al.
2009). SES is of strong theoretical interest to life span
approaches to aging because it most likely continues to
affect individuals across the duration of their employment
career (into the sixth decade of life in most cases). As a
result, it has now become standard practice to control for
SES in studies of aging and dementia.

However, little is known about the potential relationship
between SES and the brain’s white matter (WM) micro-
structure. A greater understanding of this potential relation-
ship is important because microstructural integrity of
cerebral WM is required for proper transmission of infor-
mation between cortical regions. Diffusion tensor imaging
(DTI) can be used to explore potential SES–WM integrity
relationships by evaluating the microstructural integrity of
the brain’sWMtracts in vivo (Basser et al. 2000; Basser and
Pierpaoli 1996; Le Bihan 2003). DTI is sensitive to the
random motion of water molecules as they interact within
tissues, thus reflecting characteristics of their immediate
structural surroundings at a nominal 50-μ scale. Diffusion
anisotropy can be measured by DTI by means of fractional
anisotropy (FA), an index of overall tissue microstructural
integrity (Pierpaoli et al. 1996).

While no studies have yet explored the relationship
between WM microstructural integrity and SES per se,
several recent studies have explored relationships
between WM integrity and other reserve variables
reflective of cognitive achievement (Arenaza-Urquijo
et al. 2011; Teipel et al. 2009). For example, Teipel et
al. (2009) explored the relationship between WM

integrity and education in both healthy seniors and
patients with clinically probable Alzheimer’s disease
(AD) using a statistical parametric mapping approach.
Interestingly, healthy seniors demonstrated a positive
relationship between FA and education in WM tracts
that showed an inverse relationship in AD participants.
These findings suggest a relationship between reserve
variables and WM integrity in healthy seniors.

However, there exist several important knowledgegaps
in this area of study. The first concerns the relationship
between the specific reserve variable of SES and WM
integrity in healthy seniors. In particular, it is unknown
whether SES is positively associated with WM integrity
in regions that undergo age-related declines. WM regions
that showsignificant age-relateddeclinesbut arepositively
correlated with SESmay reflect neuroprotective effects of
SES in aging. In particular, those WM regions showing
stronger SES–FA relationships in older adults than young
adultsmay inpart reflect the beneficial effects of continued
exposure to high SES in aging.

If SES does offset age-related WM integrity declines
in some regions, then it would be important to explore the
potential biological mechanisms and functional signifi-
cance of SES–WM integrity relationships in aging. An
increased understanding of the neurobiological bases for
potential SES–WM integrity relationships can be gained
from the joint consideration of FA, radial diffusivity
(DR), and axial diffusivity (DA) (Assaf and Pasternak
2008; Burzynska et al. 2010; Gold et al. 2012). For
example, an SES–DR relationship would suggest that
SES may help to preserve myelin integrity (Song
et al. 2002, 2005), whereas an SES–DA relationship
would suggest a relationship between SES and gross
tissue characteristics (Sen and Basser 2005).

In terms of functional significance, it would be rele-
vant to determine if SES-preserved WM integrity is
associated with high performance on cognitive processes
known to undergo marked age-related decline. One cog-
nitive domain known to undergo significant age-related
declines is working memory (Babcock and Salthouse
1990; Dobbs and Rule 1989; Park et al. 1997;
Wiegersma and Meertse 1990), yet age-related declines
in working memory may be attenuated by the relative
preservation of WM integrity in individuals with high
SES. The digit backwards (DB) span test was used to
explore this possible relationship because it assesses the
fundamental working memory function of maintaining
information online (Groeger et al. 1999), a function
which declines significantly with age (Baddeley 2000).
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To address these issues, we first identified WM
regions demonstrating significantly lower FA in
seniors compared to young adults. We then identified
SES–FA correlations within regions showing age-
related declines. The FA metric represents a weighted
average of DA and DR components of the diffusion
tensor. We thus further characterized the neurobiolog-
ical bases of significant SES–FA relationships by
assessing if these relationships were primarily driven
by SES–DR or SES–DA associations. Finally, we
assessed the functional significance of maintained
WM integrity by exploring the relationship between
FA and working memory in regions where age-related
WM integrity declines were offset by SES.

Methods

Participants

A total of 84 right-handed subjects participated in the
present study. Participants were 40 (16 male) cognitive-
ly normal young adults (mean age=33.3 years, SD=
4.27) and 44 (19 male) cognitively normal community
dwelling seniors (mean age=66.2 years, SD=7.5). The
young adult and senior groups did not differ in sex
distribution [χ2 (1)=0.087,P=0.768]. Informed consent
was obtained from each participant under an approved
University of Kentucky Institutional Review Board pro-
tocol. All participants were recruited from the local
community through posted flyers and newspaper adver-
tisements. Exclusionary criteria for the study included
the following: a major head injury and/or concussion,
stroke, a neurological or psychiatric disorder, untreated
high blood pressure, hypercholesterolemia or diabetes,
heart disease, the use of psychotropic medications (e.g.,
antidepressants), or the presence of metal fragments
and/or metallic implants contraindicated for magnetic
resonance imaging (MRI).

Demographic and cognitive tests

The Hollingshead two-factor index of social position. The
Hollingshead two-factor index of social position (ISP)
was used as a measure of SES (Hollingshead 1958).
The ISP is based on an individual’s occupation
and highest level of formal education. It is calculated
by assigning numeric values, from 1 to 7, to an individ-
ual’s occupation and education. Scores are then weighted

by multiplying by 7 (occupation) and 4 (education).
Values are then summed to produce a social index. For
example, an individual with a Bachelor of Arts degree
(numeric value=2) who works as an administrative
assistant (numeric value=3) would have an ISP score
of 29 ([2×4]+[3×7]=29). Lower values represent higher
earning occupations and more years of education. The
two groups did not differ in mean SES (young adult
group: M=29.4, SD=12.4; senior group: M=28.4, SD=
11.0) [t(82)=0.378, P<0.707], and Levene’s test of ho-
mogeneity indicated that the two groups did not differ in
SES variance [F(82)=0.193, P=0.662].

The Cattell culture fair intelligence test. Because
measures of SES are correlated with intelligence, and a
relationship between intelligence quotient (IQ) and WM
integrity has been reported (Chiang et al. 2011), we
controlled for IQ using the Cattell culture fair (CCF)
(Cattell and Cattell 1960). The CCF (scale 3) consists of
50 items and assesses inductive reasoning through the
ability to perceive relationships in shapes and figures.
Age-adjusted IQ scores were used because fluid intelli-
gence has been shown to decline with age (Schretlen et al.
2000). The two groups did not differ in mean IQ (young
adult group: M=120.2, SD=19.7; senior group: M=
123.8, SD=21.1) [t(82)=−0.804, P<0.424]. In addition,
the CCF was used as a nuisance covariate in all analyses
in order to control for within-group variance in IQ.

The digits span subtests of the Wechsler memory scale
(Wechsler 1997). Participants were read digit lists
aloud at a rate of one per second with consistent tone
and emphasis. Immediately after the digits were read,
the participants were instructed to repeat each set of
digits verbally in reverse order (digit backward; DB).
Participants received two trials for each set of digits
that ranged from 2 to 8 numbers. If the participant was
unable to repeat all digits in a given set, the test was
terminated. Totals were based on the number of trials
that were accurately reported in the correct order. All
scores were then adjusted for age.

Diffusion tensor imaging acquisition

Data were collected on a 3 Tesla Siemens TIM scanner
at the University of Kentucky using an 8-channel head
array coil. Whole-brain diffusion tensor images (40
contiguous 3-mm thick axial slices) were acquired
with 36 non-collinear encoding directions (b=
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1,000 s/mm2) and five images without diffusion
weighting (b=0 s/mm2, b0) using a double spin echo
EPI sequence and the following parameters: repetition
time=6,900 ms, echo time (TE)=84 ms, inversion
time=2,500 ms, flip angle=90°, acquisition matrix=
128×128, field of view=224 mm, in-plane resolution
=1.75×1.75 mm voxels. In addition, a double-echo
gradient-echo sequence (TE1=5.19 ms, TE2=
7.65 ms) with slice position and spatial resolution
matching those of the EPI acquisition was used to
map the spatial inhomogeneity of the B0 field.

Diffusion tensor imaging preprocessing and analysis

Diffusion tensor imaging (DTI) data were preprocessed
and analyzed using the Functional MRI of the Brain
(FMRIB) software library (FSL v4.1.5). Each diffusion-
weighted volume was corrected for motion and residual
eddy current distortion using a 12-parameter affine
alignment to the corresponding b0 image, via FMRIB’s
Linear Image Registration Tool (FLIRT: http://
www.fmrib.ox.ac.uk/fsl). Images were then corrected
for static field inhomogeneity distortions using B0 field
maps. Brain masks were then generated from each b0
image using FMRIB’s brain extraction tool (BET v2.1)
to exclude non-brain voxels from all subsequent pro-
cessing (Smith et al. 2006). Next, FMRIB’s Diffusion
Toolbox (FDT v2.0) was used to fit the diffusion tensor
and calculate eigenvalues, fractional anisotropy (FA),
axial diffusivity (DA), and radial diffusivity (DR).

Registration of FA images into MNI152 space and
subsequent voxelwise analyses followed a series of
procedures known as Tract-Based Spatial Statistics
[TBSS v1.2; (Smith et al. 2006)], as described in detail
in our previous work (Gold et al. 2010; Smith et al.
2010). Briefly, the initial step in this process was to
remove likely outliers from the fitted tensor by eroding
brain edge artifacts and zeroing the end slices. Next,
all participants’ FA images were aligned to the
FMRIB58_FA_1mm template using a nonlinear reg-
istration approach based on free-form deformations
and B-Splines (Rueckert et al. 1999). The FA images
were then affine registered and resampled to 1×1×
1 mm MNI152 space. Transformations derived from
the FA maps were then applied to the other diffusivity
maps (DR and DA) for matched processing of all
image volumes.

All MNI-transformed FA images were then aver-
aged to create a mean FA image used to generate a

common WM tract skeleton. An FA value of 0.2 was
used to threshold the skeleton in order to minimize
partial voluming effects after warping across subjects.
Next, each participant’s spatially normalized FA im-
age was projected onto the FA skeleton in order to
account for residual misalignments between partici-
pants after the initial nonlinear registration. Finally,
each subject’s DR and DA maps in MNI space were
projected onto the common tract skeleton, using the
pipeline for non-FA data provided by TBSS, which
employs the projection vectors from each individual’s
FA-to-skeleton transformation (Smith et al. 2006).

A main goal of the study was to determine if SES
shows a neuroprotective effect in WM regions that
undergo significant age-related declines. As a first
step, a between-group comparison was performed to
identify age-related changes in FA, with sex, IQ, and
SES scores included as nuisance covariates. A per-
mutation nonparametric test (using 5,000 permuta-
tions) was employed using a threshold-free cluster
enhancement, and results were thresholded at P<0.05
(corrected for multiple comparisons).

SES–FA correlations

As a second step, multiple regression analyses were
performed to explore potential SES–FA relationships
within regions showing age-related FA changes. Toward
this end, an inclusion mask was first generated to include
all voxels showing higher FA in the young group com-
pared to the senior group. This inclusion mask was then
resubmitted into the TBSS algorithm in order to search
for SES–FA relationships within regions showing age-
related FA declines. Age, sex, and IQ were included as
covariates of no interest. Because the multiple regression
analyses were restricted to (masked by) regions showing
age-related FA declines, a statistical threshold of P<
0.001 (uncorrected) was employed with a cluster thresh-
old of 20 voxels. For visualization purposes, all statistical
maps were dilated using FSL’s tbss_fill.

Region of interest analyses

Results from the analyses described above demon-
strated SES–FA correlations in the senior group in
three frontal WM regions. Region of interest (ROI)
analyses were conducted to further characterize the
neurobiological bases and functional significance
of these SES–FA correlations.
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Component diffusivity analyses. Multiple regression
analyses were performed with SES as the dependent
variable and age, sex, IQ, and mean DR and DA values
from ROIs demonstrating SES–FA correlations as pre-
dictor variables. Standardized beta values were then
assessed to determine the unique contribution of each
independent variable. The largest standardized beta value
indicates the independent variable that makes the stron-
gest unique contribution to explaining the variance in
SES in regions showing SES–WM integrity relationships
in healthy seniors.

Correlation of FA and working memory. The second
ROI analysis was intended to explore relationships
between working memory (i.e., digit backwards) and
WM integrity in the three frontal ROIs that showed a
correlation between SES and FA in the senior group.
Partial correlations were used to determine the rela-
tionship between FA and working memory perfor-
mance while controlling for sex and IQ.

Results

Demographic information for both groups is listed in
Table 1. Results from the between-group comparison of
FA are presented in Fig. 1. The senior group demon-
strated significantly lower mean FAvalues (red) across a
large portion, but not all, of the WM skeleton (green)
after controlling for sex, IQ, and SES. The average age-
related reduction in FAwas significant across the entire
WM skeleton F(1, 79)=33.16, P<0.001. There were no
regions with significantly higher FA in the senior group
compared to the young adult group.

SES–FA correlations

Figure 2 presents the results of the voxelwise multiple
regression analysis between SES and FA in the senior
group, and regression plots for the three regions

consisting of ≥20 contiguous voxels (MNI coordinates
are listed in Table 2). The correlation coefficients rep-
resent partial correlations after controlling for within-
group variance in age, sex, and IQ. A positive correla-
tion was observed between SES and FA in left superior
frontal gyrus (SFG) WM, right SFG–WM, and the
right anterior corona radiata (ACR) in the senior group.
Specifically, the senior group demonstrated a positive
correlation between SES and FA in left SFG–WM
(r=0.783, P<0.001), right SFG–WM (r=0.512,
P<0.001), and right ACR (r=0.486, P<0.001).

In contrast, in the younger adult group, no relation-
ship was observed between SES and FA in the three
frontal regions showing correlations in the senior
group: left SFG–WM ROI (r=0.147, P=0.193), right
SFG–WM ROI (r=−0.100, P=0.279), or right ACR
ROI (r=−0.187, P=0.134). In addition, multiple re-
gression analysis conducted across the brain’s WM
(i.e., not restricted to regions showing age-related FA
declines) revealed no regions showing a positive SES–
FA relationship in the younger group.

Region of interest analyses

Component diffusivity analyses. The total SES vari-
ance explained by the model was 63.3 % in the left
SFG–WM ROI (R=0.796, F(5, 38)=13.13, P<0.001),
35.3 % in the right SFG–WM ROI (R=0.549, F(5, 38)
=4.14, P<0.004), and 30.2 % in the right ACR ROI (R
=0.549, F(5, 38)=3.28, P<0.015). DR made the stron-
gest contribution to the variance in SES in each of these
three regions [left SFG–WM ROI (beta=−1.30, P<
0.001), right SFG–WM ROI (beta=−0.57, P=0.006),
and right ACR ROI (beta=−0.62, P=0.001)]. The
unique contribution of both DR and DA are listed in
Table 3. Scatter plots illustrating the relationship be-
tween DR and SES in each ROI are present in Fig. 3.
The correlation coefficients represent partial correla-
tions after controlling for within-group variance in
age, sex, and IQ.

Table 1 Demographic data

Subjects Number Sex (F/M) Age SES IQ

Young Adults 40 24/16 33.3 (4.3) 29.4 (12.4) 120.1 (19.76)

Older Adults 44 25/19 66.2 (7.5) 28.4 (11.0) 123.6 (21.15)

Values are means and values in parentheses are standard deviations

F female, M male
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Correlation of FA and working memory. Figure 4
presents the correlations between FA andworking mem-
ory in regions that showed a positive SES–FA relation-
ship in healthy seniors. The correlation coefficients
represent partial correlations after controlling for
within-group variance in age, sex, and IQ. A positive
correlation was observed between FA and DB in the left
(r=0.323, P=0.019) and right (r=0.323, P=0.019)
SFG–WM ROIs. Similarly, an FA–DB trend was ob-
served in the right ACR ROI (r=0.237, P=0.066). For
the young adults, no correlation was observed between
FA andDB in the left SFGROI (r=0.060,P=0.363), the
right SFG ROI (r=−0.115, P=0.249), or the right ACR
ROI (r=−0.110, P=0.259).

Discussion

The present study represents the first systematic ex-
ploration of the relationship between socioeconomic
status (SES) and WM microstructural integrity rele-
vant to normal aging. Strengths of our study include
the use of a TBSS method with rigorously validated
registration methods, exploration of three main com-
ponents of the diffusion tensor (FA/DR/DA), and the
control of age, sex, and IQ variables in all analyses.
Seniors demonstrated significantly lower FA across
widespread portions of WM. However, high SES off-
set age-related FA declines in several frontal WM
regions. In addition, the relative preservation of WM

Fig. 1 Age-related reductions in FA. Statistical map showing
WM regions (a coronal, b sagittal, c transverse sections) where
FAwas significantly greater (red) in younger adults compared to
seniors. The anatomic underlay used for illustration is the
MNI152 T1-weighted 1-mm brain. The registered average FA

skeleton is represented in green. d The average FA value across
the entire WM skeleton is presented in the inset graph for both
seniors and young adults. The average age-related reduction in
FA was significant across the entire WM skeleton
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integrity in these regions was positively associated
with working memory span. The details of these
findings are discussed below.

We observed diffuse age-related reductions in FA in
frontal, parietal, occipital, and temporal WM, consistent
with previous results (Abe et al. 2002; Madden et al.

Fig. 2 SES is correlated with FA in seniors. A positive corre-
lation between SES and FA in the senior group was observed in
a WM underlying the left superior frontal gyrus (SFG–WM), b
WM underlying the right superior frontal gyrus SFG–WM, and
c the right anterior coronal radiata (ACR). The numbers below
each slice represent x coordinates in MNI space. The right panel

shows scatter plots of the correlations between mean FA and
SES in each WM region for each group (seniors= filled circles;
young adults=open circles). Note: To render FA–SES regres-
sion plots more interpretable, participants’ SES values on the
ISP were converted such that higher scores now reflected higher
levels of SES (by subtracting each participant’s score from 100)

Table 2 Location and size of white matter regions showing selective positive SES–FA correlations in the senior group

Region X Y Z Cluster size Correlation seniors Correlation young adults

L superior frontal gyrus white matter −11 21 51 47 0.783* 0.147

R superior frontal gyrus white matter 18 48 21 20 0.512* −0.100
R anterior corona radiata 27 25 13 27 0.486* −0.187

Values represent partial correlations after controlling for within-group variance in age, sex, and IQ; r values are displayed

L left, R right

*P<0.001
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2004; O'Sullivan et al. 2001; Pfefferbaum et al. 2000).
Within regions showing age-related WM integrity
declines, we observed positive SES–FA relationships
in several frontal regions in the senior group. Specifi-
cally, in the senior group, positive SES–FA correlations
were observed in bilateral portions of WM underlying
the superior frontal gyri (SFG–WM) and in the right
anterior corona radiata (ACR). The location of the ob-
served SES–FA relationship within frontal regions is
consistent with a view that high levels of SES are
associated with an increasing emphasis on high-level
decision making, planning, and goal-directed behavior
(Andersen et al. 2004; Kristensen et al. 2002). The
positive SES–WM integrity relationship in the senior
group could be the result of biological mechanisms (i.e.,
higher WM integrity leads to higher SES) or environ-
mental mechanisms (i.e., SES is neuroprotective ofWM
integrity). These possibilities are not mutually exclusive
and may both be at work in some interactive fashion.

To identify potential neuroprotective effects, we in-
cluded a young group that was matched with the senior
group for mean SES, SES variance, IQ, and gender.
Despite this matching, the observed SES–FA correla-
tions in frontal WM were selective for the senior group.
The unique correlations in the senior group raise the
possibility that high SES may neuroprotect some age-
related frontal WM integrity declines. The anatomical
specificity of the observed SES–frontal relationshipmay
in part reflect that frontal WM tracts, because they are
especially vulnerable to age-related declines (Head et al.
2004; O'Sullivan et al. 2001; Salat et al. 2005a, b), also
carry greater chance of incurring protective benefits
from high SES than other regions.

Although the neurobiological mechanisms contributing
to a potential SES–WM integrity relationship are still
unclear, cognitive stimulation, and the subsequent activa-
tion of cortical neurons,may play a significant role because
axonmyelination appears to be triggered by neural activity

(Bradl and Lassmann 2010; Gyllensten and Malmfors
1963; Omlin 1997). Support for such a mechanism comes
from studies exploring the effects of cognitive stimulation
(cognitive training) on WM integrity (Engvig et al. 2011;
Lovden et al. 2010). For example, Lovden et al. (2010)
demonstrated that cognitive training in young adults and
healthy seniors results in increasedWM integrity in frontal
commissural tracts, suggesting that regular cognitive stim-
ulation may help contribute to dynamic changes in WM
microstructural integrity at any age.

In partial support of this view, joint consideration of
the other major components of the diffusion tensor
showed that the positive SES–FA correlations in the
left SFG–WM, right SFG–WM, and right ACR were
primarily explained by negative SES–DR correlations.
Interestingly, similar findings have been reported in
frontal tracts in association with a different kind of
reserve variable, cardiorespiratory fitness (Johnson et
al. 2012). The convergence of these findings raises the
possibility that maintenance of myelin integrity within
frontal WM tracts may serve as one common mecha-
nism of brain reserve. However, future longitudinal
research will be required to determine if the adoption
of positive lifestyle variables can attenuate the rate of
myelin loss in cognitively normal seniors.

Finally, to determine the potential functional
significance of maintained frontal WM integrity
in aging, we explored the relationship between
working memory (i.e., DB) and WM integrity in
frontal regions showing positive SES–FA correla-
tions in the senior group. We observed a positive
relationship between microstructural integrity and
DB in WM underlying the left and right SFG. The
observed association has high face validity because
WM underlying bilateral portions of the SFG in-
clude tract connections with the left and right
dorsolateral prefrontal cortex, brain regions that
play central roles in working memory function
(D'Esposito et al. 1995; Salmon et al. 1996).

The present study has several caveats that high-
light the need for future work in this field. First,
the cross-sectional design used in this study is
unable to provide definitive information on cause-
and-effect relationships between SES and WM in-
tegrity. Furthermore, the cross-sectional design did
not allow us to account for potential cohort effects
(Deary et al. 2003). Second, SES is considered to
be a proxy indicator for other lifestyle variables
known to contribute to reserve (such as physical

Table 3 Unique contributions of radial and axial diffusivity
measures in predicting SES

Region Standardized beta
coefficients

DR DA

L superior frontal gyrus white matter −1.30 0.78

R superior frontal gyrus white matter −0.57 0.27

R anterior corona radiata −0.62 0.29
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activity, access to health care, and dietary habits).
These variables could contribute to the present
SES correlations and should be explored in future
work. Additionally, our younger and older group
samples demonstrated a relatively high mean IQ.
Future work will be required to determine if our

findings generalize to groups with average IQs.
Third, the underlying biophysical properties de-
rived from the diffusion tensor still need to be
elucidated in humans. Although animal model
studies have established a link between demyelin-
ation and DR (Song et al. 2002, 2005), this link is

Fig. 3 Relationship between SES and DR in regions showing a
positive SES–FA correlation in seniors. Regression plots show
the negative relationship between SES and DR in a WM

underlying the left superior frontal gyrus (SFG–WM), b WM
underlying the right superior frontal gyrus SFG–WM, and c the
right anterior coronal radiata (ACR)
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not as well established in humans (Wheeler-Kingshott
and Cercignani 2009). Lastly, future studies should
explore the contribution of genetic factors, such as the
presence of apolipoprotein-E4 allele, as genetics can
interact with environmental variables to influence corti-
cal structure (Anttila et al. 2004; den Heijer et al. 2004;
Dufouil et al. 2000).

In conclusion, our results suggest a potential neuro-
protective effect of SES on frontal WM integrity. The
positive SES–FA correlations observed were primarily
driven by negative DR–SES correlations, suggesting
that SES may buffer age-related changes in myelin.
The functional significance of high WM integrity in
these frontal regions was demonstrated through posi-
tive correlations with working memory span. These
findings suggest that SES may help maintain frontal
WM integrity and working memory function in aging.

On the flip side, our results draw further attention to
the fact that disparities in SES affect not only one’s
status in society but also the health of the aging brain.
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