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Abstract Age is an important factor when considering
phenotypic changes in health and disease. Currently, the
use of age information in medicine is somewhat simplis-
tic, with ages commonly being grouped into a small
number of crude ranges reflecting the major stages of
development and aging, such as childhood or adoles-
cence. Here, we investigate the possibility of redefining
age groups using the recently developed Age-Phenome
Knowledge-base (APK) that holds over 35,000 literature-
derived entries describing relationships between age and
phenotype. Clustering of APK data suggests 13 new,
partially overlapping, age groups. The diseases that de-
fine these groups suggest that the proposed divisions are
biologically meaningful. We further show that the num-
ber of different age ranges that should be considered
depends on the type of disease being evaluated. This
finding was further strengthened by similar results

obtained from clinical blood measurement data. The
grouping of diseases that share a similar pattern of
disease-related reports directly mirrors, in some cases,
medical knowledge of disease–age relationships. In other
cases, our results may be used to generate new and
reasonable hypotheses regarding links between diseases.
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Introduction

Age plays an important role in medicine and medi-
cal research, being an important factor when consid-
ering phenotypic changes in health and disease. A
patient’s age can affect the course and progression
of a disease (Diamond et al. 1989; Hasenclever and
Diehl 1998) or can be important in determining the
correct course of treatment (Vecht 1993). Despite
this, current use of age information in medicine is
somewhat simplistic and coarse.

Ages are commonly grouped into a small number
of crude age ranges, reflecting the major stages of
development and aging (Carol and Sigelman 2005).
Evidence, however, suggests that not all biomedical
processes mesh with the same age-grouping tem-
plate. For example, whereas sexual maturation usu-
ally ends by the age of 19 (DeLamater and Friedrich
2002), other developmental processes, such as brain
development, continue well into the 20s (Giedd et
al. 1999). Moreover, standard age ranges such as
those defined by the Medical Subject Headings
(MeSH) which is the National Library of Medicine’s
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controlled vocabulary thesaurus (Medical Subject
Headings (Mesh), [http://www.ncbi.nlm.nih.gov/
mesh]), are disjoined and nonspecific. When consider-
ing disease prevalence and treatment for many types of
disease, the important age ranges differ from ranges
that are acceptable. For example, venereal disease
infections are expected to be most prevalent between
the ages of 16 and 35 (Syrjanen et al. 1984;Weinstock et
al. 2004). The age range mentioned above includes
individuals belonging to three age groups according to
the commonly used MeSH vocabulary (i.e., children,
adolescents, and adults). Such limitations of the existing
age classificationmodel raise the need to revisit how age
ranges are defined in the context of disease and health. If
ranges could instead be defined in such a way that
allows for overlap, it could better suit the description
of age in the context of different diseases. Furthermore,
although many agree that different age ranges should be
considered in the context of different types of disease,
this possibility has yet to be systematically evaluated.

While much data concerning disease and age exist,
such information was not systematically organized and
only of late became available for research. Recently,
we developed the Age-Phenome Knowledge-base
(APK) that holds a structured representation of knowl-
edge derived from the scientific literature and clinical
data regarding clinically-relevant traits and trends that
occur at different ages, such as disease symptoms and
propensity (Geifman and Rubin 2011). The database
underpinning the APK contains over 35,000 entries
that describe relationships between age and disease
and were mined from over 1.5 million PubMed
abstracts (Geifman and Rubin 2012). The availability
of such ordered information can lend itself to the
examination of age–disease relationships.

One approach for exploring the definition of age
ranges involves clustering ages based on patterns of
disease occurrence. Accordingly, clustering techni-
ques that group genes, diseases, ages, or other traits
that share similar patterns have been repeatedly used
in biomedical research to generate new hypotheses.
Many such techniques have also been used in the
study of biological and medical data, especially in
the analysis of microarray and gene expression data
(Ben-Dor et al. 1999; Sherlock 2001; Yin et al. 2006).
In fact, we have previously shown that using hierar-
chical clustering based on common patterns in labora-
tory test values, ages could be grouped into consistent
clusters (i.e., where continuous ages are grouped

together) and that these clusters largely overlapped
with existing age-range definitions (Fliss et al. 2008).

Here, using clustering methods, we explored the
possibility of redefining age ranges based on their
similarity in disease profiles, as captured in the APK.

Results

Towards new age groups

We initially conducted clustering analysis of the age–
disease association data using a simple clustering
method (k-means, see Methods). Using this approach,
nine age groups were defined with the following
ranges: 0–2, 3–5, 6–13, 14–18, 19–33, 34–48, 49–
64, 65–78, and 79–98 years. These ranges closely
match the accepted MeSH ranges (Fig. 1), with the
exception of the young adults group, which according
MeSH includes individuals 19–24 years of age; here,
this range was extended to age 33. In addition, the
newborn group (less than 1 month old) was absent
from the k-means analysis results due to limitations of
the data used (i.e., the use of 1 year resolution).

Our success in recapturing existing knowledge led
us to seek new classifications, allowing for the possi-
bility that multiple, overlapping age ranges better de-
scribe groupings pertinent to different diseases or
disease classes. While the k-means algorithm could
in principle allow for overlapping clusters, it is best
suited for disjoined grouping. We thus chose to adopt
the latent Dirichlet allocation (LDA) clustering meth-
od, a probabilistic “soft clustering” method that allows
a given age to belong to multiple ranges. Using LDA
with hyper-parameter optimization, 13 age clusters
were identified (Table 1 and Fig. 1). These results
were supported by our validation techniques (see
“Methods”). Twelve of the 13 clusters were success-
fully recovered when discarding 20 or 40 % of the
data. Even when 60 % of the data was discarded, nine
of the clusters remain. When repeating the analysis,
setting the maximum number of clusters to 13, we
obtained highly similar results within the limits of
what is expected of a stochastic algorithm (see
“Supplementary material”).

As expected, LDA clustering yielded very different
clusters from k-means clustering as well as existing
age-range definitions. Importantly, the LDA method-
derived clusters overlap. Cluster 2, for example,
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extends into cluster 1 (spanning the 1–16 and the 1–
20 year age ranges, respectively), yet has a later rep-
resentative age (12 years as compared to 1).

An examination of the resulting age groups sug-
gests that many might be of biological significance.

LDA cluster 6, which spans ages 20–41 years,
contained a large proportion of instances of a variety
of female and male fertility-related diseases (e.g., sper-
matocytoma, male infertility, anovulation, female in-
fertility, etc.). This age range corresponds to the child-
bearing and rearing years and likely reflects those ages
when patients try to conceive (Dunson et al. 2004),
rather than the actual age of fertility which is likely to
begin earlier. Surprisingly, substance abuse-related
conditions, such as chronic alcohol intoxication, her-
oin dependence, and cocaine addiction, were also as-
sociated with the same cluster, possibly reflecting
related social, psychological, and/or biological pro-
cesses that co-occur in the same age group.

LDA cluster 12, which spans the ages of 62–
86 years, was associated with conditions such as hip
fractures, amnesia, and arterial stenosis, all of which
are recognized age-related diseases that tend to occur
in the later stages of life. Another cluster, covering the
ages of 76–98 years (LDA cluster 13), was highly
associated with other age-related diseases, such as
Alzheimer’s disease, dementia, Parkinson’s disease,
tooth attrition, age-related macular degeneration, cat-
aracts, contusions, and DNA fragmentation. This sce-
nario may reflect a subdivision of the older age-
associated diseases into separate age groups (i.e.,
“old” versus “older”). In addition, a few of the result-
ing clusters span similar age ranges and have a similar

Fig. 1 Age ranges as proposed by several methods, namely, the
widely accepted MeSH, k-means, and LDA approaches. Age
ranges defined by clustering of APK data by the k-means

method strongly resemble those defined by MeSH. The LDA
method offers several overlapping age ranges shown to be of
biomedical significance

Table 1 Summary of the LDA clustering results

Cluster # Range Representative age

1 0–16 1

2 0–20 12

3 7–28 16

4 16–38 21

5 18–34 22

6 20–41 35

7 32–54 47

8 41–63 53

9 48–69 61

10 50–73 62

11 50–72 67

12 62–86 74

13 76–98 91

Ages were clustered with the LDA algorithm based on disease
co-occurrence (see “Methods”). For each cluster, the ages be-
longing to that cluster and the most significant age are pre-
sented. We mark the most probable ages in a given cluster as
the representative age of the resulting age range
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representative age (clusters 4 and 5 as well as
clusters 9 and 10). Careful examination of the
clusters reveals that these are indeed distinct; dif-
ferences in the diseases which define them are
evident (see “Supplementary material”). Moreover,
when we looked for a smaller number of clusters
as part of the validation process, these clusters
remained distinct.

Finally, LDA cluster 1 that includes ages 0–
16 years (with age 1 year being the most signif-
icant age in the cluster) was highly associated
with diseases of childhood and infancy, such as
otitis media, childhood leukemia, rota virus infec-
tion, sudden infant death syndrome and infantile
spasms, as well as a variety of genetic conditions
and birth defects. This cluster suggests a definition
of childhood that overlaps with existing definitions
but only partially coincides with them.

The association of disease with age groups
(clusters) also corresponds to known ages of inci-
dence. Carcinoma of the nasopharynx, shown to
peak at ages 45–64 years (Ho 1978), was associ-
ated with LDA cluster 7, which spans ages 32–
54 years (with the most significant age being 47),
in 56 % of the reported instances of the diseases
listed in the APK and with LDA cluster 10, rang-
ing from the age of 50 to 73 years (with the most
significant age being 62 years), accounting for an
additional 35 % of the reported instances. The
incidence of vaginitis peaked in two age groups
(Foxman et al. 2000), the first spanning the ages
of 18–24 years and a second peak spanning the
35–44 year range. According to our analysis, vag-
initis was found to be highly associated with two
LDA clusters, namely cluster 4 (with the most
significant age being 21 years), accounting for
34 % of the APK-listed instances of the disease,
and cluster 7, accounting for 60 % of the listed
cases. HTLV-I, a virus known to cause several
common cancers, had a low prevalence (~10 %)
in ages under 39 years but became more common
with age, reaching a prevalence of nearly 50 % by
age 70 (Mueller 1991). In our analysis, HTLV-1
associated with five LDA clusters, with a low
proportion of instances associated with clusters 2,
3, and 6 (5–7 %) and with a high proportion of
cases being grouped in clusters 8 and 12 (36–
39 %). Since clusters 2, 3, and 6 include young
adults while clusters 8 and 12 include adults and

older individuals, these associations follow the rise
of detection with advanced age.

Different types of disease divide the human lifespan
differently

The existence of overlapping age ranges, as the
LDA results suggest, further supports the hypothesis
that different disease types divide life into different
numbers of groups. To test this hypothesis, diseases
were grouped to form classes of diseases based on
the Disease Ontology. Ages within each disease
class were clustered on the basis of the hierarchical
clustering algorithm, using the pvclust R package
(Suzuki and Shimodaira 2006) to define statistically
significant divisions into clusters (p value<0.05).

Our results suggest that different disease classes
divide the human lifespan into different numbers of
age ranges (see Fig. 2 for selected disease classes
and “Online supplementary material” for all disease
classes). “Fungal Infection”, for example, defined
two age ranges, namely 1–20 and 21–95 years.
“Bacterial infections”, in comparison, divided life
into six segments, while “tissue diseases” divided
life into three sections. We note, however, that for
many of the disease classes evaluated, a break was
observed in the late teens or around age 20. This
observation coincides with common medical knowl-
edge; many changes occur in the late teens. The
switch from adolescence to adulthood possibly tran-
scends the age divisions associated with specific
disease classes. However, the need to consider age
differently for the different disease classes was fur-
ther demonstrated when age distribution within
each class was considered. When the median value
per class was visualized (Fig. 3a), disease classes
clearly differed in terms of their characteristic age
ranges.

We further evaluated clustering of ages based on
abnormal blood measurements obtained from the
National Health and Nutrition Examination Survey
(NHANES) (see “Methods”). Briefly, the survey pro-
vides, among other things, laboratory measurements
of a random sample of nonhospitalized US residents.
We calculated the fraction of individuals in the 2007–
2010 surveys that had abnormal values, using
the definitions of normal values provided in the
NHANES survey. A heat-map of these data illustrates
how different abnormal blood measurements divide

2360 AGE (2013) 35:2357–2366



the human lifespan differently (Fig. 3b). Abnormal
values are clearly enriched in some blood measure-
ments in older individuals aged 67 and above (I), in
middle aged subjects (II), and in adolescents and
young adults (III).

Grouping diseases according to their age-related
pattern

We next set out to further demonstrate that multiple
processes occur in aging and development by revers-
ing the process, namely using hierarchal clustering of
disease by age. We hypothesized that diseases that are
governed by similar age-related processes should
share similar age patterns.

Several of the clusters thus generated both demon-
strate the fact that these clusters are likely to represent
actual biomedical knowledge and propose new disease
associations. Two representative clusters are described
in detail (Fig. 4). The first cluster (Fig. 4a) involves
several childhood-related diseases (such as rubella,
mumps, measles, and chronic childhood arthritis), as
well as some neuropsychological-related disorders
(such as separation anxiety disorder, personality dis-
order, and language disorder). The second cluster
(Fig. 4b) shows the clustering of a wide array of
disorders ranging from parasitic diseases, such as
schistosomiasis and trichomoniasis, to anorexia nerv-
osa and classic migraines. Interestingly, neither of the
clusters can be well described by the existing age-

Fig. 2 Different disease classes divide life into different numbers of age clusters. The age clusters for four disease classes are illustrated
(p value<0.05)
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range definitions. The first cluster mostly involves
ages 6–21 years, while the second involves ages 13–
51 years.

Discussion

In this study, several analytic techniques were used to
analyze data stored in the Age-Phenome Knowledge-
base. Our goal was to test two hypotheses: (1) that the
current definition of age ranges can be refined by
mining existing knowledge of age–disease associa-
tions with advanced analysis methods and (2) that
age groups are context-specific, such that different
biological process divide life into different ranges.

To examine the first hypothesis, we initially
showed that by using a simple, standard technique,
data from the APK reflects the currently accepted
medical age-range definition. This attests that de-
spite limitations of the APK (Geifman and Rubin
2012), APK data is of sufficient quality to be
useful. By allowing overlapping age ranges, we
show that new, biologically relevant age ranges
can be defined. Indeed, using the LDA clustering
method, we generated age clusters based on age–
disease relationships, as described in the APK.

The clustering of ages based on disease co-
occurrence using a soft clustering method, namely
LDA, defined several age intervals, many of which

have clear biological significance. For example, a
cluster which contains ages 76–98 years was highly
associated with diseases such as Alzheimer’s dis-
ease, dementia, and Parkinson’s disease, all of which
are known to have a high prevalence in later stages
of life. On the other hand, a cluster containing ages
0 to 16 years was highly associated with known
childhood conditions. Interestingly, LDA suggests
that several age-related diseases can be divided over
older-ages clusters. For instance, cluster 12 (ages
66–86 years) is highly associated with hip fractures,
amnesia, and arterial stenosis, while LDA cluster 13
(containing ages 76 to 98 years) is highly associated
with neurodegenerative diseases, tooth attrition, age-
related macular degeneration, cataract, contusions,
and DNA fragmentation. These results suggest that
there might be more than one process occurring at
advanced ages, and that different diseases are asso-
ciated with different processes.

We next tested the hypothesis that multiple process-
es underlie aging and development and that the num-
ber of different age ranges that should be considered
depends on the type of disease which is being evalu-
ated. By considering the optimal age ranges of differ-
ent disease classes, we showed that different types of
disease divide life into different intervals. Moreover,
some of the intervals defined by clustering specific
disease classes are not currently used, to the best of
our knowledge, to classify patient ages (for example,

Fig. 3 Age-related changes
in clinical parameters. a The
distribution of APK values
across 28 disease classes.
For each disease class (col-
umns), the median values of
instances across all the dis-
eases in that class and that
age are shown. b Heat-map
of the number of patients
with abnormal values per
age and blood measurement
(ages range from 12 to
80 years). This heat-map
was generated using data
from the NHANES survey
(2007–2010)
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ages 43–51 years when considering bacterial infec-
tion). Similar results were obtained by clustering ages
based on abnormal blood measurements, showing that
as with different disease classes, various abnormal
blood measurements differ in the number of age
ranges they define. Moreover, we show that the clus-
tering of diseases based on age patterns groups togeth-
er related diseases. Finally, the LDA analysis allowed
us to define multiple overlapping age ranges, possibly
reflecting parallel yet different underlying processes.
Taken together, our results suggest that the current
universal division of life (i.e., division in into child-
hood, adulthood, etc.) might need to be revisited, and

that disease- or process-specific classification should
be considered.

The hierarchal clustering of diseases, in addition to
demonstrating context-specific age patterns, allowed
us to investigate possible links between diseases. The
disease clusters were found to be useful in generating
new hypotheses regarding links between diseases that
share similar age-dependant, literature-derived pat-
terns. Take for example, the clustering of hypophos-
phatemia and pulpitis seen in Fig. 4a. Although no
causative link necessarily exists between the two,
there is evidence linking the two via X-linked hypo-
phosphatemia (XLH), an X-linked dominant form of

Fig. 4 Hierarchical clustering results. a A phylogram and
graphical representation for a cluster of diseases that the litera-
ture reports peaks in childhood and early teens. b A phylogram
and graphical representation for a cluster of diseases that the

literature reports peaks in the late teens and up to mid-life.
Graphical representation of the average of corrected number of
instances per age and disease
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rickets. Patients with XLH are highly susceptible to
dental caries and attrition, leading to bacterial invasion
into the dental pulp which can result in pulpitis (Su et
al. 2007). It should be noted that the clustering of
hypophosphatemia and pulpitis is not due to both
being mentioned in the same PubMed abstracts from
which the APK data were mined. Instead, their similar
pattern of occurrence with age is independent of this.

A second example derived from our approach is
the clustering of overnutrition and two parasitic dis-
eases, namely schistosomiasis and trichomoniasis.
Substantial evidence links parasitic infections and
malnutrition. The role of the immune system as a
major factor in limiting and eliminating parasitic
invasion is well known. Malnutrition, known to im-
pair immunity, leads to a lowered ability to fight off
parasitic infections (Chandra 1984). In truth, both
undernutrition and overnutrition can lead to reduced
immunity. For example, obesity was associated
with alterations in cellular immunity (Samartín and
Chandra 2001). Hence, it is plausible that overnutri-
tion that can hamper the immune system could in-
crease susceptibility to parasitic infections.

These two examples were chosen in order to dem-
onstrate how our results can be used to generate hy-
potheses regarding the possible association of different
diseases. However, considering the huge number of
hypotheses which can be derived from these clusters,
not all are equally probable. For several of the co-
clustered diseases, no neat, straight-forward hypothe-
sis could be formulated. For example, the disease
anorexia nervosa was clustered with human bites and
duration of gestation (Fig. 4b). We could find some
studies that link anorexia and duration of gestation:
girls who were born preterm are more likely to devel-
op anorexia later in life (Cnattingius et al. 1999), and
women who suffer from anorexia are likely to deliver
their babies prematurely (Ekeus et al. 2006). However,
it is highly improbable that anorexia and duration of
gestation are linked to human bites. Thus, while some
interesting hypothesis can be generated from our
results, others may be invaluable.

Based on our clustering results, additional hypoth-
eses regarding linkage between diseases could be
made. For example, since rubella and delayed puberty
share a similar pattern in age and were, therefore,
clustered together, it could be hypothesized that a
medical/biological connection between the two exists.
Such possible links between diseases that emerge from

the clustering results should be further investigated to
draw meaningful conclusions.

The main weaknesses of this study lies in its
sensitivity to research biases. Since our knowledge-
base mostly contains data extracted from published
papers, it may be influenced by the way clinical
research perceives age–disease relationships. We
note, however, that as these perceptions have a strong
influence on clinical care, capturing them is a useful
goal unto itself. At the same time, the main strength
of this work comes with the use of a novel, data-
driven approach to generate hypotheses about age,
possibly leading to new research directions. To the
best of our knowledge, this is the first attempt at
defining overlapping age ranges based on knowledge
mining techniques. Our strategy utilizes a novel
knowledge resource, namely the APK, together with
advanced data analysis techniques. Further research
using improved knowledge-bases and other clinical
and biological data may be used to redefine age
intervals and to secure the definition of multiple,
overlapping age ranges that are context-specific yet
clinically and biologically relevant.

Conclusions

To conclude, in this work, we demonstrate that mean-
ingful age groups can be redefined based on data
derived from the biomedical literature. These new
age ranges are potentially better suited to describe
important ages in the context of patient health. We
further show that the age groups are context-specific
and differ between disease types. Furthermore, we
show that by grouping diseases together based on their
occurrence in age, new hypotheses regarding links
between diseases can be generated.

Methods

A quantitative age–disease matrix

For each disease mapped in the APK database, a count
of the number of instances per age was obtained.
Evidence linked to inferred age ranges (e.g., inferring
0–50 from the sentence “Under 50 years old”) were
excluded. A matrix of disease over age was generated
such that each cell contained the number of instances

2364 AGE (2013) 35:2357–2366



reported for that age (i.e., the age 42 years has a value
of 22 in the atherosclerosis column as it is associated
with atherosclerosis through 22 database instances).
The matrix was normalized by dividing the cells for
each disease by the disease total instances count to
control for diseases over- or underrepresented in the
literature.

Clustering ages by disease co-occurrence

Three clustering algorithms were used to examine age
clustering: The Latent Dirichlet Allocation algorithm,
the k-means algorithm, and a hierarchical clustering
algorithm.

The LDA is described in detail in Blei et al. (2003).
Briefly, LDA assumes that each observation is the
probabilistic product of a number of underlying pro-
cesses. In the case of ages, the underlying process is
the correlation between a group of ages and a disease.
Based on observations (association of specific ages
and disease), this method creates age clusters repre-
senting the underlying processes (age groups) and
learns to correlate between each disease and the un-
derlying age groups. Thus, the method assigns a prob-
ability for each age to belong to each age cluster, and
another probability for each disease to be associated
with each cluster.

In this study, we used the combined list of all
the ages in all the studies found for each disease
in the APK. Each disease is described by a list of
all the ages that are associated with that disease.
“Renal carcinoma”, for example, is linked to the
age “14 year” twice (i.e., the age range in two
studies included 14 year olds), “18 years” once,
“47 years” thrice, etc.

We trained a topic model using Mallet with hyper-
parameter optimization and the number of clusters set
to 25. Ages associated with each cluster were chosen
to include all the ages with a probability of 0.01 or
better. Low (less than 1 %) abundance clusters were
discarded as suggested in by Wallach and McCallum
(2009). We marked the most probable ages in a given
cluster as the representative ages of the resulting age
range.

To validate the results, we sampled a fraction of
the data and repeated the analysis. A cluster was
considered to be robust if it had an equivalent
cluster after sampling, using a tool developed for
this purpose (Cohen et. al., unpublished results; the

relevant code is available at http://sourceforge.net/
projects/topicmodelalig/). This analysis was pre-
formed with 80, 60, and 40 % of the data.
Moreover, we repeated the analysis setting the
number of clusters to the number of clusters
obtained after removing the low abundance clusters.

For k-means clustering (Hartigan and Wong
1979), implementation in Matlab was used for
learning the clusters. The number of clusters was
chosen empirically as the number yielding the
highest mean silhouette (as calculated by Matlab).

For hierarchical clustering of ages (Johnson 1967),
the R implementation (R versions 2.13.1) was used.
The disease ontology was employed to define disease
classes by selecting classes three steps from the root
and all of their children. Diseases were filtered such
that only diseases linked to at least ten ages and only
disease classes which contain more than three such
diseases were used. The resulting 28 disease classes
were then used to cluster each disease class separately
by extracting the sub-matrix of the quantitative age–
disease matrix associated with diseases from that class
and applying hierarchical clustering to this subset. To
identify statistically significant clusters, the pvclust
package for R (Suzuki and Shimodaira 2006) was
used with the following parameters: The method was
set to “average”, the alpha variable was set to 0.95 (p
value<0.05) and the number of bootstrapping was set
to 1,000. Out of the 28 disease classes, 24 had age
clusters which passed the statistical threshold.

A heat-map of the median values of instances per
age and disease class was generated using a script
implemented in R.

Clustering diseases by age co-occurrence

Hierarchical clustering (Johnson 1967) of diseases
was performed with Expander 5 (Sharan et al. 2003),
using the Pearson correlation option for distance
calculation.

Clinical data

Data from the NHANES survey was obtained (years
2007–2010). Using blood test data (chemistry and
complete blood count), we generated a data matrix as
follows. For each subject, measurements were inter-
preted as normal or abnormal according to the normal
ranges defined in the NHANES study. Subjects aged
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12 to 80 years were selected (N=13493), given that a
large proportion of the measurement were not per-
formed for children under 12 years of age. A
matrix of blood measurements over age was gen-
erated such that each cell contained the fraction of
patients of that age who presented an abnormal
value for that measurement.

Availability

The detailed results, disease classes used for clus-
tering, and all the scripts used to generate the
results and images presented in this work are
available at http://rubinlab.med.ad.bgu.ac.il/APK/
APK_clustering_supplementary.html.
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