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The Cytoskeleton and diseases
Cytoskeletal dysfunction has been proposed dur-
ing the last decade as one of the main mechanisms 
involved in the aetiology of several neurodegen-
erative diseases [Bunker et al. 2004; Cairns et al. 
2004; Cartelli et al. 2010].

Microtubules (MTs) are basic elements of the 
cytoskeleton composed of α- and β-tubulin heter-
odimers; the dysregulation of MT stability has 
been demonstrated to be causative for axonal 
transport impairment, synaptic contact degenera-
tion, impaired neuronal function leading finally to 
neuronal loss. Several neurodegenerative diseases 
have been linked to impaired MT dynamics 
[Cappelletti et al. 2005] and axonal transport 
[Trojanowski et al. 2005; Roy et al. 2005]: heredi-
tary spastic paraplegia [Rainier et al. 1998; Errico 
et al. 2002; Reid et al. 2002], familial motor neu-
ron disease [LaMonte et al. 2002; Jablonka et al. 
2004], Charcot-Marie-tooth disease type2A 
[Zhao et al. 2001; Tanabe and Takei, 2009], 

Huntington’s disease [Trushina et al. 2003], 
familial amyotropic lateral sclerosis [Julien et al. 
2005; Mórotz et al. 2012], Parkinson’s disease 
and related synucleinopathies [Wersinger and 
Sidhu, 2005; Cartelli et al. 2012], Alzheimer’s 
disease [Terry, 1998; Kanaan et al. 2012], pro-
gressive supranuclear palsy [Morfini et al. 2002], 
frontotemporal dementias [Ittner et al. 2008] and 
related tauopathies. All of these pathologies are 
triggered by different events that finally converge 
on MT disruption/destabilization.

Neuron cytoskeleton has to be maintained in a 
condition of ‘dynamics balance’ between stabili-
zation/destabilization to achieve the right degree 
of wellbeing. Indeed, equilibrium loss is linked to 
pathologic conditions. For example, in hereditary 
spastic paraplegia MTs are hyperstabilized, 
cytoskeletal structure is too rigid and neurons 
lack plasticity, essential for neurite branching and 
new connections formation [Fassier et al. 2013; 
Tarrade et al. 2006]; by contrast, in Alzheimer’s 
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disease, MTs are too destabilized, axonal traffick-
ing is impaired and synaptic contacts collapse 
[Zhang et al. 2012].

MTs extend in all directions throughout the cell, 
forming a dynamic network that continuously 
grows, retracts, bends and breaks. Therefore, 
rather than providing cellular rigidity, they are 
important for enabling dynamic processes such as 
intracellular transport or mitotic spindle forma-
tion that heavily depend on their ability to be 
polymerized, depolymerized and severed. The 
tight regulation of their dynamics is pivotal to 
ensure efficient transport of cargoes along the 
axons. With a severely destabilized MT network 
and a disturbed axonal transport system, neurons 
are not able to function properly and conse-
quently degenerate [Almeida-Souza et al. 2011]. 
Loss of normal regulation of MT dynamics could 
have deleterious effects on cell viability; they can 
be considered as ‘biosensors’ of cellular wellbeing 
[Bunker et al. 2004].

Despite the diverse etiopathogenesis, the different 
neurodegenerative pathologies are linked to pro-
gressive accumulation of abnormal filamentous 
proteins; and this, together with the absence of 
other disease-specific neuropathological abnor-
malities, provides evidence implicating neuronal 
filaments and MTs in disease onset and progres-
sion [Cairns et al. 2004].

Microtubule-stabilizing compounds
Until now, several MT-binding compounds have 
been tested and the studies carried out have pro-
vided proof of concept that MT-binding agents or 
compounds with the ability to stabilize MTs may 
have therapeutic potential for the treatment of 
Alzheimer’s disease and other neurodegenerative 
diseases [Michaelis et al. 2002, 2005; Silva et al. 
2011; Nelson, 2005; Butler et al. 2007].

Paclitaxel, a complex diterpene obtained from the 
Pacific yew (Taxus brevifolia), was the first natural 
product shown to stabilize MTs [Schiff et al. 
1979]. It is able to prevent the disassembly of MTs 
and to promote their assembly. Paclitaxel (or Taxol, 
Bristol-Myers Squibb Company, New York City, 
USA) was originally studied and finally approved 
by the US Food and Drug Administration for clini-
cal use in 1992 as a chemotherapeutic agent due to 
its ability to stabilize MTs in the mitotic spindle 
and arrest mitosis in cancer fast proliferating  
cells. In addition, it was demonstrated to have a 

beneficial role in an animal model of multiple scle-
rosis. Treatment with paclitaxel resulted in amelio-
ration of clinical disease, reduction of gliosis and 
even remyelination [Moscarello et al. 2002].

It was subsequently studied in order to stabilize 
MTs of neuronal cells and to prevent axonal col-
lapse and degeneration. To act as a neuroprotec-
tive compound, paclitaxel was used at doses far 
lower than those used in chemotherapy. It showed 
protective properties when used on neurons in 
vitro challenged with amyloid β [Michaelis et al. 
2005] and it was able to enhance neurite out-
growth both in vitro and in vivo [Sengottuvel et al. 
2011]. Paclitaxel also reduced deficits induced by 
mutant-tau transfection in cultured neurons 
[Shemesh and Spira, 2011], improved axonal 
transport rate, MTs number and motor function 
in a spinal cord tauopathy model [Zhang et al. 
2005]. Unfortunately, in vivo studies demon-
strated that it has a very poor entry in  to the brain 
(less than 1% of the injected dose) [Moscarello 
et al. 2002], so the hypothesis of using paclitaxel 
for neuroprotection conflicts with the risk of 
peripheral accumulation and toxic side effects 
(neutropenia, unusual bruising or bleeding, gas-
trointestinal disease, fever, difficulty swallowing, 
ovarian damage and much more).

The same MT-stabilizing property emerged to be 
shared by other structurally complex natural 
products derived from microorganisms, plants 
and sponges. Among these, epothilone D (Epo D) 
displays interesting properties. Epo D derives 
from myxobacteria [Goodin et al. 2004] and 
besides being an efficacious MT-stabilizing agent, 
it is brain penetrant and has a good pharmacoki-
netics [Kolman, 2004; Andrieux et al. 2006; 
Brunden et al. 2010, 2012].

Another promising compound is NAP (generic 
name davunetide) (Allon Therapeutics Inc., 
Vancouver, BC, Canada), an MT  protective agent 
[Gozes, 2011]. Gozes and colleagues tested NAP in 
several disease models and they found it to be a 
potent neuroprotective, memory-enhancing, neu-
rotrophic agent and capable of inhibiting the aggre-
gation of  β-amyloid [Gozes et al. 2002; 
Ashur-Fabian et al. 2003; Matsuoka et al. 2007]. 
Surprisingly, even in human clinical trials, it was 
shown to increase memory scores in patients with 
amnestic mild cognitive impairment, a precursor of 
Alzheimer’s disease [Gozes et al. 2009] and to 
enhance functional daily behaviours in patients 
with schizophrenia [Javitt et al. 2012]. Furthermore, 
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it has a good pharmacokinetics and can also be 
administered intranasally [Gozes et al. 2000, 2009].

Microtubule dynamics regulation
MT dynamics is spatially and temporally regu-
lated by several pathways and MT-interacting 
proteins (see Table 1): tau, a MT-associated pro-
tein (MAP) that stabilizes MTs [Maccioni and 
Cambiazo, 1995], and katanin, the MT-severing 
enzyme [Roll-Mecak and McNally, 2010], both 
interact with the MT lattice; PAR-1 (also 
known as MARK) phosphorylates classical 
MAPs and detaches MAPs from MTs [Matenia 
and Mandelkow, 2009]; +TIPs, the MT plus-
end-tracking proteins, specifically control the 
dynamic properties of the MT end [Gouveia and 
Akhmanova, 2010; Schuyler and Pellman, 2001]; 
ROCK pathway regulates MT dynamics via phos-
phorylation of the tubulin polymerization pro-
moting protein 1 (TPPP1/p25) [Schofield et al. 
2012]; (aPKC)-Aurora A-NDEL1 pathway is 
crucial for the regulation of MT organization dur-
ing neurite extension [Mori et al. 2009]; 
Dishevelled (Dvl) pathway and the cooperation of 
Wnt-Dvl pathways increase MT stability though 
Gsk3β inhibition and c-Jun N-terminal kinase 
(JNK) activation [Ciani and Salinas, 2007]. These 
are only some of the known regulatory mecha-
nisms that contribute to orchestrate MT dynamic 
remodelling.

Notch pathway
Notch pathway is recently emerged as a possible 
MT stability regulator. Notch is a heterodimer 
transmembrane receptor that, after binding with 
its ligands expressed on adjacent cells, goes through 
several proteolitic cleavages. The cytoplasmic 
cleavage by γ-secretase complex originates the 
active Notch intracellular domain; it translocates 
to the nucleus and triggers a transcriptional effects 
cascade. The best characterized target genes of 
Notch are the transcriptional repressors bHLH 
(basic helix loop helix) genes [the enhancer of split 
E(spl) complex in Drosophilia melanogaster and the 
hairy and enhancer of split (HES) and HES related 
(HESR/HEY) family genes in vertebrates].

In the past, Notch was considered a developmen-
tal protein that played a key role in cell fate deci-
sions in uncommitted proliferative cells and in 
neurogenesis [Artavanis-Tsakonas and Simpson, 
1991; Brennan et al. 1997; Go et al. 1998; 
Greenwald and Rubin, 1992; Hoppe and 
Greenspan, 1990]. In this context, Notch path-
way activation results in inhibition of cellular 
differentiation and maintenance of a prolifera-
tive cellular pool [Louvi and Artavanis-
Tsakonas, 2006]. For this reason, it started to 
be studied as a potential pharmacological target 
for several cancers [Nickoloff et al. 2003; Miele 
et al. 2006; Santos et al. 2006; Kunnimalaiyaan 
and Chen, 2007; Purow, 2012]. Finally, several 

Table 1.  Microtubule-interacting proteins.

Protein Function References

Tau Stabilizes MT; interacts with MT 
lattice

Maccioni and Cambiazo [1995]

Katanin MT-severing enzyme; interacts with 
MT lattice

Roll-Mecak and McNally [2010]

PAR-1 (or MARK) Phosphorylates and detaches MAP 
from MT

Matenia and Mandelkow [2009]

+TIPs (microtubule plus-
end-tracking proteins)

Controls the dynamic properties of 
MT end

Gouveia and Akhmanova [2010]; 
Schuyler and Pellman [2001]

ROCK Phosphorylates TPPP1/p25 and 
regulates MT dynamics

Schofield et al. [2012]

(aPKC)-Aurora A-NDEL1 Organizes MT during neurite 
extension

Mori et al. [2009]

Dishevelled Increases MT stability Ciani and Salinas [2007]
Wnt Increases MT stability Ciani and Salinas [2007]
Spastin MT-severing protein Wood et al. [2006]; Trotta et al. 

[2004]; Sherwood et al. [2004]

MAP, MT-associated protein; MT, microtubule; TPPP1, tubulin polymerization promoting protein 1.
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Notch-targeting drugs (both inhibiting and acti-
vating, depending on the type of tumour) have 
been successfully chosen and tested in clinical tri-
als for cancer therapies [Greenblatt et al. 2007; 
Fouladi et al. 2011; Sharma et al. 2012; Pinchot 
et al. 2011].

Notch role in postmitotic neurons
The initial suggestion that Notch signalling might 
have a role in postmitotic neurons came from the 
clear detection of Notch1 immunoreactivity in 
the nuclei of terminally differentiated postmi-
totic neurons in the rat retina [Ahmad et al. 
1995]. A few years later, it was demonstrated 
that Notch1, apart from being highly expressed 
in embryonal mouse and human brain, contin-
ued to be expressed, although at lower levels, in 
the adult brain [Berezovska et al. 1998]. 
Furthermore, the cytoplasmic domain of endog-
enous Notch1 translocated to the nucleus during 
neuronal differentiation [Redmond et al. 2000].

Therefore, Notch activation could also occur in 
postmitotic or quiescent cells in the absence of 
division. A new role for Notch emerged in regu-
lating developmental events subsequent to speci-
fication of cell fate. It was demonstrated that 
Notch is present on the growth cones of develop-
ing axons in Drosophila and it is required for axon 
guidance in both the central and peripheral nerv-
ous system [Giniger et al. 1993; Menne and 
Klämbt, 1994]. An involvement of Notch, as well 
as Reelin and Wnt, known to be active partici-
pants in neuronal maturation, was also suggested 
in neurodegenerative events underlying 
Alzheimer’s disease [Grilli et al. 2003; Lathia 
et al. 2008; Woo et al. 2009]. Notch expression 
resulted, markedly induced by excitotoxic stimuli 
in hippocampal pyramidal neurons [Ferrari-
Toninelli et al. 2003]; this event resembles what 
happens at the onset of neurodegeneration in the 
adult brain, probably as an attempt to compen-
sate neuronal loss by promoting neuronal growth. 
However, in aged brains, Notch1 signalling is 
reduced [Tanveer et al. 2012] and a chronic 
decrease in Notch1 function results in learning 
and memory deficits [Costa et al. 2003].

Research into Notch function in fully differenti-
ated cells and in the adult brain was initially ham-
pered because of the embryonic lethality of Notch 
knockout mice [Yoon and Gaiano, 2005]. 
Currently, with the development of Cre/loxP and 
viral gene transduction technologies, it is possible 

to manipulate Notch expression in mature ani-
mals, thus circumventing its developmental 
requirement [Han et al. 2002; Johnson et al. 2009; 
Ehm et al. 2010].

The first studies on the role of Notch in postmi-
totic neurons were carried out by using Notch 
antagonists or ligands to modulate the Notch sig-
nal in primary neuronal cultures. Notably, several 
ex vivo studies in different species clearly showed 
that modulation of the signal had a significant 
influence on neuronal morphology by affecting 
the extension of existing neurites (that is, axons 
and dendrites) [Sestan et al. 1999; Redmond 
et al. 2000; Berezovska et al. 1999; Qi et al. 1999].

Therefore, Notch plays a role in determining the 
only possible ‘cell fate’ decisions in postmitotic 
mature neurons: synaptic remodelling or neurite 
extension/retraction.

Notch as a microtubule stabilizer
The mechanism through which Notch can act on 
neurite morphology regulation is still a matter of 
debate. A proposal that has yet to be fully 
explored is that Notch is capable of influencing 
neuronal cytoskeleton [Giniger, 1998; Major 
and Irvine, 2005]. It has been suggested that the 
role of the Notch pathway in maintaining neu-
ronal arborization in the adult is linked to its 
capability to modulate cytoskeleton plasticity 
[Louvi and Artavanis-Tsakonas, 2006].

We investigated the possible influence of the 
Notch pathway on MT stability and actually con-
firmed this hypothesis [Ferrari-Toninelli et al. 
2008]. We demonstrated that activation of the 
Notch pathway in primary cortical neurons 
resulted in reduction of neurite branches and loss 
of varicosities. Varicosities appear as membrane 
swellings of various size and are regarded as pre-
synaptic, dynamic structures that are able to 
remodel their morphology in response to a variety 
of stimuli [De Paola et al. 2003; Nikonenko et al. 
2003; Udo et al. 2005; Umeda et al. 2005; Ferrari-
Toninelli et al. 2009].

The changes in neurite morphology induced by 
Jagged1, a Notch ligand, were comparable to 
those induced by a low concentration of the 
MT-stabilizing drug paclitaxel. Evidence of 
increased MT stabilization, suggesting that the 
Notch pathway could also act through cytoskele-
tal modifications, was provided by the analysis of 
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post-translational modification of tubulin. These 
modifications, which include detyrosination/
tyrosination, polyglutamilation, polyglycilation, 
palmytoilation, phosphorylation and acetylation 
[Verhey and Gaertig, 2007], may occur individu-
ally or in combination. In this way, tubulin post-
translational modifications play an important role 
in regulating MTs properties, such as stability 
and structure [Hammond et al. 2008]. Following 
Notch pathway activation, we found an upregula-
tion of two post-translationally modified tubulins, 
the acetylated α tubulin and the polyglutamylated 
tubulin, commonly used as markers of stability 
[Hammond et al. 2008].

Notch downstream effectors
Several studies imply that Notch signals may 
modulate the cytoskeleton through local signal 
transduction pathways that do not require activa-
tion of nuclear gene expression. Different players 
have been identified to act together with or down-
stream of Notch. For example, Giniger showed 
that Notch interacts synergistically with the Abl 
tyrosine kinase to regulate the pathfinding of spe-
cific axons in Drosophila [Giniger, 1998]. Both 
Notch and Abl are present in the axon and the 
binding of Notch to Disabled (Dab), a protein 
that interacts with Abl, may explain how Notch 
communicates with Abl. Sanpodo is another pos-
sible mediator of neurite development regulation 
by Notch through its cytoskeletal interactions 
[Skeath and Doe, 1998; Dye et al. 1998].

The hypothesis of Notch-mediated neurite regu-
lation by means of local modulators was interest-
ing, especially considering activated Notch 
fragments that travel potentially great distances 
from growth cones to the nucleus. We explored 
this possibility, but our studies demonstrated that 
transcription and translation processes are neces-
sary for the Notch-mediated morphological effect 
[Ferrari-Toninelli et al. 2009]. Alternatively, 
nuclear and local effects of Notch signalling may 
be integrated to regulate neurite development.

One of the links between Notch and a morphol-
ogy-regulation-related protein was found by 
Hassan and colleagues: they reported a link with 
atonal, a proneural gene in the Drosophila nervous 
system. Characterization of atonal mutants indi-
cated that in the brain atonal did not act as a 
proneural gene, but it was required for the proper 
axonal arborization of a subpopulation of neurons 
that innervate the optic lobe. Overexpression 

studies indicated that atonal and notch acted 
antagonistically in this population of neurons, 
with Atonal increasing axonal arborization and 
Notch decreasing it [Hassan et al. 2000].

Another possible player identified is neurogenin 3 
(NGN3): Notch activation leads to expression of 
HES genes that inhibit NGN3 expression and 
finally reduces neurite outgrowth in the hip-
pocampus. Therefore NGN3 acts to promote 
neurite outgrowth [Simon-Areces et al. 2010; 
Salama-Cohen et al. 2006].

In neocortical cells and in sensory neurons, 
Numb and numb-like (Numbl) are able to regu-
late axonal arborization acting as Notch antago-
nists [Huang et al. 2005].

We also identified a novel mechanism through 
which Notch is able to modulate neuronal cytoskel-
eton plasticity: by acting on the MT-severing pro-
tein Spastin. Stimulation of the Notch pathway by 
Jagged1 inhibited both the transcription and the 
expression levels of Spastin and induced MT sta-
bilization and changes in axonal morphology 
[Ferrari-Toninelli et al. 2008]. Spastin gene muta-
tion has been associated with axonal degeneration, 
leading to hereditary spastic paraplegia [Errico 
et al. 2002]. Further studies showed that Spastin is 
a MT-severing protein and its MT-destabilizing 
properties are fundamental for axon outgrowth 
and synaptic modulation in long motor neurons 
[Wood et al. 2006; Trotta et al. 2004; Sherwood 
et al. 2004]; interestingly, Yu and colleagues showed 
that in cultured neurons Spastin is more concen-
trated at the sites of branches formation and that 
protein downregulation resulted in neurite mor-
phology changes, with a dramatic reduction of 
axonal branches [Yu et al. 2008]. Furthermore, it 
has been demonstrated that Spastin protein down-
regulation led to increased levels of acetylated and 
polyglutamylated tubulin, whereas Spastin overex-
pression caused a reduction of these post-transla-
tionally modified proteins [Trotta et al. 2004].

Therefore, we first established a link between the 
Notch signalling pathway and MT stabilization in 
postmitotic neurons, suggesting a novel endogenous 
pathway involved in modulating MT plasticity.

Notch microtubule-stabilizing effect is 
reversible
We found that Notch pathway activation acts as a 
MT stabilizer, and interestingly we demonstrated 
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Figure 1.  Notch pathway effects on cytoskeletal plasticity.

that this is a dynamic event that can be reversed. 
As evaluated by time lapse digital imaging, 
dynamic changes in cell morphology were rapidly 
reversible and dependent on the activation of the 
Notch signalling pathway [Ferrari-Toninelli et al. 
2009]. Indeed, if Notch pathway activation causes 
MT stabilization followed by both neurite branch-
ing reduction and loss of varicosity, Notch path-
way inhibition reverts such morphological effects 
and increases cytoskeletal plasticity. In particular, 
we observed morphological alterations (reduced 
neurite branching and loss of varicosities) in cor-
tical neurons from transgenic mice characterized 
by Notch1 signalling hyperactivation (mice lack-
ing the nuclear factor κB p50 subunit). The neu-
ronal morphological effects found in p50–/– cortical 
cells were reversed after treatment with the 
γ-secretase inhibitor DAPT or Notch RNA inter-
ference [Bonini et al. 2011]. This means that, 
modulating the Notch pathway activation state, it 
is possible to act on MT dynamics hence cytoskel-
etal plasticity increasing or decreasing them 
depending on the necessity (see Figure 1).

Conclusion
In light of the growing evidence that MT dynamic 
balance maintenance could be beneficial in sev-
eral neurodegenerative pathologies and even pre-
vent them, we propose Notch pathway as a new 
possible pharmacological target for cytoskeletal 
protection.

Thinking about Notch as a possible target to pro-
tect the cytoskeleton presents several advantages. 
Notch can be modulated with activating or inhib-
iting compounds depending on the context and 
the effect required: Notch signalling activation 
results in increased MT stability and changes 
in axonal morphology and branching; Notch 
signalling inhibition leads to an increase in 
cytoskeleton plasticity with intense neurite 
remodelling. Some Notch-modulating com-
pounds (such as the γ-secretase inhibitors) are 
already used in clinical trials for Alzheimer’s dis-
ease as β-amyloid reducing agents; it is well 
known that the Notch pathway and APP (Amyloid 
Precursor Protein) metabolism converge on 
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γ-secretase proteolitic enzyme and that 
γ-secretase-inhibiting compounds, other than 
decreasing β-amyloid formation, also act on 
Notch pathway activation. Furthermore, it has 
recently been demonstrated that endogenous 
modulators of Notch signalling, as the endocan-
nabinoid anandamide, can promote a shift in 
γ-secretase substrate processing to favour pro-
cessing of Notch1 over APP, and this can confer 
neuroprotection [Tanveer et al. 2012].

Unfortunately, Notch may also present disadvan-
tages: it is ubiquitously expressed, so the main 
challenge will be to find a compound able to pass 
the blood–brain barrier avoiding peripheral Notch 
side effects.

We suggest that a fine-tuned manipulation of 
Notch signalling may represent a novel approach 
to modulate neuronal cytoskeleton plasticity in 
order to guarantee neurons both the stability 
required to maintain their axonal architecture 
and the structural plasticity necessary to create 
new synaptic connections.

Finally, considering the relevant role of Notch in 
structural plasticity regulation and the impor-
tance of acting on MTs to protect neurons, we 
propose Notch as a new potential target for MT 
stabilization.
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