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Abstract Time delay is an inevitable factor in neural net-

works due to the finite propagation velocity and switching

speed. Neural system may lose its stability even for very

small delay. In this paper, a two-neural network system with

the different types of delays involved in self- and neighbor-

connection has been investigated. The local asymptotic

stability of the equilibrium point is studied by analyzing the

corresponding characteristic equation. It is found that the

multiple delays can lead the system dynamic behavior to

exhibit stability switches. The delay-dependent stability

regions are illustrated in the delay-parameter plane, followed

which the double Hopf bifurcation points can be obtained

from the intersection points of the first and second Hopf

bifurcation, i.e., the corresponding characteristic equation

has two pairs of imaginary eigenvalues. Taking the delays as

the bifurcation parameters, the classification and bifurcation

sets are obtained in terms of the central manifold reduction

and normal form method. The dynamical behavior of system

may exhibit the quasi-periodic solutions due to the Neimark-

Sacker bifurcation. Finally, numerical simulations are made

to verify the theoretical results.

Keywords Neural network � Multiple delays � Stability

switches � Double Hopf bifurcation � Quasi-periodic

behavior

Introduction

Time delay is an inevitable factor in the signal transmission

between biological neurons or electronic-model-neurons

due to the finite propagation velocity and switching speed

(Campbell 2007; Sun et al. 2010). The neural network with

time delays can be described by a class of infinite-dimen-

sional delayed differential equations. To study the effect of

time delay on neural systems, Marcus and Westervelt

(1989) improved the Hopfield neural network by intro-

ducing delay-coupling into the nonlinear activation func-

tion. Due to the existence of time delay, some complex

dynamic phenomena can be easily obtained near the

equilibrium point of neural system.

It is well known that neural system may lose its stability

by making the equilibrium point unstable even for very

small delays. However, effect of time delay is an inter-

esting problem. For example, in field of machine tool

industry, the disturbance of the pure regeneration (one

single delay) by e.g. variable angle distribution between

milling edges, time variation of the delay can increase the

stability of the cutting process (Budak 2003; Zatarain et al.

2008). A small delay is sufficient to destabilize a system,

but a large delay may stabilize a system (Liao and Lu 2011;

Ye and Cui 2012). This implies that time delays can induce

system to exhibit the multi-stable regions, which is called

the delay-dependent stability regions. The system behavior

switches from being stable to unstable and then back to

stable as delay increases. As early as 1980s, Cooke and

Grossman (1982) constructed a delayed system with at

least N times switching. Hale and Huang (1993) investi-

gated a linear differential equation and obtained some

global geometrical characteristics of the stability regions

located in two-delayed plane. For the general linear

delayed systems consisting of multiple delays, the stability
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regions have been shown in two-delayed plane (Gu et al.

2005, 2007) and three-delayed space (Sipahi and Delice

2009; Gu and Naghnaeian 2011; Sipahi et al. 2011).

Multiple delays can induce the stability switching of linear

dynamical systems.

Bifurcation is one of the most important dynamical

phenomena for the nonlinear neural systems (Jia et al.

2012; Liebovitch et al. 2011). Different bifurcations can

lead to different kinds of dynamic behaviors. For example,

Hopf bifurcation gives rise to the periodical activity, while

double Hopf bifurcation results in two types of oscillations

with different frequencies and a quasi-periodic behavior.

Hopf bifurcation and periodical activity for neural network

models with one single delay have been investigated

extensively, see, e.g., Liao et al. (2007), Yuan and Li

(2010), Guo and Huang (2003), Yan (2006) and the ref-

erences cited therein. Due to the complexity of multiple

delays, the analysis of stability and Hopf bifurcation for the

multi-delayed differential equations is far from complete.

Many researchers tried to fill in some ‘‘piece of the puzzle’’

for the multiple delays problem (Li et al. 1999). Considered

the average/sum of time delays as the variable parameter

and used the time-scale transformation, some multiple-

delayed neural network systems with simple architecture

can be transformed to the equivalent models with one

single delay (Cao and Xiao 2007; Mao and Hu 2008; Wei

and Zhang 2008).

In order to get a deep and clear understanding for

multiple delays on dynamical behaviors, many researchers

focused on the neural network systems with two delays,

which are relatively simple. The stability and Hopf

bifurcation for some special system with two delays have

been investigated, such as neural system (Xu et al. 2006;

Xu 2008), Lotka-Volterra predator–prey system (Nakaoka

et al. 2006; Song et al. 2004), epidemic model (Cooke

et al. 1996), tumor growth (Shi et al. 2011; Xu 2009),

plastic deformation instability (Hilout et al. 2010), Mac-

key–Glass system (Li and Jiang 2011; Wan and Wei

2009), and so on. In 1994, Bélair and Campbell (1994)

considered a simple motor control system with two neg-

ative delayed feedback loops. The stability regions of the

equilibrium point are analyzed in the parameter ðA; s2Þ
plane for the fixed delay s1. In addition, the criticality of

the Hopf bifurcation was considered in detail in terms of

some numerical simulations. The result shows that the first

order differential equation containing two delays can

exhibit the double Hopf bifurcation. Similar analysis for

the neural network with multiple delays can be referred in

(Shayer and Campbell 2000; Yuan and Campbell 2004;

Campbell et al. 2006). This approach can obtain a

‘‘piecewise global’’ perception for the bifurcation diagram

in the multi-delayed system. However, to the best of our

knowledge, in the existing relative literatures, there are

few researchers chosen the multiple delays as the inde-

pendent parameters for the dynamics analysis. The mutual

effect of multiple delays on system dynamical behavior

has been not considered yet. It is our research motivation

in the present paper. In terms of the stability analysis of

the corresponding linear part, the bifurcation points with

high co-dimensional singularity and the bifurcation dia-

gram are presented in the two-delayed plane for the neural

network system.

To study the two-delayed effects on neural system in

detail, in this paper, a codimension-two singularity,

namely the double Hopf bifurcation, is analyzed

employing the multiple delays as the bifurcation parame-

ters. Various dynamical behaviors are classified in the

neighborhood of the singularity point. The bifurcation sets

consisting of the oscillation behaviors with the different

frequencies and quasi-periodic state are obtained in the

delay parameter plane in terms of the central manifold

reduction and normal form method (Orosz and Stepan

2004; Dombovari et al. 2008), which was introduced

firstly by Faria and Magalhaes (1995a, b). The double

Hopf bifurcation analysis for the differential equation with

one single delay can be found in some existing works,

such as (Yu et al. 2002; Xu et al. 2007; Xu and Pei 2008).

This approach provides a convenient tool to compute a

relatively simple form of the original differential equation,

which can be used to analyze the system dynamic

behaviors.

Neural system considered in this paper is described by

the following differential equation:

dxðtÞ
dt
¼ �xðtÞ þ a1Sðxðt � s1ÞÞ þ a2Sðyðt � s2ÞÞ þ P;

dyðtÞ
dt
¼ �yðtÞ þ a3Sðxðt � s2ÞÞ þ a4Sðyðt � s1ÞÞ þ Q;

8
>><

>>:

ð1Þ

where x(t) and y(t) represent the neural behaviors at time t,

a1, a2, a3 and a4 denote the coupled weights, s1 and s2 are

the signal transmission delays for the self- and neighbor-

connection, respectively, P and Q are the external inputs,

the neuron activation function in S(u) is given by

SðuÞ ¼ 1=ð1þ e�uÞ.
For neural network (1), when the self-connection delay

s1 = 0, our previous works have illustrated that system

exhibits the complex dynamical behaviors for the different

values of time delay and external input (Song and Xu

2009). The types of equilibrium points are studied analyt-

ically in details in terms of the characteristic equation and

static bifurcation. The central manifold reduction and

normal form method are employed to determine the Hopf

bifurcation and its stability. In addition, time delay can

affect the existence of the Bogdanov-Takens bifurcation
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(refer to Song and Xu 2012a). For some delayed interval,

system may exhibit the saddle-node homoclinic bifurca-

tion. Furthermore, when the variation slope ratio is pro-

posed to the sigmoid activation function S, the dynamical

behaviors of system (1) with s1 = s2 = s may exhibit the

chaotic behavior (Song and Xu 2012b).

The paper is organized as follows. Firstly, the local

asymptotic stability of equilibrium point for system (1) is

investigated by analyzing the corresponding characteristic

equation of the linearized system. General stability criteria

involving the time delays are obtained. The results show

that stability switches may occur for some interval of

delay s1 when s2 increases. In section ‘‘Existence of

double Hopf bifurcation’’, the stability regions and Hopf

bifurcation curves are illustrated in the delay (s1, s2)

parameter plane. The double Hopf bifurcation points can

be obtained from the intersection points of the first and

second Hopf bifurcation, i.e., the characteristic equation

has double imaginary eigenvalue with multiplicity two. In

section ‘‘Central manifold reduction’’, regarding two

delays as the bifurcation parameters, the typical dynamic

behaviors near the double Hopf bifurcation are investi-

gated in detail in terms of the central manifold reduction

and normal form method. The system may exhibit the

quasi-periodic solutions due to the Neimark-Sacker

bifurcation. Finally, numerical simulations are made to

verify the theoretical results. Conclusions are given in the

last section.

Linear stability switches

The equilibrium point (x0, y0) for system (1) is the solution

of the following equations:

x0 ¼ a1Sðx0Þ þ a2Sðy0Þ þ P;

y0 ¼ a3Sðx0Þ þ a4Sðy0Þ þ Q:

(

ð2Þ

To translate (x0, y0) to the trivial equilibrium point, letting

x ? x-x0 nd y ? y-y0 one has the linearized equation of

system (1) given by

dxðtÞ
dt
¼ �xðtÞ þ a1axðt � s1Þ þ a2byðt � s2Þ;

dyðtÞ
dt
¼ �yðtÞ þ a3axðt � s2Þ þ a4byðt � s1Þ:

8
>><

>>:

ð3Þ

where a ¼ S0ðx0Þ, b ¼ S0ðy0Þ. The corresponding charac-

teristic equation of system (3) is

�1� kþ a1ae�ks1 a2be�ks2

a3ae�ks2 �1� kþ a4be�ks1

�
�
�
�

�
�
�
� ¼ 0; ð4Þ

namely

Dðk; s1; s2Þ ¼1� ða1aþ a4bÞe�ks1 þ a1a4abe�2ks1

� a2a3abe�2ks2 þ ð2� ða1aþ a4bÞe�ks1Þk
þ k2 ¼ 0;

ð5Þ

It is well known that the equilibrium point is locally

asymptotically stable if and only if each of eigenvalues has

negative real parts. It follows that the boundary of the

stability region can be determined by equations k = 0 and

k = ix (x[ 0). However, from the dynamical bifurcation

theory, the typical static bifurcation is exhibited as the

parameters varying near k = 0. That is to say, system

exhibits the different number of equilibrium point when the

eigenvalue passes through the imaginary axis along the real

axis (Song and Xu 2012a, b). However, in this paper, we just

investigate the stability switches induced by multiple delays.

Since time delay can not change the number of the

equilibrium point, in the following section, the purely

imaginary eigenvalues k = ix (x [ 0) for the characteristic

equation (5) are only studied. For simplify, the investigation

begins with the case s2 = 0 in (5) as follows

Dðk; s1;0Þ ¼1� a2a3ab� ða1aþ a4bÞe�ks1 þ a1a4abe�2ks1

þ ð2� ða1aþ a4bÞe�ks1Þkþ k2 ¼ 0:

ð6Þ

Without loss of generality, letting s1 = 0 in (6) implies

Dðk; 0; 0Þ ¼ 1� a1a� a4bþ a1a4ab� a2a3ab

þ ð2� a1a� a4bÞkþ k2 ¼ 0:
ð7Þ

It follows from the Routh-Hurwitz criterion that the

necessary and sufficient conditions for all roots of (7)

having negative real parts is given by

1� a1a� a4bþ a1a4ab� a2a3ab [ 0; ð8Þ

and

2� a1a� a4b[ 0: ð9Þ

This implies that the equilibrium point (x0, y0) is locally

asymptotically stable if the parameters are satisfied with

the conditions of (8) and (9). With the time delay s1

varying, system (1) will lose the stability. To obtain such

critical values of time delay, supposing k = iv (v [ 0) is a

pair of purely imaginary roots of (6), one has

Dðim;s1;0Þ ¼1� a2a3ab�ða1aþ a4bÞe�ims1 þ a1a4abe�2ims1

þ ið2�ða1aþ a4bÞe�ims1Þm� m2 ¼ 0:

ð10Þ
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Separating (10) into the real and imaginary parts yields

ð1þ a1a4ab� a2a3ab� m2Þ cos ms1 � 2m sin ms1

� ða1aþ a4bÞ ¼ 0;

2m cos ms1 þ ð1� a1a4ab� a2a3ab� m2Þ sin ms1

� ða1aþ a4bÞm ¼ 0:

8
>>>><

>>>>:

ð11Þ

Taking the square, adding the equations and performing

some simplification processes, we have

LðvÞ ¼ m8 þ m1m
6 � m2m

4 þ m3m
2 þ m4 ¼ 0; ð12Þ

where

m1 ¼ 4� ða2
1a

2 þ a2
4b

2 þ 2a1a4ab� 4a2a3abÞ;

m2 ¼ 6þ ð2a3
1a4a

3bþ 2a1a4abð�3� 2a2a3abþ a2
4b

2Þ
þ a2

1a
2ð�3� 2a2a3abþ 2a2

4b
2Þ

� 3a2
4b

2 þ 2a2a3abð2þ 3a2a3ab� a2
4b

2ÞÞ;

m3¼4�ð3a3
1a

2þ2að2a2a3þa1a4ð3�2a2
1a

2ÞÞb
þð3a2

4þ4ða2a3�a1a4Þða2a3þa1a4Þa2

þa2
1ða2a3�a1a4Þ2a4Þb2þ2að�2a1a3

4

þða1a2
2a2

3a4þa3
1a3

4�2a3
2a3

3Þa2Þb3þa2
4ða2a3�a1a4Þ2a2b4Þ;

m4 ¼ ðða2a3 þ a1a4Þab� 1Þ2ð1þ a1aþ bða4 � a2a3a
þ a1a4aÞÞð1� bða4 þ a2a3aÞ þ a1aða4b� 1ÞÞ:

Without loss of generality, letting (12) has a number of

positive and simple roots vi = 1, 2, …, one has the

following critical delays

si
1;j ¼ ðui þ 2jpÞ=mi; i ¼ 1; 2; � � � ; j ¼ 0; 1; 2; � � � ;

ð13Þ

where ui 2 ½0; 2pÞ and satisfied with

cosðuiÞ ¼
�ða1aþ a4bÞð�1þ a1a4abþ a2a3ab� m2

i Þ
a2

2a2
3a

2b2 � a2
1a2

4a
2b2 � 2a2a3abð1� m2

i Þ þ ð1þ m2
i Þ

2
;

sinðuiÞ ¼
�ða1aþ a4bÞmið1� a1a4abþ a2a3abþ m2

i Þ
a2

2a2
3a

2b2 � a2
1a2

4a
2b2 � 2a2a3abð1� m2

i Þ þ ð1þ m2
i Þ

2
:

8
>>>><

>>>>:

ð14Þ

In order to determine whether the real part of eigenvalue

increases or decreases when delay s1 crosses the critical

values si
1;j; i ¼ 1; 2; � � � ; j ¼ 0; 1; 2; � � �.

Differentiating k with respect to s1 in (10) reaches

Moreover, as shown in Hu and Wang (2002), one obtains

sgn Re
dkðs1Þ

ds1

�
�
�
�
s1¼si

1;j
;k¼imi

" #( )

¼ sgn
dLðmÞ

dm

�
�
�
�
m¼mi

" #

: ð16Þ

Therefore, based on the conditions of (8) and (9), one

obtains the effect of delay s1 on the eigenvalue of

characteristic equation (6) by using the transversality

condition (16) and the Hopf bifurcation theorem of

functional differential equation. When the polynomial

L(v) has no positive real root, all eigenvalues of the

characteristic equation (6) have negative real parts for the

arbitrary s1. If L(v) has only one positive and simple root

(not multiple root) v0 satisfied with dLðmÞ=dmjm¼m0
[ 0,

there exists the critical delayed value sc
1 [ 0 such that all

the eigenvalues of the characteristic equation (6) have

negative real parts for s1 2 ð0; sc
1Þ and at least one root

has a positive real part for s1 [ sc
1. Furthermore, if L(v)

has two positive and simple roots 0 \ v1 \ v2 satisfied

with dLðmÞ=dmjm¼m1
[ 0ð\0Þ and dLðmÞ=dmjm¼m2

\0ð[ 0Þ,
there exist a finite number of the delayed s1 intervals in

which all eigenvalues of the characteristic equation (6)

have negative real parts. However, when L(v) has at least

three positive and simple roots 0 \ v1 \ v2 \ v3 \ …,

the distribution of eigenvalues in the complex plane is

very complexity.

In order to investigate the effect of multiple delays on

the local stability of equilibrium point, we regard s2 as the

varying parameter for any fixed delay s1. Letting k = ix
(x[ 0) is the simple root of characteristic equation (5),

one obtains

Dðix; s1; s2Þ ¼ 1� ða1aþ a4bÞe�ixs1 þ a1a4abe�2ixs1

� a2a3abe�2ixs2 þ ið2� ða1aþ a4bÞe�ixs1Þ
� x� x2 ¼ 0:

Separating the real and imaginary parts gives

ð1� x2 � ða1aþ a4bÞx sinðxs1Þ � ða1aþ a4bÞ cosðxs1Þ

þ a1a4ab cosð2xs1Þ � a2a3ab cosð2xs2Þ ¼ 0;

2x� ða1aþ a4bÞx cosðxs1Þ þ ða1aþ a4bÞ sinðxs1Þ

� a1a4ab sinð2xs1Þ þ a2a3ab sinð2xs2Þ ¼ 0:

8
>>>>><

>>>>>:

ð17Þ

k0ðs1Þ ¼
2a1a4abk� eks1ða1aþ a4bÞkð1þ kÞ

2e2ks1ð1þ kÞ � 2a1a4abs1 þ eks1ða1aþ a4bÞð�1þ s1 þ ks1Þ
: ð15Þ
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Eliminating s2 from (17), one has

Gðx; s1Þ ¼ x4 þ n1x
3 þ n2x

2 þ n3xþ n4 ¼ 0; ð18Þ

where

n1 ¼ 2ða1aþ a4bÞ sinðxs1Þ;
n2 ¼ 2þ ða1aþ a4bÞ2 � 2ða1aþ a4bÞ cosðxs1Þ

� 2a1a4ab cosð2xs1Þ;
n3 ¼ 2½ða1aþ a4bÞð1þ a1a4abÞ � 4a1a4ab cosðxs1Þ�

� sinðxs1Þ;

n4 ¼ 1þ ða2
1a

2 þ a2
4b

2 þ ða1a4abÞ2 þ 2a1a4ab� ða2a3abÞ2Þ
� 2ða1aþ a4bÞð1þ a1a4abÞ cosðxs1Þ þ 2a1a4ab cosð2xs1Þ:

If (18) has a number of positive and simple roots xi, i = 1,

2, …, then (5) has a series of critical delays

si
2;j ¼ ðui þ 2jpÞ=xi; i ¼ 1; 2; � � � ; j ¼ 0; 1; 2; � � � ; ð19Þ

where ui 2 ½0; 2pÞ and satisfied with

cosð2uiÞ ¼
1� x2

i � ða1aþ a4bÞxi sinðxis1Þ
a2a3ab

� ða1aþ a4bÞ cosðxis1Þ � a1a4ab cosð2xis1Þ
a2a3ab

;

sinð2uiÞ ¼
�2xi þ ða1aþ a4bÞxi cosðxis1Þ

a2a3ab

� ða1aþ a4bÞ sinðxis1Þ � a1a4ab sinð2xis1Þ
a2a3ab

:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð20Þ

To make sure the occurrence of the Hopf bifurcation, it is

needed to check the transversality condition. Without loss

of generality, the time delay s2 is chosen as the bifurcation

parameter. The necessary condition for the existence of the

Hopf bifurcation is that the critical eigenvalues cross the

imaginary axis with non-zero velocity. Differentiating k
with respect to s2 in (5), one reaches

It follows that

sgn Re
dkðs2Þ

ds2

�
�
�
�
s2¼si

2;j
;k¼ixi

" #( )

¼ sgn
dGðx; s1Þ

dx

�
�
�
�
x¼xi

" #

:

ð22Þ

Based on the transversality condition (22) and the Hopf

bifurcation theorem, one has the following assertions when

each eigenvalue of the characteristic equation (6) has negative

real part. If (18) has no positive root, the equilibrium point of

system (1) is locally asymptotically stable for the arbitrary

delay s2, which is called the delay-independent stability. On

the other hand, if (18) has one simple positive root x0 satisfied

with dGðx; s1Þ=dxjx¼x0
[ 0, there exists only a critical

delay value denoted by sc. All eigenvalues of system (1) have

strictly negative real parts for s2 2 ½0; scÞ, while at least one of

eigenvalues with positive real part for s2 2 ½sc;þ1Þ. The

equilibrium point of system loses its stability via a Hopf

bifurcation. The direction and stability of the Hopf bifurcation

can be studied by means of the central manifold reduction and

normal form method (Song and Xu 2012c). Furthermore, if

G(x, s1) has two positive and simple roots 0 \x1 \x2

satisfied with dGðx; s1Þ=dxjx¼x1
[ 0ð\0Þ and dGðx; s1Þ=

dxjx¼x2
\0ð[ 0Þ, there exist a finite number of the delayed

s2 intervals in which all eigenvalues of the characteristic

equation (5) have negative real parts. It implies that there exist

a finite number of delayed intervals. If time delay is fixed into

these intervals, the equilibrium point is locally asymptotically

stable, while instable for the outside of the delayed ranges.

That is to say, the system dynamic switches from stable to

unstable, and then back to stable when delay increases and

crosses the critical delayed values.

For example, we choose the coupled weights and

external inputs as a1 = -6, a2 = 2.5, a3 = 2.5, a4 = -6,

P = 0.4 and Q = 0.4, respectively. The time delays of

self- and neighbor-connection, namely s1 and s2 are con-

sidered as the variable parameters. The figures of function

G (18) and eigenvalue real parts of (5) are displayed in

Fig. 1 for the different self-connection delay s1, where the

eigenvalue real parts are obtained with the aid of

the numerical tool DDE BIFTOOL (Engelborghs

et al. 2002). Figure 1a shows that the curve determined by

function G and the line G = 0 have not intersection point

when x[ 0 holds. It implies that function G (18) exhibits

no positive real root for the fixed delay s1 = 1. The real

parts of all eigenvalues have the negative part, as shown in

dk
ds2

¼ �2a2a3abke2ks2

ekðs1þ2s2Þð2eks1ð1þ kÞ þ ða1aþ a4bÞðð1þ kÞs1 � 1ÞÞ þ 2abða2a3e2ks1s2 � a1a4e2ks2s1Þ
: ð21Þ
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Fig. 1b. The equilibrium point of system (1) is locally

asymptotically stable for the arbitrary delay s2. With the

self-connection delay s1 increasing to 1.5, the curve

determined by function G moves down and crosses the line

G = 0. Function G (18) has two positive roots 1.2827 and

1.523, as shown in Fig. 1c. It follows from Fig. 1d that

there exist the delay s2 intervals in which the eigenvalues

have the negative parts. The system dynamics switch from

stable to unstable, and then back to stable state with delay

s2 increasing. It implies that if self-connection delay s1 is

fixed, we can adjust the neighbor-connection delay s2 into

the stability regions to suppress system vibration. When

delay s1 is increased to 8, function G has two pairs of

positive roots, as shown in Fig. 1e. However, at this time,

the maximum eigenvalue of (5) for the fixed delay s1 = 0,

i.e. the characteristic equation (6) has positive real part

ReðkÞ ¼ 0:0912. The equilibrium point of system (1) is

unstable for any delay s2, as shown in Fig. 1f.

To get a deep investigation for the stability switches of

equilibrium point, we fix the self-connection delay s1 = 1.5.

The partial eigenvalues and phase portraits are shown in

Figs. 2 and 3 respectively for the different delay s2. Fig-

ure 2a shows the maximum eigenvalues are a conjugate pair

with negative part given by -0.0295 ± 1.5705i, where the

(a) (b)

(c) (d)

(e) (f)

Fig. 1 Roofs of function G (left

column) and eigenvalue real

parts with s2 varying (right

column) for the fixed self-

connection delay a–b s1 ¼ 1,

c–d s1 ¼ 1:5 and e–f s1 ¼ 8,

respectively. The other

parameters are chosen as

a1 = -6, a2 = 2.5, a3 = 2.5,

a4 = -6, P = 0.4, Q = 0.4
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neighbor-connection delay is fixed as s2 = 3. It implies that

the equilibrium point of system (1) is locally asymptotically

stable, as shown in Fig. 3a. Letting s1 = 1.5 and varying s2

yield that the conjugate pair start to pass through the imag-

inary axis and go into the right-half in the complex plane. For

s2 = 4, the pair become to be 0.0256 ± 1.4012i shown in

Fig. 2b, which suggests that the equilibrium point loses its

stability (Fig. 3b). Continuing to increase s2, the conjugate

pair return and pass through the imaginary axis again. The

maximum eigenvalues with negative real parts occurs in the

left-hand of complex plane. Figure 2c shows the eigenvalues

are -0.00936 ± 1.2591i for the fixed delay s2 = 5. The

equilibrium point of system is stabilized again by the

neighbor-connection delay s2, as shown in Fig. 3c. If the

delay s2 is fixed as s2 = 6, the maximum eigenvalues are

conjugate pair with positive part 0.0199 ± 1.4311i, as

shown in Fig. 2d. The equilibrium point loses its stability

again (Fig. 3d). In a word, time delay can lead system to

exhibit multi-stable regions. The dynamics of equilibrium

point can multi-switch from stable to unstable, and then back

to stable state.

Existence of double Hopf bifurcation

It follows from above section that the multiple roots of

Eq. (18) can lead system (1) exhibit the phenomenon of

stability switches. The dynamical behavior of equilibrium

point undergoes the multiple transitions between stability

and instability when delays increase and cross the critical

delayed values. In this section, we will illustrate these

critical values and find the stability regions located in the

delayed plane. To this end, the Hopf bifurcation curves

represented by delay parameters are investigated. The

(a) (b)

(c) (d)

Fig. 2 Distribution of eigenvalues with time delay s2 varying a
s2 ¼ 3, b s2 ¼ 4, c s2 ¼ 5 and d s2 ¼ 6 for the fixed parameters

a1 = -6, a2 = 2.5, a3 = 2.5, a4 = -6, P = 0.4, Q = 0.4, s1 ¼ 1:5,

where the asterisk in green represents the eigenvalues with negative

real part and one with positive real part is in red color
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coordinate values of the intersection points of these curves

are presented, which are the points of the double Hopf

bifurcation.

As mentioned above, two pairs of purely imaginary

solutions of Eq. (5) are denoted by k1;2 ¼ �ix1;2, with

x2 [ x1 [ 0. Then two series of the critical delays cor-

responding to such pairs of purely imaginary eigenvalues

are given by

s1
2;j ¼ ðu1 þ 2jpÞx1; j ¼ 0; 1; 2; � � � ; ð23Þ

where u1 2 ½0; 2pÞ,

cosð2u1Þ ¼
1� x2

1 � ða1aþ a4bÞx1 sinðx1s1Þ
a2a3ab

� ða1aþ a4bÞ cosðx1s1Þ � a1a4ab cosð2x1s1Þ
a2a3ab

;

sinð2u1Þ ¼
�2x1 þ ða1aþ a4bÞx1 cosðx1s1Þ

a2a3ab

� ða1aþ a4bÞ sinðx1s1Þ � a1a4ab sinð2x1s1Þ
a2a3ab

;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

and

s2
2;j ¼ ðu2 þ 2jpÞ=x2; j ¼ 0; 1; 2; � � � ; ð24Þ

where u2 2 ½0; 2pÞ,

cosð2u2Þ ¼
1� x2

2 � ða1aþ a4bÞx2 sinðx2s1Þ
a2a3ab

� ða1aþ a4bÞ cosðx2s1Þ � a1a4ab cosð2x2s1Þ
a2a3ab

;

sinð2u2Þ ¼
�2x2 þ ða1aþ a4bÞx2 cosðx2s1Þ

a2a3ab

� ða1aþ a4bÞ sinðx2s1Þ � a1a4ab sinð2x2s1Þ
a2a3ab

:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

It follows from (21) that the sign of Reðdk=ds2Þ at

k ¼ ix1, s2 ¼ s1
2;j and k ¼ ix2, s2 ¼ s2

2;j is difficult to

determine analytically in terms of the expression of x1,2.

But it can be easily computed numerically. In fact, numerical

results show that the quantity of Reðdk=ds2Þjk¼ix1
is negative

and Reðdk=ds2Þjk¼ix2
is positive. This implies that the

(a) (b)

(c) (d)

Fig. 3 Phase portraits with time delay s2 varying a s2 ¼ 3, b s2 ¼ 4, c s2 ¼ 5 and d s2 ¼ 6 for the fixed parameters a1 = -6, a2 = 2.5,

a3 = 2.5, a4 = -6, P = 0.4, Q = 0.4, s1 ¼ 1:5
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crossing of the imaginary axis is from left to right as s2

increases to a certain critical value s2
2;j; j ¼ 0; 1; 2; � � �

corresponding to x2, and crossing from right to left occurs

at a certain values s1
2;j; j ¼ 0; 1; 2; � � � corresponding to x2.

For instance, if s1
2;0\s2

2;0 holds for some certain inter-

vals of s1, then the unstable equilibrium point becomes

stable as s2 is increased to cross the critical value s1
2;0.

When s2 is further increased to pass through the critical

value s2
2;0, the equilibrium point loses its stability again,

where a pair of eigenvalues cross the imaginary axis and

arrive to the right half plane. The occurrence and termi-

nation of stability switches for the equilibrium point are

located at the points of the first and second Hopf bifurca-

tion corresponding x1 and x2 frequencies, respectively.

Similarly, higher order stability regions may be located by

s1
2;j\s2\s2

2;j for 1, 2, …, resulting in a possibility of

multiple stability regions.

Furthermore, the double Hopf bifurcation may occur

when the two critical delays are identical, which corre-

spond to the different frequencies x1 and x2. Geometri-

cally, the double Hopf bifurcation points are the

intersections of the first and second Hopf bifurcation

curves. Owing to the multiple delays of system (1) con-

sidered in the present paper, more complicated expressions

have been derived for the critical delays. The possible

points of the intersection for the Hopf bifurcation curves

cannot be given in a theoretical form. But for a given set of

the system parameters, the double Hopf bifurcation points

can be solved by the numerical procedure.

As an illustrative example, consider a specific system

with the fixed parameters a1 = -6, a2 = 2.5, a3 = 2.5,

a4 = -6, P = 0.4 and Q = 0.4, which are analyzed in

section ‘‘Linear stability switches’’. The delays s1

and s2 are taken as the variable parameters. It follows from

(2) that system (1) has only unique equilibrium point given

by ðx0; y0Þ ¼ ð�0:734629;�0:734629Þ. The frequencies of

the first and second Hopf bifurcation can be obtained in

terms of (18) for each fixed value of delay s1. For example,

chosen time delay as s1 = 1.8, one has the frequencies

x1 ¼ 1:0773 and x2 ¼ 1:3697, respectively. The equilib-

rium point switches to stable state s2 when increases to

s1
2;0 ¼ 0:256977 corresponding to the first Hopf bifurca-

tion, and remains its stability until s2 reaches s2
2;0 ¼

1:11253 relating to the second Hopf bifurcation. Similarly,

the equilibrium point is locally asymptotically stable if the

delay is fixed into the range of ðs1
2;1; s

2
2;1Þ ¼ ð3:1730;

3:4065Þ, which is the second order stability region. In such

a way, the equilibrium point switches its stability and

instability a finite number of times. For each fixed delay s1,

based on (23) and (24), a series of critical curves of the

stability regions can be exhibited in the (s1, s2) parameter

plane, as shown in Fig. 4. These curves divide the

parameter plane into several stable and unstable regions.

The stability regions are indicated by Sj; j ¼ 0; 1; 2; � � �,
where j stands for the order of the stability regions.

It follows from Fig. 4 that the curves of the first and

second Hopf bifurcation intersect at the point ðsc
1; s

c
2Þ ¼

ð2:8467; 1:1767Þ. The frequencies corresponding to the

Hopf bifurcation are respectively x1 ¼ 0:7314 and

x2 ¼ 0:9735, as shown in Fig. 5. It implies that the inter-

section point is a non-resonate double Hopf bifurcation,

which is usually referred as the codimension-two bifurca-

tion. This singularity point is a source of more complicated

dynamics, such as the stable quasi-periodic behavior and

unstable solution. Similarly, the higher order double Hopf

bifurcation points and the corresponding frequencies can

be obtained in the (s1, s2) parameter plane, which are

shown in Fig. 4 and Table 1.

Central manifold reduction

It follows from the previous section that multiple delays of

system (1) induce two different values of frequencies

corresponding to the first and second Hopf bifurcation. The

existence of a double Hopf bifurcation can be detected by

the local stability analysis. The intersections of these Hopf

bifurcation curves are the double Hopf bifurcation points.

In this section, we represent the typical dynamical behav-

iors and the bifurcation sets in the neighborhood of the

double Hopf bifurcation point by means of the central

manifold reduction and normal form method (Buono and

Belair 2003; Faria and Magalhaes 1995a, b). The periodic

solutions corresponding to the different frequencies and the

stable quasi-periodic solutions resulting from the double

Fig. 4 Variation of the critical delay values s2 with s1 in the (s1, s2)

parameter plane for the fixed parameters as a1 = -6, a2 = 2.5,

a3 = 2.5, a4 = -6, P = 0.4 and Q = 0.4, respectively, where Sj; j ¼
0; 1; 2; � � � denote the stability regions of equilibrium point (x0, y0) and

Pj, j = 0, 1, 2, … are the double Hopf bifurcation points
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Hopf bifurcations point are investigated in the system

under consideration. Introducing the transformation

t! t=s1 yields that system (1) becomes

dxðtÞ
dt
¼ s1 �xðtÞ þ a1Sðxðt � 1ÞÞ þ a2Sðyðt � rÞÞ þ P½ �;

dyðtÞ
dt
¼ s1 �yðtÞ þ a3Sðxðt � rÞÞ þ a4Sðyðt � 1ÞÞ þ Q½ �;

8
>><

>>:

ð25Þ

where r ¼ s2=s1. For the rescale system defined by

system (25), the two Hopf bifurcation frequencies,

namely x01 and x02, are now given by x01 ¼ s1x1 and

x02 ¼ s1x2, respectively. Setting xðtÞ ! xðtÞ � x0 and

yðtÞ ! yðtÞ � y0 yields that system (25) can be rewritten

as system (26).

Regarding the time delays s1 and r as the bifurcation

parameters, we let

s1 ¼ sc
1 þ ed1; r ¼ rc þ ed2;

where rc ¼ sc
2=s

c
1 and ed1; ed2 are the unfolding parameters.

It follows that

s2 ¼ s1r ¼ ðsc
1 þ ed1Þðrc þ ed2Þ

¼ sc
2 þ eðrcd1 þ sc

1d2Þ þ oðeÞ: ð27Þ

Then system (25) becomes

Table 1 Coordinate values of the double Hopf bifurcation points and

the corresponding frequencies

ðsc
1; s

c
2Þ x1 x2

(2.8467, 1.1767) 0.7314 0.9735

(1.9473, 3.5226) 1.0052 1.2985

(1.6481, 5.4804) 1.1682 1.4474

(1.5225, 7.4198) 1.2630 1.5121

(1.4584, 9.3768) 1.3222 1.5422

(a) (b)

Fig. 5 a Roots of the characteristic equation in the complex plane for ðsc
1; s

c
2Þ ¼ ð2:8467; 1:1767Þ and b enlargement near (0, 0) corresponding to

a, where the other parameters are fixed as a1 = -6, a2 = 2.5, a3 = 2.5, a4 = -6, P = 0.4, Q = 0.4

dxðtÞ
dt
¼ �s1xðtÞ þ a1s1 S0ðx0Þxðt � 1Þ þ 1

2
S00ðx0Þx2ðt � 1Þ þ 1

6
S000ðx0Þx3ðt � 1Þ

� �

þ a2s1 S0ðy0Þyðt � rÞ þ 1

2
S00ðy0Þy2ðt � rÞ þ 1

6
S000ðy0Þy3ðt � rÞ

� �

;

dyðtÞ
dt
¼ �s1yðtÞ þ a3s1 S0ðx0Þxðt � rÞ þ 1

2
S00ðx0Þx2ðt � rÞ þ 1

6
S000ðx0Þx3ðt � rÞ

� �

þ a4s1 S0ðy0Þyðt � 1Þ þ 1

2
S00ðy0Þy2ðt � 1Þ þ 1

6
S000ðy0Þy3ðt � 1Þ

� �

:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð26Þ
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To apply the central manifold reduction, it is necessary to

changes system (28) into a functional differential equation

(Hale 1977). Let C,Cð½�s; 0�;R2Þ as the Banach space of

continuous functions from ½�s; 0� to R2 with the supremum

norm, where s ¼ maxf1; rg. For any / 2 C, we define

Lð0Þ/ ¼
Z0

�s

dgðhÞ½ �/ðhÞ; ð29Þ

where g : ½�s; 0� ! R2 � R2 is a real-valued function of

bounded variation in ½�s; 0� with

dgðhÞ ¼ sc
1

�dðhÞ þ a1adðhþ 1Þ a2bdðhþ rcÞ
a3adðhþ rcÞ �dðhÞ þ a4bdðhþ 1Þ

� �

dh;

ð30Þ

where a ¼ S0ðx0Þ, b ¼ S0ðy0Þ, and d(h) is Dirac function.

Further, we define

L1ðeÞ/ ¼
Z0

�s

dg1ðh; eÞ½ �/ðhÞ; ð31Þ

where

and

b1 ¼ a2S00ðy0Þ ðsc
1 þ ed1Þdðhþ rc þ ed2Þ � sc

1dðhþ rcÞ
� �

;

b2 ¼ a3S00ðx0Þ ðsc
1 þ ed1Þdðhþ rc þ ed2Þ � sc

1dðhþ rcÞ
� �

:

For / 2 C, the linear operator defined by system (28)

generates an infinitesimal generator of the semi-flow of

bounded linear operators with

Að0Þ/ ¼
d/ðhÞ

dh
h 2 ½�s; 0Þ;

Lð0Þ/ h ¼ 0;

8
<

:
ð33Þ

dxðtÞ
dt
¼ sc

1 þ ed1

� �
�xðtÞ þ a1 S0ðx0Þxðt � 1Þ þ 1

2
S00ðx0Þx2ðt � 1Þ þ 1

6
S000ðx0Þx3ðt � 1Þ

� �� �

þ a2 sc
1 þ ed1

� �
S0ðy0Þyðt � rc � ed2Þ þ

1

2
S00ðy0Þy2ðt � rc � ed2Þ

� �

þ 1

6
a2 sc

1 þ ed1

� �
S000ðy0Þy3ðt � rc � ed2Þ þ � � � ;

dyðtÞ
dt
¼ sc

1 þ ed1

� �
�yðtÞ þ a3 S0ðx0Þxðt � rc � ed2Þ þ

1

2
S00ðx0Þx2ðt � rc � ed2Þ

� �� �

þ a4 sc
1 þ ed1

� �
S0ðy0Þyðt � 1Þ þ 1

2
S00ðy0Þy2ðt � 1Þ þ 1

6
S000ðy0Þy3ðt � 1Þ

� �

þ 1

6
a3 sc

1 þ ed1

� �
S000ðx0Þx3ðt � rc � ed2Þ þ � � � :

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð28Þ

dg1ðh; eÞ ¼ ed1

�dðhÞ þ a1sc
1S00ðx0Þdðhþ 1Þ b1

b2 �dðhÞ þ a4sc
1S00ðy0Þdðhþ 1Þ

� �

dh; ð32Þ
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and

A1ðeÞ/ ¼
0 h 2 ½�s; 0Þ;
L1ðeÞ/ h ¼ 0:

(

ð34Þ

Set

N/ ¼
0 h 2 ½�s; 0Þ;

Fð/1;/2Þ h ¼ 0;

(

ð35Þ

where

Fð/1;/2Þ ¼
F1ð/1;/2Þ
F2ð/1;/2Þ

( )

; ð36Þ

and

F1ð/1;/2Þ ¼ sc
1 þ ed1

� �
a1

1

2
S00ðx0Þ/2

1ð�1Þ þ 1

6
S000ðx0Þ/3

1ð�1Þ
� �

þ a2 sc
1 þ ed1

� � 1

2
S00ðy0Þ/2

2ð�rc � ed2Þ
�

þ 1

6
S000ðy0Þ/3

2ð�rc � ed2Þ
�

;

F2ð/1;/2Þ ¼ sc
1 þ ed1

� �
a3

1

2
S00ðx0Þ/2

1ð�rc � ed2Þ
�

þ 1

6
S000ðx0Þ/3

1ð�rc � ed2Þ
�

þ sc
1 þ ed1

� �

a4

1

2
S00ðy0Þ/2

2ð�1Þ þ 1

6
S000ðy0Þ/3

3ð�1Þ
� �

:

Thus, system (28) becomes

_vt ¼ Að0Þvt þ A1ðeÞvt þ Nvt ð37Þ

where v ¼ ðv1; v2ÞT,vtðhÞ ¼ vðt þ hÞ; � s� h� 0. For

w 2 C� ¼ Cð½0; s�;R2Þ, the adjoint operators A�ð0Þ and

A�1ðeÞ of Að0Þ and A1ðeÞ, respectively, are given by

A�ð0ÞwðsÞ ¼
dwðsÞ

ds
s 2 ð0; s�;

R0

�s
dgTðsÞwð�sÞ s ¼ 0;

8
><

>:
ð38Þ

and

A�1ðeÞwðsÞ ¼
0 s 2 ð0; s�;

R0

�s
dgTðs; eÞwð�sÞ s ¼ 0

8
<

:
ð39Þ

For u 2 C and w 2 C�, we introduce the bilinear form

wðsÞ;uðhÞh i ¼ �wTð0Þuð0Þ

�
Z0

�s

Zh

n¼0

�wTðn� hÞdgðhÞuðnÞdn: ð40Þ

From the above discussion, we know that system (25)

has two pairs of purely imaginary eigenvalues K ¼

f�ix01;�ix02g and the other eigenvalues with negative

real parts at the double Hopf bifurcation point. Therefore,

the Banach space C can be split into two subspaces as

C ¼ PK 	 QK, where PK is the four-dimensional center

subspace spanned by the basic vectors of the linear oper-

ator Að0Þ associated with the imaginary characteristic

roots, and QK is the complement subspace of PK (Faria and

Magalhaes 1995a, b). Now, We suppose qjðhÞ and q�j ðhÞ
are the eigenvectors of Að0Þ and A�ð0Þ, respectively, cor-

responding to eigenvalue ix0j and �ix0j, j ¼ 1; 2, i.e.

Að0ÞqjðhÞ ¼ ix0jqjðhÞ, and A�ð0Þq�j ðsÞ ¼ �ix0jq
�
j ðsÞ. By

the direct computation, we have

qjðhÞ ¼ 1 ajð ÞTeix0jh; and q�j ðsÞ ¼ �Kj bj 1
� �T

eix0js;

where

aj ¼
ðeix0j � a1aÞe�ix0jþisx0j þ ieisx0jx0j

a2b
;

bj ¼ �
a3aeisx0j

�1þ a1aeix0j þ ix0j

;

1

Kj

¼ 2a3ase�isx0j þ a3aeisx0jðeix0j þ a1aÞ
eix0jð1þ ix0jÞ � a1a

þ eiðs�2Þx0jðeix0j þ a4bÞðeix0jð1þ ix0jÞ � a1aÞ
a2b

:

Furthermore, it follows that the real bases for PK and its

dual space can be expressed as (Chen and Yu 2006)

UðhÞ ¼ /1;/2;/3;/4
� �

¼
ffiffiffi
2
p

Re q1ðhÞð Þ; Im q1ðhÞð Þ;Re q2ðhÞð Þ; Im q2ðhÞð Þð Þ;
ð41Þ

and

WðsÞ ¼ w1;w2;w3;w4
� �T

¼
ffiffiffi
2
p

Re q�1ðhÞ
� �

; Im q�1ðhÞ
� �

;Re q�2ðhÞ
� �

; Im q�2ðhÞ
� �� �T

;

ð42Þ

respectively. Note that the factor
ffiffiffi
2
p

is required for

normalizing the linear part of transformed equation. It is

easily verified that q�j ; qj

D E
¼ 1 and q�j ; �qj

D E
¼ 0, where

j ¼ 1; 2 and

W;Að0ÞUh i ¼ B ¼

0 x01 0 0

�x01 0 0 0

0 0 0 x02

0 0 �x02 0

0

B
B
@

1

C
C
A: ð43Þ

Define

u ¼ u1; u2; u3; u4ð ÞT¼ W; vth i; ð44Þ

which actually represents the local coordinate system on

the four-dimensional center manifold, induced by the basis
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W. It follows (41) and (42) that one can decompose vi into

two parts given by

vt ¼ vPK
t þ vQK

t ¼ U W; vth i þ vQK
t ¼ Uuþ vQK

t ; ð45Þ

which implies that Uu is the projection of vi on the center

manifold. Substituting (45) into (37) and applying the

bilinear operator (37) with W given by (37) to the resulting

equation yields

W; U _uþ _vQK
t

� �� 	
¼ W; Að0Þ þ A1ðeÞ þ Nð Þ Uuþ vQK

t

� �� 	
:

ð46Þ

With the aid of (45), one obtains

W;Uh i _u ¼ W;Að0ÞUh iuþ W;A1ðeÞUh iuþ W;NUuh i
) _u ¼ BuþWð0ÞFðt;UuÞ: ð47Þ

where B is determined by (43). It should be noted that ed1

and ed2 are very small in the neighborhood of ðsc
1; sc

2Þ. This

implies that

sinðed1x1Þ
 ed1x1; cosðed1x1Þ
 1; sinðed2x2Þ
 ed2x2;

cosðed2x2Þ
 1:

Executing the standard normalization technique as (Xu and

Pei 2008; Buono and Belair 2003), one obtains the

amplitude equation coming from the polar normal form

of the central manifold system given by (Guckhenheimerm

and Holmes 1983)

_r1 ¼ l1r1 þ a11r3
1 þ a12r1r2

2 ;

_r2 ¼ l2r2 þ a21r2
1r2 þ a22r3

2 :

(

ð48Þ

As mentioned above, chosen the system parameters

as a1 ¼ �6; a2 ¼ 2:5; a3 ¼ 2:5; a4 ¼ �6; P ¼ 0:4; Q ¼
0:4, the double Hopf bifurcation points are illustrated in

Fig. 4 and Table 1. For convenience, we only investigate

the first order critical delayed value of the double Hopf

bifurcation given by sc
1 ¼ 2:8467; sc

2 ¼ 1:1767. The same

procedure can be applied to the other points. Substituting

the parameter values into system (48), one obtains the

corresponding coefficients given by l1 ¼ 0:176689ed1

�0:437895ed2; l2 ¼ �0:154889ed1 þ 0:518251ed2; a11 ¼
�2:24354; a12 ¼ �4:56238; a21 ¼ �0:439421; a22 ¼
�5:240934, respectively. From the dynamical theory

(Guckhenheimerm and Holmes 1983), the curves of the

secondary bifurcation are represented as T1 ¼ fðl1; l2Þ :

l1 ¼ 0:870528l2 þ Oðl2
2Þ; l2 [ 0g and T2 ¼ fðl1; l2Þ :

l2 ¼ 0:195861l1 þ Oðl2
1Þ; l1 [ 0g in the (l1, l2) plane. To

analyze the dynamical behaviors of system (1) in parameter

(s1, s2) plane, the bifurcation curves in terms of s1 and s2 can

be obtained by virtue of (27). The dynamical classification

near the first order point of double Hopf bifurcation is shown

in Fig. 6, which is called the two-parameter bifurcation

diagram. It should be noticed that the fixed point with

r1 = r2 = 0 in system (48) corresponds to the equilibrium

point of the origin system. Possible fixed point in the invariant

coordinate axes for (48) with r1 = 0 or r2 = 0 correspond

to limit cycle of the origin system, while a nontrivial fixed

point with r1 [0 and r2 [0 generates a two-dimensional

tours (quasi-periodic solution with two incommensurate

frequencies). The stability of all these solutions in the original

system is clearly detectable from that of the corresponding

object in (48), as shown in Fig. 6.

Numerical simulations

To illustrate the theoretical works of determining the

double Hopf bifurcation properties, in this section, we

present some numerical simulation to verify the system

solutions. As mentioned above, we kept on choosing the

parameters as a1 = -6, a2 = 2.5, a3 = 2.5, a4 = -6,

P = 0.4 and Q = 0.4, respectively. The time delays s1 and

s2 are considered as the variable parameters. Fig. 7 shows

the one-parameter bifurcation diagrams with varying delay

s2 for fixed delay s1. Phase portraits of the typical behav-

iors near the double Hopf bifurcation point are illustrated in

Fig. 8, respectively.
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Fig. 6 Classification and bifurcation sets for system (1) near the first

order point of the double Hopf bifurcations ðsc
1; s

c
2Þ ¼

ð2:8467; 1:1767Þ in the parameter (s1, s2) plane. The other parameters

are chosen at the same as those in Fig. 4
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Firstly, two delays are fixed as ðs1; s2Þ ¼ ð2:5; 1:0Þ
located in region 1 of Fig. 6. The numerical solution of

system (1) is shown in Fig. 8a. The trajectory asymptoti-

cally converges to the equilibrium point ðx0; y0Þ ¼
ð�0:734629;�0:734629Þ. It implies the point is locally

asymptotically stable. With the increasing of delay s2, the

equilibrium point loses its stability in term of the super-

critical Hopf bifurcation, where the parameters encounter

the second Hopf bifurcation curve and enter region 2 of

Fig. 6. The system periodically oscillates with the second

frequency, as shown in Fig. 8b. The one-parameter bifur-

cation diagram with increasing s2 is shown in Fig. 7b. The

oscillation amplitude of system is increasing with delay s2

varying. However, when delay s2 is decreased from region

1 of Fig. 6, the parameters will encounter the first Hopf

bifurcation curve related to x1 frequency. This implies that

the equilibrium point loses its stability through a reverse

Hopf bifurcation, as shown in Fig. 7a. It follows that this

bifurcation is also supercritical Hopf bifurcation. The

system is exhibited the oscillation solution with x1 fre-

quency as it enters into region 6, as shown in Fig. 8f.

Furthermore, when we choose delay s1 ¼ 3:5, the one-

parameter bifurcation diagram with varying s2 is shown in

Fig. 7c, where Fig. 7d is the partial enlargement of the

box in Fig. 7c. Figure 8c and e respectively show the

stable state of periodical solutions with the different fre-

quencies. With delay s2 varying from region 3–4, the

stable periodic solution loses its stability through the

Neimark-Sacker bifurcation. It suggests that the system

behavior moves to a two-frequency quasi-periodic state, as

shown in Fig. 8d. The phase portrait clearly shows

the modulation of the peak intensities, which is also called

as 2-torus. Keeping delay s2 vary, when parameters

encounter and cross the other secondary bifurcation, the

system behavior transforms into the periodic activity again

from the 2-torus solution. The analytical predictions of

system solutions are good representatives of the numerical

results.
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Conclusion

In neural system, action potential plays a crucial role in

many information communications. To understand the

information representation, many mathematical models are

proposed and the mechanism of information processing is

investigated by using the analytical method of nonlinear

dynamics. The quiescent state, periodic spiking, quasi-

periodic behavior and bursting activity are all the important

biological behavior with the different neuro-computational
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Fig. 8 Phase portraits of the numerical simulation for the dynamical

behavior in system (1) near the first order point of the double Hopf

bifurcation, where (s1, s2) is fixed as a (2.0, 0.8), b (2.5, 1.6), c (3.5,

1.6), d (3.5, 1.64), e (3.5, 1.4), and f (3.5, 0.8), respectively. The other

parameters are chosen at the same as those in Fig. 4
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properties (Song and Xu 2012a; 2012b). The action

potential exhibits the quasi-periodic behavior when the

number of incommensurable frequencies is finite, which is

called the multi-frequency rhythmic activity. Their power

spectra are discrete with peaks corresponding to the com-

posed frequencies (Izhikevich 1999). In fact, EEG

recordings of brain can demonstrate the rhythmic activity

with a few pronounced frequencies. For example, the most

prominent are gamma (30–100 Hz) oscillations in the

cortex and theta (4–8 Hz) oscillations in the hippocampus

(Llinas 1988). Recently, Marichal et al. (2010) considered

the dynamic behavior of a quasi-periodic orbit obtained by

the Neimark-Sacker bifurcation in a simple discrete

recurrent neural network model.

It is well known that time delay is an inevitable factor

in the signal transmission between biological neurons or

electronic-model-neurons. Neural systems with time

delays have very rich dynamical behaviors. In this paper,

a neural network with two different types of delays

involved in self- and neighbor-connection has been stud-

ied. The occurrence of the multiple delays greatly com-

plicates the analysis of stability and bifurcation. The

stability regions are strongly relied on time delays. For the

different values of delays, the system may exhibit the

different parameter regions involved in the delay-inde-

pendence stability and delay-dependence stability. In

special, when the characteristic equation of the system has

multiple roots, there exists the delay window, where the

equilibrium point is either locally asymptotically stable.

To illustrate these critical values and find the stability

regions, the Hopf bifurcation curves are illustrated. The

multiple stability regions are obtained in the delayed

parameter plane. The transverse direction of the imaginary

eigenvalues located at the critical values is determined by

means of the numerical computation.

Furthermore, the system exhibits the double Hopf

bifurcation points due to the two pairs of imaginary

eigenvalues appearing on the margin of stability regions

simultaneously. Considering the multiple delays as the

bifurcation parameters, the classification of the various

dynamic behaviors in the neighborhood of the double Hopf

bifurcation point is obtained in detail in term of the central

manifold reduction and normal form method. The system

may exhibit the equilibrium solution, periodic solutions

with the different frequencies of the first and second Hopf

bifurcations, and quasi-periodic solutions. In addition, the

quasi-periodic solution is obtained by the Neimark- Sacker

bifurcation of the periodic solutions. Numerical results are

given to illustrate that the double Hopf bifurcation is an

interaction of the supercritical–supercritical Hopf bifurca-

tions. Finally, the one-parameter bifurcation diagrams and

phase portraits verify the agreement between the theoreti-

cal analysis and numerical simulations.
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