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Abstract One hundred and thirty composite soil sam-
ples were collected from Hamedan county, Iran to
characterize the spatial distribution and trace the
sources of heavy metals including As, Cd, Co, Cr,
Cu, Ni, Pb, V, Zn, and Fe. The multivariate gap
statistical analysis was used; for interrelation of spatial
patterns of pollution, the disjunctive kriging and
geoenrichment factor (EFG) techniques were applied.

Heavy metals and soil properties were grouped using
agglomerative hierarchical clustering and gap statistic.
Principal component analysis was used for identifica-
tion of the source of metals in a set of data.
Geostatistics was used for the geospatial data process-
ing. Based on the comparison between the original
data and background values of the ten metals, the
disjunctive kriging and EFG techniques were used to
quantify their geospatial patterns and assess the con-
tamination levels of the heavy metals. The spatial
distribution map combined with the statistical analysis
showed that the main source of Cr, Co, Ni, Zn, Pb, and
V in group A land use (agriculture, rocky, and urban)
was geogenic; the origin of As, Cd, and Cu was
industrial and agricultural activities (anthropogenic
sources). In group B land use (rangeland and or-
chards), the origin of metals (Cr, Co, Ni, Zn, and V)
was mainly controlled by natural factors and As, Cd,
Cu, and Pb had been added by organic factors. In
group C land use (water), the origin of most heavy
metals is natural without anthropogenic sources. The
Cd and As pollution was relatively more serious in
different land use. The EFG technique used con-
firmed the anthropogenic influence of heavy metal
pollution. All metals showed concentrations substan-
tially higher than their background values, suggesting
anthropogenic pollution.
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Introduction

Heavy metal accumulation in soils caused by industrial-
ization has attracted wide attention. Soil contamination
by metals has become a serious widespread problem in
many parts of the world especially in developing coun-
tries. Heavy metals in soil may come from agricultural
activities (Huang and Jin 2008), urbanization, industri-
alization, and mining activities (Zhong et al. 2012).
Among these intensive agricultural and industrial
activities are considered as two of the most damaging
anthropogenic activities in the world. According to nu-
merous studies, heavy metals pollution in the environ-
ment are mainly derived from anthropogenic sources
(Acosta et al. 2011; Gu et al. 2012; Bini et al. 2011; Li
and Feng 2012b; Chabukdhara and Nema 2012; Cai et
al. 2012; Guo et al. 2012; Zhang et al. 2009). Pollutions
(e.g., fertilizers, pesticides, heavy metals, and salts)
produced by human activities (e.g., agriculture, industry,
and urban) affect the quality of soil and water drastically.
In fact, these activities lead to heavy metals accumula-
tion in soils. These result in changes in landscape, con-
tamination of soil and water, and degradation of land
resources. Therefore, the protection of soil quality is
very important and vital.

The spatial distribution of heavy metals in soils is of
primary significance in assessing soil quality and locating
pollution sources (Gu et al. 2012). However, a variety of
monitoring programs have generated numerous intricate
datasets that are difficult to interpret because of the
interactive influences. Thus, multivariate geostatistical
and geographic information system (GIS) methods have
been widely employed as powerful tools to extract the
majority of meaningful information from datasets with-
out losing useful information (Gu et al. 2012; Acosta et
al. 2011; Li and Feng 2012b; Lin et al. 2010; Yang et al.
2011; Chabukdhara andNema 2012; Cai et al. 2012; Bini
et al. 2011; Lu et al. 2012; Guo et al. 2012).

Multivariate analysis offers techniques for classifying
relationships among measured variables. The two most
common multivariate analyses are principal components
analysis and cluster analysis. Notable examples of their
recent use in assessment of soil pollution by heavy
metals are found in the following reports (Li and Feng
2012b; Acosta et al. 2011; Gu et al. 2012; Lu et al. 2012;
Cai et al. 2012; Zhong et al. 2012; Chabukdhara and
Nema 2012; Yang et al. 2011).

Principal component analysis, a statistical technique,
linearly transforms an original set of variables into a

substantially smaller set of uncorrelated new variables
that represent most of the information of the original
dataset (Chabukdhara and Nema 2012). A small set of
uncorrelated variables is much easier to understand and
use in further analysis than a larger set of correlated
variables. The purpose of cluster analysis is to identify
groups or clusters of similar sites on the basis of similar-
ities within a class and dissimilarities between different
classes. Agglomerative hierarchical clustering (AHC) ex-
amines distances between samples. The most similar
points are grouped forming one cluster and the process
is repeated until all points belong to a cluster. The results
obtained are presented in a two-dimensional plot
called a dendrogram (Irpino and Verde 2006; Ward
1963; Everitt et al. 2001).

Geostatistical techniques are based on the theory of
a regionalized variable (Matheron 1963), which is
distributed in space (with spatial coordinates) and
shows spatial autocorrelation such that samples close
together in space are more alike than those that are
further apart. A geostatistical technique measures the
spatial variability and provides for spatial interpolation
(Webster and Oliver 2007; Shi et al. 2007).

Hamedan county is one of the most developed areas in
Iran. This region in terms of agriculture is one of the
centers of excellence in terms of Iran’s economic growth.
In recent decades, the development of industry and
overuse of fertilizers in agricultural activities have conse-
quently increased the risk of pollution by metallic ele-
ments. There were no previous studies on heavy metals
pollution in this area, and thus in 2010, the Hamedan
Department of Environment (Hamedan-DoE) began a
collaborative research program to identify the presence
of Cr, Co, Zn, V, Cu, Pb, Ni, Fe, As, and Cd in soils. The
results of this project are presented in this article.

The study involved factor analysis of 130 sampling
sites in Iran’s Hamedan county to characterize the
patterns of ten heavy metals in the soil (Cr, Co, Zn,
V, Cu, Pb, Ni, Fe, As, and Cd). A new integration
statistical method, enrichment factors to assess metal
enrichments in soil under different geological struc-
tures and land uses, were determined to interpret the
background concentration of metals, examine spatial
dependency and variation mechanisms of the metals,
and evaluate spatial distribution patterns and delinea-
tion of polluted areas. Correlations between the factor
patterns and the physical soil parameters were ana-
lyzed to elucidate the characteristics of the heavy
metal pollution of the soils at these 130 sampling sites.
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Agglomerative hierarchical clustering and gap statis-
tics were also applied to group the metals and physical
parameters, and thereby delineate the interrelation-
ships between metals and anthropogenic activities.

Materials and methods

Study area

The study area includes four adjacent townships
(Kaboudarahang, Razan, Hamedan, and Bahar) locat-
ed in Hamedan county in the west of Iran comprising a
total area of 118,577.2 ha, including 63,316.55 ha
(53.4 %) of agricultural land (latitudes 33°59′ and
35°48′ and longitudes 47°34′ and 49°36′; Fig. 1).
The predominant crops in these areas are wheat, bar-
ley, alfalfa, potato, garden crops, and orchards.
Hamedan province, in terms of agriculture, is one of
the centers of excellence in terms of Iran’s economic
growth. This is a semi-arid region with a mean annual
rainfall of 400 mm which varies within the year.

Spatial data

The geology map with a scale of 1:100,000 was ac-
quired from the National Cartographic Center sites in
the network formation. Preparation of land use maps
began with field studies in March 2010 using
multitemporal satellite IRS-P6 AWiFS data (6 March,
3 April, 27 April, and 18 July) and digital topographic
maps (of scale 1:50,000).

Image processing and ground step’s data were in-
tegrated with satellite data. The first image correction
was carried out and the images were used as the
georeference. The best false color images of Optimal
Index Factor (OIF) were used to identify the best
bands with the minimum correlation and maximum
variance, and the function is expressed as:

OIF ¼

X3
i¼1

SDi

X3
j¼1

CC j

�� �� ð1Þ

where ∑
3

i¼1
SDi is standard deviation of three bands, and

∑
3

j¼1
CC j

�� �� is a sum of absolute correlation between two

of three bands.

Hybrid image classification was carried out for the
preparation of land use maps using ERDAS EMAGINE
9.1 software. In order to assess thematic accuracy, a
stratified random sampling design was used to select a
total of 360 pixels for the land use map. The accuracy of
the land use map was checked using GPS points
obtained during the March and July 2010 fieldwork as
reference. Classified and reference information were
cross-tabulated in an error matrix. Errors of commission
(user’s accuracy), omission (producer’s accuracy), and
the overall accuracies were calculated. Themap location
of industries and mines was prepared using GPS data
obtained during the fieldwork.

Soil sampling

In accordance with soil types and the uniformity of
sampling distribution in the study area, in April 2010,
the area was divided into 5×5 km grids using random
systematic method and 130 composite soil samples
were collected (0–20 cm depth). The distribution of
sampling points is presented in Fig. 1. The coordinates
of the sample points were detected using GPS and
were plotted on a topographic map with a scale of
1/50,000. The samples were air dried. Gravel, coarse
organic matter, and plant root residues were removed.
Soil samples were dried in an oven at 105 °C for 24 h.
The dried samples were passed through a 2-mm plastic
sieve and stored in 1-kg plastic bags prior to chemical
analysis.

Chemical analysis

Selected soil properties relevant to mobility and bio-
availability of heavy metals were analyzed for the gen-
eral characterization of soils. Particle size distribution
was measured by the hydrometric method to determine
the sand, silt, and clay percentages. Soil pH (soil, H2O
ratio=1:2) was measured using a pH meter with a glass
electrode (Shi et al. 2007). Electrical conductivity was
determined on the saturation paste extract (Micó et al.
2006). Organic matter concentration was determined
by the Walkley–Black method. A 0.5 g of milled soil
sample was digested with 8 ml of HNO3 (65%), 5 ml of
HCl (37 %), and 1.5 ml of HF (40 %) in a Milestone
Microwave (Milestone Ethos 900 plus Mod. 44062) in
accordance with the ISO 11466 procedure (International
Organization for Standardization, 1995). Metal contents
were analyzed by inductively coupled plasma atomic
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emission spectrometry for Cr, Co, Zn, V, Cu, Pb, Ni, Fe,
and Cd, and by hydride generation atomic fluorescence
spectrometry for As (Fu et al. 2008).

Quality assurance and quality control

The reagent blanks were monitored throughout the
analysis and were used as required to correct the
analytical results. All analyses were performed at the
Iran Mineral Processing Research Center. All samples
were analyzed in triplicate, with the analytical process
monitored using certified reference standards.

Background concentration of metals

Background of the status of heavy metals was pre-
pared by using soil samples from virgin regions, e.g.,
pristine rangelands and regions, which were far from
human activities. The mean of each metal was calculated

and these virgin points were overlayed on to geo-
logical maps to produce the background concentration
of each metal.

Statistical analysis using computer software

Multivariate analysis

Prior to statistical analysis, the datasets were evaluated
using Kolmogorov–Smirnov method; and when the dis-
tribution was not normal, the data were log-transformed
(Shi et al. 2007) before statistical treatment. The outliers
can result in discrete data that breach the geostatistical
theories. Box plots were then used to assess and correct
the outliers in the study. Data higher than x±3 SD were
replaced with maximum or minimum of row datasets
which were lower than x±3 SD. Pekey (2006) and
Inácio et. al. (2008) had also used this method to assess
and correct the outliers in their studies.

Fig. 1 Study area and sampling sites
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All statistical analyses were thus made based on
data in normal distribution. Descriptive statistics
(mean, standard deviation, range, and coefficient of
variation) of metals and soil properties were derived
applying the SPSS®16.0 for Windows. The t test was
used to determine the existence of significant differ-
ences among soil properties and metals. Multivariate
analysis was performed using SPSS® software, with
XlStat an add-in package of Microsoft Excel 2010.
AHC and gap statistic (Gs) were used to identify
differences between the classes and clustering the
samples with similar metal content and soil properties.
AHC was undertaken according to the Ward algorith-
mic method. Results are presented in a dendrogram
where steps in the hierarchical clustering solution and
values of distances between clusters (squared Euclid-
ean distance) are represented (Chabukdhara and Nema
2012). Gap statistic is an important tool for estimating
the number of clusters (groups) in a set of data
(Tibshirani et al. 2001). The function of gap statistic
is expressed as (Dudoit and Fridlyand 2002):

Wk ¼ 1

2

X2
k¼1

X
i∈Ck

X
j∈C j

d i; jð Þ ð2Þ

Varying the total number of clusters from k=1…K,
giving within cluster point scatters Wk. Generate B
reference datasets from a uniform distribution over
the range of the observed data, and cluster each one
giving within cluster point scatters W*kb, b=1…B,
k=1…K. The gap statistic is computed as follows:

Gap kð Þ ¼ 1

B

XB
b¼1

log W �
kb

� �
−log Wkð Þ ð3Þ

The standard deviation of the B replicates log (Wk
*)

is computed as:

sdk ¼ 1

B

XB
b¼1

log W �
kb

� �
−i

� �2
" #1=2

ð4Þ

here i ¼ 1

B

XB

b¼1
log W �

kb

� � ð5Þ

The number of clusters was chosen via,bk=the smallest k such that gap (k) G(k+1)−sdk+1
(Tibshirani et al. 2001).

Principal component analysis (PCA) with Varimax
normalized rotation was used for interpreting relation-
ships and the hypothetical source of metals (lithogenic or
anthropogenic). Varimax rotation was applied because
the orthogonal rotation minimizes the number of vari-
ables with a high loading on each component and facil-
itates the interpretation of results (Acosta et al. 2011;
Bini et al. 2011; Zhong et al. 2012; Li and Feng 2012a;
Cai et al. 2012; Guo et al. 2012; Yang et al. 2011).

Geostatistical methods

Geostatistics was used to describe the geospatial
distribution of the ten heavy metals at the regional
scale. The geospatial data were compiled, merged,
loaded, and spatial interpolation was performed with
geostatistic extension. Geostatistic extension uses the
technique of semivariogram (or variogram) to measure
the spatial variability of a regionalized variable and
provides the input parameters for spatial interpolation
of kriging (Webster and Oliver 2007). Kriging is an
interpolation method applied widely to elucidate spa-
tial distribution of many parameters including metallic
elements. Kriging interpolation refers to a group of
spatial interpolation methods for assigning a value of a
random field to an unsampled location based on the
measured values in random fields at nearby locations
(Xie et al. 2011). The semivariogram model was fitted
before a kriging operation can be performed. The process
of semivariogram model fitting was conducted using
ILWIS 3.6® and the spatial distribution was achieved
using disjunctive kriging. Semivariogram calculations
were conducted and experimental semivariograms
of soil heavy metal concentrations could be fitted
with the available spherical, exponential, Gaussian,
wave, rational quadratic, circular, and power models
(Hendrikse 2000). Semivariograms were used in the
study to analyze discrete soil samples. The function
is expressed as:

bγ ¼ ∑ Zi–Ziþhð Þ2=2n ð6Þ
where: bγ is the semivariogram value of points that
have a certain distance (h) towards each other; Zi is
the value of point i, Zi+h is the value of a point at
distance h from point i, ∑(Zi−Zi+h)2 the sum of the
squared differences between point values of all point
pairs within a certain distance class, and n is the
number of point pairs within a distance class.
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The function of semivariogram models are expressed
as follows;

Spherical model:
for 0 <h<=a

γ hð Þ ¼ C0 þ C � 3h

2a
−

h3

2a3

� �
ð7Þ

for h>a

γ hð Þ ¼ C0 þ C ð8Þ
Exponential model:

γ hð Þ ¼ C0 þ C � 1−e−
h
a

h i
ð9Þ

Gaussian model:

γ hð Þ ¼ C0 þ C � 1−e−
h
að Þ2

h i
ð10Þ

Wave model:

γ hð Þ ¼ C0 þ C � 1−
Sin h

að Þ
h

a

264
375 ð11Þ

Rational quadratic model:

γ hð Þ ¼ C0 þ C �
h2

a2

1þ h2

a2

2664
3775 ð12Þ

Circular model:
for 0<h<=a

γ hð Þ ¼ C0 þ C � 1−
2

π
� arccos

h

a

� �
þ 2h

πa

ffiffiffiffiffiffiffiffiffiffiffi
1−

h2

a2

s8<:
9=;
ð13Þ

Table 1 Descriptive statistics of soil properties and heavy metals

Variable Symbol Unit Descriptive statistics

Range G. Mean SD CV (%) Kurtosis Skewness K–S test

Arsenic As mg kg−1 1.00–37.35 6.53 5.63 86.22 4.49 1.53 0.055

Cadmium Cd mg kg−1 0.40–2.60 0.81 0.716 88.40 −1.19 0.60 0.015

Logarithm of Cd −0.92–0.96 0.64 0.711 111.09 −1.7 0.27 0.057

Cobalt Co mg kg−1 8.10–27 17.27 3.56 20.61 0.19 0.013 0.394

Chromium Cr mg kg−1 30–140 83.95 22.90 27.28 −0.38 −0.012 0.58

Copper Cu mg kg−1 13.50–57 32.91 9.16 27.83 −0.38 0.15 0.9

Iron Fe mg kg−1 1.80–5.10 3.66 0.66 18.03 0.11 −0.41 0.7

Nickel Ni mg kg−1 26–110 60.97 17.73 29.08 −0.25 0.22 0.95

Lead Pb mg kg−1 13–57 23.93 5.34 22.32 9.96 1.88 0.094

Vanadium V mg kg−1 50–150 101.6 21.11 20.78 .138 −0.28 0.019

Logarithm of V 3.91–5.01 4.61 0.22 4.77 1.37 −1.0 0.064

Zinc Zn mg kg−1 35–150 74.78 17.48 23.38 1.69 0.69 0.674

pH pH – 7.23–8.37 7.78 0.22 2.83 0.20 0.10 0.53

Electrical conductivity EC dS m−1 0.48–38.80 1.27 3.54 278.74 92.97 9.04 0.00

Logarithm of EC −0.73–3.66 0.33 0.67 203.03 4.64 1.68 0.072

Organic matter OM % 0.03–2.69 0.45 0.50 111.11 4.27 1.89 0.023

Logarithm of OM −3.51–0.99 0.63 0.93 147.62 1.34 −0.98 0.23

Clay content Clay % 1.46–66.63 26.88 13.49 50.19 −0.48 0.26 0.611

Sand content Sand % 2.99–66.92 23.86 9.96 41.74 1.42 −0.59 0.723

Silt content Silt % 12.65–54.15 42.38 8.41 19.84 0.087 0.45 0.574

SD standard deviation, G. Mean geometric means (geometric means were used to describe the central trend of data), CV coefficient of
variation, K–S test Kolmogorov–Smirnov test (K–S>0.05 data is normal)

9876 Environ Monit Assess (2013) 185:9871–9888



for h>a

γ hð Þ ¼ C0 þ C ð14Þ
Power model:

γ hð Þ ¼ C0 þ k � hm ð15Þ

where, h is the distance, C0 is the nugget variance, C0+
C is the sill, a is the range, k linear slope for the power
function, m power exponent (0<m<2).

In developing a spatial distribution map for the
pollution areas the spherical, exponential, Gauss-
ian, wave, rational quadratic, circular, and power
semivariogram models were used in order to de-
termine the best model for fitting the probability
of the true values of soil heavy metals at unsampled
points. The best output map based on R2 for each metal

was selected for delineation of heavy metal pollution by
geoenrichment index.

Interpretation of heavy metal pollution
by geo-enrichment factor

Geoenrichment factor (EFG) is a geochemical index
based on the assumption that under natural soil condi-
tions, there is a linear relationship between a reference
element and other elements. The metallic elements which
are most often used as reference elements are Fe (Kartal
et al. 2006), Al, Li, and TOC (Zhang et al. 2007; Gu et al.
2012; Li and Feng 2012a). In this study, we did not
analyze that Al, Li, and TOC concentrations in the soils.
We used Fe as a conservative tracer to differentiate natu-
ral from anthropogenic components (Kartal et al. 2006).
In fact, several authors have successfully used Fe to

Agriculture    

Rocky          

Urban          

Water          

Orchards       

Rangeland      

0 10 20 30 40

Land use

(B)

(A)

(C)

(a) (b)

(c)

Fig. 2 Dendrogram showing clustering of a land use, b heavy metals and soil properties in group A, c group B, and d group C land use
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normalize heavy metal contaminants (Bhuiyan et al.
2011; Esen et al. 2010; Gu et al. 2012). The EFG is
defined as follows:

EFG ¼ Me=Feð Þsample map= Me=Feð Þbackground map ð16Þ

where (Me/Fe)sample map is the map of metals to Fe map
ratio in the samples of interest; (Me/Fe)background map is
the map of geochemical background value of metals to
Fe map ratio.

Result and discussion

Descriptive statistics

A summary of the basic statistics of the investi-
gated heavy metals and soil properties is presented
in Table 1. It was noted that the K–S test for soil
properties showed normal distribution, with the
exception of Cd, V, EC, and OM, and thus the
raw datasets were logarithmically transformed before

performing geostatistical analysis. Logarithmic transfor-
mation resulted in reduced skewness and kurtosis values
of Cd, V, EC, and OM, and the transformed datasets
passed the log-normal tests. The geomean values of the
heavy metal contents arranged in decreasing order were:
Cr>Zn>Ni>Cu>Pb>Co>As>V>Fe>Cd (Table 1). The
micronutrients such as Fe were present at the lowest
levels in soils, whereas Cr and Zn were present at higher
values. The coefficients of variations of EC, OM, Cd,
As, clay, and sand were higher than 50 %, which implies
that those metals had greater variation among the soil
samples and thus were possibly influenced by extrinsic
factors such as human activity. The average soil pH of
7.78 indicated that the soil in the study area was alkaline.

Multivariate analyses

Heavy metals, soil properties, and land use grouping
using AHC and Gs

AHC and Gs was used on both datasets of variables and
land use sites, in order to identify clusters of land use,

Table 2 Principal component matrix with eigenvalues, variability, and cumulative spatial variations of variables and factors

Variables Group A Group B Group C

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2

As 0.228 −0.346 −0.415b 0.403 0.659a 0.062 −0.814a −0.157
Cd −0.273 0.155 0.885a −0.349 −0.112 0.767a −0.927a 0.150

Co 0.956a −0.0001 0.056 0.958a 0.162 0.005 −0.399b −0.043
Cr 0.863a 0.199 −0.034 0.813a −0.046 −0.002 1.066a −1.345
Cu 0.355 0.186 0.849a 0.283 −0.137 0.870a 0.056 −0.577b

Ni 0.806a 0.287 0.096 0.838a −0.119 0.100 −0.374 1.536a

Pb 0.766a −0.073 −0.133 0.478b 0.180 −0.262 0.393 −1.362a

V 0.918a −0.189 −0.048 0.760a 0.468 0.040 1.125a 2.989

Zn 0.864a −0.057 −0.035 0.793a 0.285 0.065 2.930a −0.158
Fe 0.941a −0.094 0.108 0.877a 0.053 −0.009 −0.718a −0.204
pH −0.036 0.062 −0.266b 0.251 0.056 0.731a −0.723a 0.049

EC −0.086 0.210b 0.098 −0.180b −0.130 0.154 −0.916a 0.172

OM −0.268 0.465b 0.019 −0.371 −0.213 0.415b −0.948a 0.177

Sand −0.207 −0.954a −0.008 −0.132 0.937a −0.178 0.032 −0.279b

Silt 0.099 0.739a −0.171 −0.229 −0.879a 0.241 0.450b −0.477
Clay 0.212 0.653a 0.211 0.538b −0.493 −0.004 −0.233b −0.471
Eigenvalue 5.81 2.76 1.59 5.74 2.99 1.76 1.79 0.20

Variability 36.24 15.62 11.74 34.01 17.51 14.08 89.95 6.85

Cumulative 36.24 51.87 63.61 34.01 51.52 65.60 89.95 96.80

Italicized values with the same letter are not significantly different at p<0.01a or p<0.05b
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soil properties, and metals. AHC and Gs as an iterative
classification method enabled the identification of three
main groups (Fig. 2a), which included: group A (agri-
culture, rocky, and urban), group B (rangeland and or-
chards), and group C (water). The integration of AHC
and Gs were performed on heavy metals and soil prop-
erties based on these three major groups obtained
throughAHC andGs performed earlier (Fig. 2a). Results
of AHC performed on groups A, B, and C are depicted in
Fig. 2b–d. The dendrogram representing group A
displayed three clusters (Fig. 2b). In the first cluster,
As, pH, and sand were very well associated with each
other (A-1 in Fig. 2a). The second cluster comprised of
Cd which was also linked with Cu, EC, and OM. Soil
properties (silt and clay) were associated in the second
cluster. In the third cluster Co, Cr, Ni, Pb, V, Zn, and Fe
were verywell linked with each other. Heavymetals (As,

Cd, and Cu) in the first and second cluster appear to be
associated with anthropogenic origin. Fe is usually pres-
ent in soils in relatively high concentration under natural
condition. Co, Cr, Ni, Pb,V, and Znmay representmixed
origins (anthropogenic and lithogenic). In the group B
sites, As, Cd, Cu, Pb, pH, EC, OM, and clay are grouped
together, while Fe, Co, Cr, Ni, V, and Zn, and sand and
silt formed subgroups B-2 and B-3, respectively. In
group C, As, Cd, Co, Cr, Zn, Fe, pH, EC, and OM
formed a separate group, although also linked with Cu,
Ni, Pb, V, and soil properties (sand, silt, and clay).

Discriminating natural and anthropogenic sources
using PCA

PCA (VARIMAX rotation mode) was performed sep-
arately for the three different groups (A, B, and C), as

Fig. 3 Geology (a) and land use (b) maps of the study area

Table 3 Background concen-
tration of metals in parent rocks
of study region (mg kg-1)

Metal parent rocks

Alluvium Limestone Magmatic and
metamorphic rocks

Sandstone Shale and
marl

As 8.22 8.8 9.41 7.03 7.60

Cd 0.83 1.59 1.11 0.90 1.73

Co 15.94 19.05 21.05 18.34 19.25

Cr 83.90 106.68 101.36 99.66 100.26

Cu 30.45 36.62 33.04 40.70 37.72

Fe 4.37 5.24 5.66 5.01 5.27

Ni 58.07 72.76 70.04 74.47 71.75

Pb 23.53 23.28 25.98 24.98 25.13

V 93.87 113.51 122.03 111.91 115.11

Zn 67.21 75.61 86.62 82.02 78.42
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delineated by AHC and Gs techniques, to compare the
compositional pattern between analyzed soil properties,
metal samples and identify the factors influencing each
one. PCA of the three datasets yielded three PCs for
group A sites and three PCs for group B and two PCs for
the group C sites with eigenvalues >1, explaining 63.6,
65.6, and 96.8 % of the cumulative variance, respective-
ly (Table 2). In order to have a clear visualization of the
data trends and the relationship between variables, PCA
was depicted with loadings and score plots were de-
rived. For datasets related to group A sites, PC1 eluci-
dated 36.24 % of total variance and had strong positive
loadings on Co, Cr, Ni, Pb, V, Zn, and Fe (Table 2).
There were significant relationships between Co, Cr, Ni,
Pb, V, Zn, and Fe. The geological structure of the area
suggests lithogenic sources of these heavy metals. Mico
et al. (2006) assessed heavy metal sources in soils of the
European Mediterranean area, and observed that the
metals Co, Cr, Zn, and Fe were in PC1 with maxi-
mum variance. These components were considered
as lithogenic components and the variability of these
metals is determined by the parent rocks.

PC2, which explained 15.62 % of the total variance,
had strong positive loading for EC, OM, silt, and clay,
and a strong negative loading for sand. This component,
accounted for soil organic matter and electrical conduc-
tivity. PC3, which explained 11.7% of total variance, had
strong positive loadings for Cd and Cu, a strong negative
loading for As, and a moderate loading for pH (Table 2).
Main anthropogenic sources of these heavy metals (Cd,
Cu, and As) are direct discharges from local point
sources, such as industrial and urban discharges carrying
metal contaminants. Industrial sources include chemical,
petrochemical, and agricultural fertilizer industries, sev-
eral mining (iron, copper, arsenic, cadmium, stone, etc.)
activities, and agricultural activities involving the use of
chemical fertilizers and municipal waste. In the group B
dataset, PC1 was dominated by Co, Cr, Ni, Pb, V, Zn,
Fe, EC, and clay, which accounted for 34.01 % of the
total variance. The possible sources could be similar to
those mentioned earlier. PC2, which explained 17.5 %
of total variance had strong positive loadings on As and
sand, and a strong negative loading on silt. PC3, which
explained 14.08 % of total variance, was dominated by
Cd, Cu, soil organic matter, and electrical conductivity
(Table 2). PC1 metal loadings are attributed to natural
sources. In group C, PC1 which explained 89.95 % of
the total variance had strong positive loadings for Cr, V,
Zn, and silt, and strong negative loadings for As, Cd,T
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Co, Fe, pH, EC, OM. and clay. PC2, which explained
6.85 % of the total variance showed strong loadings for
Cu, Ni, Pb, and sand.

PC1 components may be controlled by natural factors,
while PC2 components (Cu, Ni, and Pb) as mentioned
earlier may have different sources of origin. It was also
evident that the results of PCA support the findings of the
AHC and correlation analysis.

Spatial data

The geology of the area is characterized by quaternary
alluvium, orbitalin lime, shale, and marls. The soils of
this region were shallow and semi-deep, with gravel and
lime. The texture of these soils was light to medium
(Fig. 3a). Background concentration of heavy metals in
virgin areas showed that the mean concentration of V
and Cr was naturally high in all parent rocks and the
lowest concentration in bedrocks was for Cd (Table 3).

A total of six land use classes (agriculture, orchards,
rangeland, rocky, urban, and water) were recognized
(Fig. 3b). Results of accuracy assessment of land use
maps are summarized in Table 4. It presents the errors of
commission (user’s accuracy), omission (producer’s
accuracy), and overall accuracy. The error of omission
is the proportion that is incorrectly identified as belong-
ing to a particular class. The overall accuracy gives the
proportion of correctly classified areas relative to the
total validation area. The overall accuracy was found to
be 89.5 %. When interpreting this number, one has to
bear in mind the classification process and the six dif-
ferent types that were distinguished. Highest accuracies
were obtained for agriculture (92 %), rocky land
(87.6 %), and rangeland (86.6 %), while moderate

accuracies of more than 70 % were obtained for or-
chards, urban areas, and water. Most of the classification
error was associated with water and urban areas. Only
70.3 % of water classes were correctly classified, while
13.2 % were misclassified as being agriculture. Urban
was misclassified as rangeland or agriculture.

Geostatistical analysis

Spatial distribution patterns

The range of the semivariograms for Ni, Cr, and As
weremuch greater than those for V, Pb, and Fe (Table 5).
The smallest range of the semivariogram was presented
by Vand was 20.74 km. This confirmed the rational for
the sampling density chosen, which was with 5-km in-
tervals for the precise environmental survey of the heavy
metals tested in this study.

The spatial correlation between the available data
with disjunctive kriging technique was used to map
the metal contents and delineation of polluted areas.
The experimental semivariograms of the heavy metals
with the fitted models are presented in Table 5. The
results showed that soil Zn data was fitted well with
the rational quadratic model; Cd and Pb were fitted
with the spherical model; Cu, Ni, and V were fitted
with the circular model; and the other four heavy
metals were all best fitted with the exponential model.
The attributes of the semivariograms for each heavy
metal are also summarized in Table 5. All of the Nug/Sill
ratios for the ten metals were less than 0.72. In theory,
the Nug/Sill ratio in geostatistics is regarded as the
criterion to classify spatial dependence of soil attributes.
The ratios of 0.25 and 0.75 are two thresholds for the

Table 5 Best-fitted
semivariogram models of heavy
metals and their parameters

C0 nugget variance, C structural
variance, C+C0 sill variance

Soil attributes Model C0 C+C0 C0/C+C0 Range (km) R2

As Exponential 0.536 0.976 0.55 58.86 0.78

Cd Spherical 0.666 1.316 0.51 48.90 0.87

Co Exponential 5.938 12.845 0.46 38.01 0.72

Cr Exponential 0.039 0.077 0.51 60.84 0.86

Cu Circular 0.054 0.088 0.61 44.19 0.75

Ni Circular 0.055 0.141 0.39 86.12 0.95

Pb Spherical 0.48 0.994 0.48 21.22 0.68

V Circular 0.016 0.08 0.20 20.74 0.64

Zn Rational quadratic 0.026 0.058 0.45 54.38 0.76

Fe Exponential 0.011 0.048 0.23 32.47 0.70
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Fig. 4 Spatial concentration maps of soil As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, and Fe produced by disjunctive Kriging

9882 Environ Monit Assess (2013) 185:9871–9888



relative strength index of spatial correlations. The vari-
able with a ratio of less than 0.25 is strongly spatial
dependent, while the variable with the ratio of between
0.25 and 0.75 is moderately spatial dependent; whereas
the variable with the ratio greater than 0.75 is only
weakly spatial dependent (Shi et al. 2007).

The Nug/Sill ratios of both V and Fe were less than
0.25, showing strong spatial dependence due to the
effects of natural factors such as parent material, topog-
raphy, and soil type (Table 5). The corresponding ratios
for As, Cd, Co, Cr, Cu, Ni, Pb, and Zn were however,
between 0.25 and 0.75, which belonged to the scope of
moderate spatial dependence, revealing that anthropo-
genic factors such as industrial production, fertilization,
and other soil management practices had changed their
spatial correlation after a long process of utilization.

The spatial patterns of the ten heavy metals gener-
ated from their semivariograms showed that all metals
had distinct geographical distributions (Fig. 4). The
spatial distribution maps showed dissimilar geograph-
ical trends, with high contents both in the northeast
and southern areas.

Geoenrichment factor and pollutant assessment

Unlike the application of multivariate techniques to
the three major groups (A, B, and C), geoenrichment
indices were calculated separately for all six land use
classes, to delineate the polluted areas. The EFG values
were interpreted in terms of heavy metal pollution as
suggested by Birth (2003) and later adapted by
Chabukdhara and Nema (2012). Birth proposed seven

Fig. 4 (continued)
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classes of enrichment (Table 6). Soils in the six land
use classes in Hamedan showed a wide range of metal

enrichment. In general, the mean predominant values
showed moderate enrichment for As and Cd, and

Table 6 Enrichment factor (EFG) of metallic elements in soils under different land use

Enrichment factor (EFG) Grade standards for EF (birth, 2003)

Land use As Cd Co Cr Cu Ni Pb V Zn Value Enrichment status

Agriculture 5.85a 5.26 1.53 1.56 2.34 1.95 3.05 1.61 2.31 <1 No enrichment

Orchards 5.06 5.26 1.52 1.52 2.28 1.72 3.05 1.43 1.66 1–3 Minor enrichment

Rangeland 3.62 4.22 1.52 1.51 2.30 1.70 3.02 1.46 1.94 3–5 Moderate enrichment

Rocky 5.85 5.26 1.51 1.53 2.31 1.73 2.45 1.57 1.92 5–10 Moderately severe enrichment

Urban 3.47 3.90 1.51 1.49 2.17 1.69 3.05 1.51 1.86 10–25 Severe enrichment

Water 1.73 3.17 1.34 1.50 1.66 1.55 1.99 1.40 2.31 25–50 Very severe enrichment

Min. 1.73 3.17 1.34 1.49 1.66 1.55 1.99 1.40 1.66 >50 Extremely severe enrichment

Max. 5.85 5.26 1.53 1.56 2.34 1.95 3.05 1.61 2.31

Mean 4.27 4.51 1.49 1.52 2.18 1.72 2.77 1.50 2.00

SD 1.62 0.88 0.07 0.02 0.25 0.12 0.44 0.08 0.25

a Italicized values indicate anthropogenic influences

Fig. 5 Spatial distribution map of heavy metals pollution (As, Cd, Co, Cr, Cu, Ni, Pb, V, and Zn)
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minor enrichment for Co, Cr, Cu, Ni, Pb, V, and Zn.
Overall, the EF values of these metals followed the
sequence Cd>As>Pb>Cu>Zn>Ni>Cr>V>Co. Similar-
ly, Ghrefat et al. (2011) and Chabukdhara and Nema
(2012) had reported EF of Cd to be the highest among
the metals in the sediments of Kafrain Dam, Jordan

and in the Hindon River, India. From the pollution
point of view, agriculture and orchard lands were
highly polluted and showed moderately severe enrich-
ment for As and Cd, but with minor enrichment for
Co, Cr, Cu, Ni, Pb, V, and Zn. The order of land use in
terms of metal enrichment was: agriculture>orchards>

Fig. 5 (continued)
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rocky>rangeland>urban>water. None of the land use
was absolutely free from anthropogenic enrichment.

The heavy metal pollution maps plotted based on
reference values in Table 6, showed that As and Cd
exhibited moderately severe pollution risk. The pollution
patches developed from EFG are presented in Fig. 5. For
soil As, the northeast of Kabodarahang was the area with
moderate to severe pollution, with levels reaching 3.06–
5.85 mg kg−1. Overlaying As contamination and land use
maps revealed that agricultural lands with the geological
structure containing magmatic and metamorphic rocks,
shale, and marl had high contamination. The areas with
high concentrations of As in red patches are illustrated in
Fig. 5. Soil Cd in general exibited moderate to moderately
severe pollution, with similar pollution patches, but was
more serious than that of As, and covered the wider
southeast region of Hamedan. Besides Hamedan, the
highest risk (of minor pollution) with Co pollution was
distributed in the north and northwest of the studied
region (Kabodarahang and Razan town). The EFG values
for Cr, Cu, Ni, V, and Zn were greater than 1 over a wide
range of the study area, indicating minor pollution largely
from human activities. The EFG values for Pb was higher
than 1 in a major portion of the study area, revealing
significant Pb contamination. Thus, areas with high
heavy metal contamination would contribute to the en-
vironmental pollution and ultimately threaten the health
of humans and other living organisms.

Critical values of soil pollution by Cd, As, Cu,
and Ni have been reported by Kabata-Pendias
(2004). In the most parts of the study area, the soil
concentrations of these metals were higher than crit-
ical levels, but the presence of lime in the soil will
decrease the solubility and bioavailability of the
metals. Elsewhere in the region, the low levels of
metal contamination indicate that these areas can be
regarded as safe areas.

Conclusion

The article is an original contribution as a case study, as it
is a study of the Hamedan county (Iran) where the soils
contamination situation has not been previously studied.
The present study was conducted to: (1) determine the
spatial patterns of heavy metals in soil under different
geological structures and land uses collected from
Hamedan county; (2) identify their natural or anthropo-
genic sources by integration multivariate, gap statistics,

and GIS; and (3) assess the level of heavy metal contam-
ination in the topsoil based on EFG. The methods follow-
ed in order to reach the aims of the study were basic
statistical parameters calculation, agglomerative hierar-
chical clustering, gap statistic, correlations matrix, princi-
pal components analysis, to characterize the spatial dis-
tribution, and trace the sources of metallic element and
finally an integrated GIS for interrelation spatial patterns
of pollution patches. Based on the increases in their
variation rates in soil, heavy metals can be listed as Cd,
As, Ni, Cu, Cr, Zn, Pb, V, Co, and Fe. The results of the
present study using multivariate and gap statistical anal-
ysis suggest antrhropic origin of As, Cd, and Cu, and
lithogenic origin of Co, Cr, Ni, Pb, V, Zn, and Fe. The
results of the geostatistical approach confirmed the sever-
ity of pollution and its anthropogenic influence based on
spatial variation in the level of contamination. Comparing
the spatial distribution of geo-enrichment indices to aux-
iliary GIS layers (geology, land use, industrial, mines, and
background concentration of metals) suggests that Cd,
As, and Cu far exceeded the safe limit in most of the
land use classes. Both natural factors (e.g., the high soil
shale, sandstone, limestone, and metamorphic parent
rocks and background values) and anthropogenic fac-
tors (e.g., the discharge of industrial wastes, the exploi-
tation of mines special mineral ores, and the high and
unmanaged uses of fertilizers; 500–700 kg ha−1 year−1

urine, 200–330 kg ha−1 year−1 potassium, and 300–
558 kg ha−1 year−1 phosphorus fertilizers) had contrib-
uted to the genesis of the pollution process. Although
almost all the monitored land use classes suffered from
heavy metal contamination, agricultural lands was the
most polluted. This information will be helpful to land
use planners and environmental risk managers who seek
to encourage responsible, environmentally friendly eco-
nomic development strategies.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.
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