
SPECIAL ISSUE - ORIGINAL ARTICLE

FieldML, a proposed open standard for the Physiome project
for mathematical model representation

Randall D. Britten • G. Richard Christie • Caton Little •

Andrew K. Miller • Chris Bradley • Alan Wu •

Tommy Yu • Peter Hunter • Poul Nielsen

Received: 26 April 2012 / Accepted: 2 July 2013 / Published online: 31 July 2013

� The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract The FieldML project has made significant pro-

gress towards the goal of addressing the need to have open

standards and open source software for representing finite

element method (FEM) models and, more generally, multi-

variate field models, such as many of the models that are core

to the euHeart project and the Physiome project. FieldML

version 0.5 is the most recently released format from the

FieldML project. It is an XML format that already has suf-

ficient capability to represent the majority of euHeart’s

explicit models such as the anatomical FEM models and

simulation solution fields. The details of FieldML version 0.5

are presented, as well as its limitations and some discussion

of the progress being made to address these limitations.

Keywords Science technology � Life sciences

biomedicine � Biochemical research methods �
Mathematical computational biology � Mathematical

models � FieldML � CellML

1 Introduction

CellML [2, 9] and FieldML [7] are open standards for

declaratively representing mathematical models to facilitate

model interchange and are primarily focussed on the needs of

Physiome projects such as euHeart,1 a cardiac modelling

project with a strong focus on clinical applications. We define

a mathematical model to be a formulation that represents the

state of a real-world system mathematically in such a way that

the model can be used to make predictions about the real-

world system by computing the state of the system based on

the input parameters to the model. Functional models usually

make predictions about dynamic systems. Geometric models

vastly reduce the number of parameters when compared to the

number of parameters required to record all the exact mea-

surements of the real-world object. A distinction is made

between implicit and explicit models. Explicit models are

represented by plain numerical data and closed-form algebraic

expressions, as well as certain functions commonly available

in standard software math libraries, such as trigonometric

functions, exponential, logarithm and so on. Implicit models

include expressions that usually require the application of

computational numerical solvers in order to evaluate, for

example, systems of ordinary differential equations (ODEs)

and partial differential equations (PDEs).

The Physiome Model Repository (PMR) software [41]

provides a web repository for making models, based on

these standards and other formats, easily accessible. Fur-

thermore, PMR provides a collaboration workspace. The

euHeart project aims to develop models, modelling stan-

dards and the related technologies that serve the goal of

bridging the gap between cardiac modelling for research

and the clinical application of individualised cardiac

modelling. As part of the euHeart project, extensive design

work has been done on the FieldML format and its API,

and features for supporting FieldML in the PMR software.

The high-level goals of FieldML are to:

• Enable sufficient expressive power to represent fields

pertinent to anatomical and physiological modelling;
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• Allow models to contain sufficient information so as to

be largely self-documenting;

• Represent multiscale Physiome models of anatomy and

structure at scales from organism to cellular and

molecular;

• Represent data in a way that is efficient in terms of

computational costs such as disk space and data access

times, making it possible to cope with large models;

• Be extensible, enabling future applications in areas not

currently foreseen;

• Be simple enough to facilitate robust and simple

implementation;

• Provide open source technology to achieve the above

goals.

The goals of CellML have much in common, but Cell-

ML focusses on time-varying lumped parameter models.

Although the format can express a wider range of models,

most CellML software shares the focus on time-varying

lumped parameter models [13, 29, 34]. CellML focusses on

the algebraic and differential mathematical equations of the

model, whereas currently, FieldML focusses both on

describing fields over multiple discrete indices, through

reference to sparsely or densely packed2 massive bulk

numerical data, and on describing multivariate fields with

some or all continuous variables, by defining finite element

interpolations using the discrete data or by other interpo-

lation methods or more general methods.

Computer-readable model representation formats for

Physiome models such as those used by the euHeart project

need to support diverse modelling techniques. For exam-

ple, typical models for cardiac mechanics simulation (e.g.

[16, 31, 32, 40]) fundamentally use a FEM approach, but

require additional structures that are not common in tra-

ditional FEM applications. One case presents a left ven-

tricle model using finite element interpolation of a

geometry field to represent the anatomy, and a rotation

field to represent the cardiac myocyte fibre and laminar

fibre sheet orientation [25], with care taken to ensure that

only small-angle rotations are modelled, since FEM inter-

polation is only able to approximate the geodesic in rota-

tion space when directly interpolating Euler angles [37]. In

another case, diffusion tensor magnetic resonance (DTMR)

data are modelled using FEM, and a computationally

efficient compromise is preferred between fast but inexact

tensor Euclidean interpolation and exact tensor interpola-

tion [15, 16]. Neither of these features is typical for stan-

dard FEM interpolation, and, to our knowledge, neither is

supported in any existing mainstream open FEM data

formats. For models that couple cardiac electrophysiology

with cardiac mechanics, not only is it necessary to

represent the geometry of the organ and other anatomical

tissue structures, but it is also necessary to represent the

cellular electromechanical model. CellML is already a

well-established cellular model representation system, well

suited to representing the ordinary differential equation and

differential algebraic equation (DAE) models typical for

cardiac electrophysiology. It is also used to represent

algebraic material constitutive laws for mechanical mod-

elling, as well as a wide range of other modelling areas,

extending even beyond physiological modelling [28].

OpenCMISS [3] and Chaste [33] are simulation systems

that support a type of multiscale modelling by the coupling

of FEM models with CellML cellular models. In these

systems, a standard FEM field can be used to represent the

values of any parameters of the CellML model that may

vary spatially. Also, in some cases, different cellular

models are used in different spatial regions. A future goal

of FieldML is that it will be able to represent these links,

and this has influenced the current design, as is described

later in this article.

Representing the link between clinical images and the

resulting patient-specific models by means of image

annotations [1, 12] or fitting models and model fields to

image data [16, 40] is also a common requirement. If

imaging or other clinical data are used to identify diseased

spatial regions, then fields can be used to represent the

relevant spatially varying cell model parameters. Tradi-

tional FEM approaches tend to follow a workflow from

computer-aided design (CAD) software to FEM model and

hence tend not to support linking to medical imaging and

other clinical data directly. As is described later in this

article, FieldML supports field definitions that relate data in

multiple data sources of different kinds, and hence can be

used for representing these links.

Although existing software and formats were often

sufficient for the modelling work done in euHeart, a key

goal of euHeart was to enable software and models to be

free from licensing restrictions. CellML, FieldML and

PMR are being developed as open standards and open

source software, and the Physiome Model Repository site

(http://models.physiomeproject.org) uses the PMR soft-

ware to house numerous models, the vast majority of which

are licensed under a Creative Commons licence.

BioModels [27] and the Anatomical Model Database

(AMDB) [14, 20] are similar model databases, BioModels

focussing on SBML [17]. Embracing this linked open

science approach [19] has the significant benefit of low-

ering the barrier to collaboration, making data, models and

tools easily available. These approaches are essential to

meet the challenges that face projects similar to euHeart,

and the wider Physiome project, and many other similar

fields [18]. Hence, the FieldML design work has benefitted

from being part of the euHeart project and makes it2 See Sect. 5.1.
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possible for other euHeart work to be available for follow-

on projects.

2 FieldML and related technologies

In the following subsections, FieldML is compared to

similar formats, and we show how the FieldML design is

related to CellML, and how the PMR software supports

FieldML.

2.1 Brief comparison with formats with similar goals

to FieldML

There are numerous file formats that are used with FEM

computational and visualisation software (see e.g. the lists

at the ParaView FAQ3 and the VisIt FAQ4). In [7], some

relevant formats and software libraries were discussed, for

example GENERAL MESH VIEWER format,5 EXODUS

II format [36], Sets and Fields (SAF) modelling system

[30] and libMesh [21]. As discussed in [7], these formats

do not meet the goals of FieldML because they are not

general enough for the requirements of Physiome model-

ling. As the design and development of FieldML has

continued since [7] was published, some new design

approaches have emerged in the FieldML work. Since

discussion of all open FEM formats is beyond the scope of

this article, we chose to discuss only formats that appeared

to us to have some overlaps with these new aspects and

were not previously discussed.

The eXtensible Data Model and Format (XDMF) and

FieldML version 0.5 share the design approach of segre-

gating heavy data from light data and also the use of XML

to describe light data [8]. The term heavy data refers to the

data that consists primarily of large arrays of homogenous

data, usually numerical data, used, for example, for the

values of a field at the mesh nodes. Light data refers to the

data that describes the meaning of the heavy data and is

usually smaller in size relative to the heavy data, for

example, stating the total number of mesh elements and

nodes, and the mapping of the heavy data relative to the

field interpolation method used for a mesh. XDMF stores

heavy data using HDF5.6 In FieldML version 0.5, using

HDF5 is one of the options for storing heavy data. Also, the

FieldML API version 0.5, like the XDMF API, is imple-

mented in C ?? and wrapped such that it can also be used

from popular languages (Java and Fortran in the case of

FieldML version 0.5; Java, Python and Tcl in the case of

XDMF).

CGNS [24, 39] abbreviates ‘‘CFD General Notation

System’’ and is an open standard with supporting open

source software. The CGNS design does not have any

inherent limitation that prevents its use outside of compu-

tational fluid dynamics (CFD).7 This extensibility is also a

goal of the FieldML project, both for existing version and

as future versions are designed. As indicated by the format

name, the current standard CGNS labels are primarily

focussed on the CFD subject area, and usually in an

aerodynamics context [24]. CGNS appears to have good

adoption and support [24]. CGNS serialisation uses HDF5

for both heavy and light data. As an alternative to HDF5, a

legacy custom format called the Advanced Data Format

(ADF)8 can also be used.

The Visualization Toolkit (VTK) provides its own file

format,9 which uses either a plain text file following the

VTK syntax or an XML file. In either case, both the heavy

data and the light data are stored in the same file. VTK

appears to have wide adoption in Physiome research.

VTK, CGNS and XDMF all rely on standardised strings,

and this is common practice for many of the formats in this

field. This is used, for example, for describing FEM ele-

ment shapes,10,11 or geometric coordinate systems12 [8],

and hence, extension would rely on users agreeing on

conventions for new standard string labels. As discussed in

[7], it is advantageous if these aspects can be described in

FieldML itself in such a way that extension is usually

possible without relying on new conventions. A current

feature of FieldML version 0.5 is that this is done by using

‘‘external evaluators’’, described in Sect. 5.1, a syntax that

is forward-compatible with the planned future syntax for

describing element shapes and the algebraic form of

interpolation functions. However, like VTK, CGNS and

XDMF, it currently relies on current software adhering to

conventions for the meaning of the string names used for

the external evaluators.

3 http://paraview.org/Wiki/ParaView:FAQ#What_file_formats_does_

ParaView_support.3F.
4 https://wci.llnl.gov/codes/visit/FAQ.html#12.
5 http://www.generalmeshviewer.com.
6 http://www.hdfgroup.org/HDF5.

7 http://cgns.sourceforge.net/WhatIsCGNS.html.
8 http://cgns.sourceforge.net/hdf5.html.
9 http://www.vtk.org/VTK/img/file-formats.pdf.
10 In the context of FEM and FieldML, the term ‘‘element shape’’

refers to the intuitive geometric shape that one thinks of independent

of the shape into which the element is deformed when it models part

of the geometry of the overall FEM mesh. In other words, ‘‘element

shape’’ simply means the geometric shape that a single finite element

would have if the field describing its geometry was the identity field

of its element coordinates.
11 http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/

gridflow.html.
12 http://www.grc.nasa.gov/WWW/cgns/CGNS_docs_current/sids/data

name.html#dataname_grid.
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2.2 Physiome Model Repository software support

for FieldML

The PMR software supports a plug-in architecture, which

allows plug-ins to be added to PMR in order to support

different ways of viewing the models in PMR. The first

versions of the PMR software focussed on the support of

CellML representations of published models. The model

repository also contains numerous CellML representations

of cardiac models, including cardiac circulation models,

tissue mechanical constitutive laws, excitation–contraction

coupling models and cardiac electrophysiology models

[28]. Many of these are used for euHeart simulations, for

example, the CellML representation of the ten Tusscher–

Panfilov model13 [5, 38]. The PMR site provides a robust

point of access for these models, allowing euHeart

researchers a reliable site for retrieving models that they

require for modelling, and for depositing models produced

by their research.

More recently, in order to demonstrate how FieldML

can be supported, a PMR software plug-in was developed

and deployed at http://models.physiomeproject.org/fieldml,

which supports visualisation of exnode/exelem models

[41], and has been recently adapted to allow for visual-

isation of FieldML version 0.5 models. This plug-in allows

the models to be viewed via an interactive 3D view, by

means of the Zinc web-browser plug-in.

There are currently only six models in the FieldML

portion of the repository. One such model is shown in

Figs. 1 and 2 and is available via the model repository, at

http://models.fieldml.org/e/118/Aorta-Brown-Shi-etal-2012.

rdf/view. The PMR site provides hosting for this data,

making it publically accessible. The PMR software also

provides version control and provenance services [41].

Version control of groups of related files is a key feature of

the PMR software that was originally developed to support

CellML model imports (see [41] for details). Because

FieldML version 0.5 files can refer to other FieldML files,

or to external data located in different files,14 the version

control feature of the PMR software has made it ideally

suited to house FieldML models that are made up of groups

of related files, as is the case in the above example.

The AMDB also hosts a number of models in exnode/

exelem format for euHeart, with the associated 3D inter-

active Zinc viewer. Unlike PMR, AMDB focusses on

anatomical models, whereas PMR initially focussed on

CellML models, and still only has a small number of

anatomical models compared to the AMDB. One group of

models that it contains consists of anatomical data for the

human left ventricle that was constructed from a cohort of

young subjects [26] using the methods described in [22], as

part of the euHeart project. A subset of these was selected

as part of the demonstration work for FieldML, and a

FieldML version 0.5 representation is available in the

AMDB15 (see Fig. 3). This example also makes use of

FieldML version 0.5’s support for HDF5, which facilitated

capturing anatomy for multiple subjects within one data

source.16 In the previous versions of FieldML, this would

have required separate data source files for each subject’s

anatomical data.

2.3 Comparison of CellML and FieldML

CellML and FieldML have a number of similarities and

differences. As already mentioned, CellML focusses on

lumped parameter modelling. FieldML’s focus is model-

ling spatial–temporal variation and, more generally, mul-

tidimensional differential and topological manifolds. Both

rely on XML as a serialisation format, and in this regard,

CellML is relatively mature and has broader adoption than

FieldML. CellML relies heavily on MathML [6] to repre-

sent algebraic and differential equations. Reliance on

Fig. 1 An euHeart aorta model.

This is an aortic coarctation

model with four vessel branches

in the aortic arch: the right

subclavian artery, right common

carotid artery, left common

carotid artery and the left sub-

clavian artery. The figure shows

a coarse mesh for demonstration

purposes. In the CFD calcula-

tion, a much denser mesh was

used, with 375695 nodes,

555027 tetrahedral elements

and 543720 prism elements,

using a different format [4]

13 http://models.cellml.org/exposure/a7179.
14 See Sects. 5.4 and 5.6.

15 https://amdb.isd.kcl.ac.uk:8443/AMDBWebInt/geometricalModel

Page.do?gmId=153. Note that a username and a password are required

to access this resource; this can be obtained from the website.
16 See Sect. 5.4.
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MathML or OpenMath (see the OpenMath standard doc-

umentation17) has always been envisaged for FieldML, and

the current design is intended to be forward-compatible

with a planned future extension to support this. Neverthe-

less, this is still an area of active research, and released

versions of FieldML have not yet incorporated MathML

support.

Serialisation of CellML and FieldML entails conversion

of in-memory software data structures to a persistent form,

usually stored in a computer file system, but also necessary

in other scenarios, for example, when transmitting data

over a network. Deserialisation is the conversion in the

opposite direction, for example, reading data from the file

system and creating the original data structures in the

computer’s memory for the software to process and

manipulate18 [11].

The CellML API is discussed in detail in [29], which

highlights the benefits of having an API to accompany a

standard format. It has features to support serialisation and

deserialisation, as well as facilities for commonly needed

processing of CellML models, such as model validation

and simulation. Providing an API to accompany a standard

format also helps ensure that different software applica-

tions that work with the format will interpret the format in

a manner consistent with each other if they rely on the API

for much of that interpretation. In the hope that similar

benefits will be achieved for FieldML, a similar API has

been developed to accompany FieldML version 0.5, and

this is discussed in the next section.

There are other minor aspects of the CellML design that

have influenced the FieldML design and implementation,

for example, the use of the simple linking subset of the

Fig. 2 Screenshot of an

interactive 3D visualisation of

the FieldML version 0.5

representation of the aorta

model, embedded in a web page

served by the PMR software

Fig. 3 Visualisation of FieldML representation of five patient-

specific human left ventricle anatomical models

17 http://www.openmath.org/standard/om20-2004-06-30/omstd20html-

1.xml. 18 http://en.wikipedia.org/wiki/Serialization.
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XML Linking Language, Xlink [10], as the mechanism by

which one FieldML file can make reference to another

FieldML file, or the use of the libxml2 library19 for low-

level parsing of XML by the FieldML API, as has been

done for the CellML API. As mentioned previously, PMR

features to support CellML have been able to be adapted to

address similar issues required to support FieldML.

3 The API for FieldML version 0.5

The design work on the FieldML version 0.5 API has focussed

on serialisation and deserialisation. Serialisation allows the in-

memory representation of an explicit model to be transferred

from a software program to a file on the computer system’s

persistent storage according to the FieldML file format. Des-

erialisation allows software to recover an in-memory repre-

sentation of the explicit model from persistent storage. This

obviously allows for explicit models to be transferred between

two different applications via the persistent storage. It is often

desirable to transfer the model representation directly between

two different software applications without going via the

persistent storage. However, an API for communicating

information about fields directly between applications is not

yet part of the FieldML version 0.5 API. This idea is, however,

common to representation formats; see, for example, the

OpenMath standard documentation.

To illustrate this, Fig. 4 shows a schematic view of the

field representation layers in two different hypothetical

applications, and how the FieldML format and the FieldML

API could be used to exchange field representation objects.

This diagram is analogous to the OpenMath architecture

diagram (see the OpenMath standard documentation), but

includes not only the serialisation format, but also the use of

an API. The private layer of each application is its own

internal field representation. The abstract layer represents

fields according to the FieldML object model. In the com-

munication layer, fields are represented by an XML encoding

of the FieldML objects, or a mixture of formats (e.g. XML

and HDF5). It is also possible for applications to directly use

the FieldML object model as their private representation, or

to omit the FieldML object model representation altogether,

directly translating from their own internal representation to

the FieldML serialisation format. For the purposes of vali-

dating the API design, we implemented a demonstration that

allows for limited FieldML version 0.5 exchange between

cmgui20 and OpenCMISS [3], two existing applications.

Note that the API implementation does not yet have any

features for calculating the numerical values of fields, and

each application is still required to have its own implemen-

tation for the evaluation of fields.

4 FieldML serialisation design progress

The general FieldML conceptual design has existed for

some time [7]. Our focus over recent years has been on

designing an XML serialisation for FieldML, consistent

with these general ideas, as well as improving the con-

ceptual design itself. An older format used by the CMISS

software system since the 1990s, although not based on

XML, has had a very direct influence on the initial Field-

ML design. It consists of ‘‘exnode’’ and ‘‘exelem’’ text files

and is also called the ‘‘ex-format’’. However, it was never

intended as a standard for model interchange. FieldML

version 0.1, the first XML version, was developed in 2005

and is supported by Cmgui and CMISS. However, no

special-purpose API was created for version 0.1, and it

followed the same overall structure as the ex-format.

In 2010, FieldML version 0.2 was released as an XML

specification described by an XML Schema document

(XSD), along with the first FieldML API, which focussed

on supporting serialisation and deserialisation.

Rather than just being an incremental update of version

FieldML 0.1, FieldML 0.2 started afresh, aiming to create a

design, which could be incrementally developed towards the

goal of a general mathematical model representation format.

FieldML version 0.5 is the most recent version and was

released in May 2012. It supports representation of models

that use rectangular Cartesian coordinates and isotropic

interpolation. The overall goal of FieldML is relatively

ambitious, and it was necessary to prioritise the planned

features and incrementally introduce these. Thus, versions

from FieldML 0.2 up to and including FieldML 0.5 are

limited to explicit field description, meaning that the field

descriptions are equivalent to explicit algebraic expressions.

This contrasts with CellML, where the model describes the

solution functions implicitly, by means of series of Boolean

predicates, which are asserted to hold true, and which might,

for example, specify an ODE system or a DAE system. Thus,

FieldML version 0.5 cannot represent implicit fields and thus

cannot represent partial differential equation systems.

Table 1 shows a summary of the features introduced in

each version of FieldML since FieldML 0.2, and a com-

parison with the precursor formats.

5 The FieldML version 0.5 data model

This section gives a brief overview of the FieldML 0.5 data

model. The FieldML 0.5 file format makes use of XML to

19 http://www.xmlsoft.org/.
20 See http://www.cmiss.org/cmgui. Cmgui is used within euHeart,

mainly with the legacy format. The cmgui API is used by GIMIAS

(http://www.gimias.net), another euHeart software project.

1196 Med Biol Eng Comput (2013) 51:1191–1207

123

http://www.xmlsoft.org/
http://www.cmiss.org/cmgui
http://www.gimias.net


represent data according to this model, and details of the

XML file format are provided in Appendix A (ESM).

Section 6 gives an illustrative example. While these ideas

are essentially the same as those described in [7], some

advances have been made as the design work has

progressed.

Conceptually, a FieldML version 0.5 model consists of

descriptions of the FieldML domains and the fields of the

Fig. 4 FieldML serialisation

and communication architecture

Table 1 Feature comparison between versions of FieldML and precursor format

Feature Exnode Exelem FieldML

v0.1 v0.2 v0.3 v0.4 v0.5

Technical

XML 4 4 4 4 4

Independent FieldML API 4 4 4 4

External data sources 4 4

Imports 4 4

HDF5 support 4

Parallel I/Oa
4

Model

1D elements 4 4 4 4 4 4

2D Quadrilateral elements 4 4 4 4 4 4

3D Hexahedral elements 4 4 4 4 4 4

2D Simplex elements 4 4 4 4 4

3D Simplex elements 4 4 4 4

Boolean evaluators 4

User-defined tensor products of bases 4 4

Curvilinear coordinates 4 4

a Parallel I/O is made possible due to the use of HDF5. However, only very basic testing of this feature has been done
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model. FieldML domains are essentially just mathematical

sets with some additional structures that convey topologi-

cal and possibly other information. Fields are essentially

just mathematical functions, where the definition of the

function leverages the information about the FieldML

domains. As is standard in mathematics, the function

domain21 and codomain of the function are specified, either

directly or implicitly. The standard mathematical shorthand

for describing a function’s domain and codomain is the

function, a colon, the domain, a right arrow and the

codomain, for example, for a function f with domain A and

codomain B, this is written:

f : A! B

Compatible fields may be composed together, in a

manner similar to mathematical function composition.

Currently, FieldML relies on its specification to define

certain FieldML domains and fields that cannot yet be

described by the FieldML language itself, such as a col-

lection of interpolation functions, and common FEM ele-

ment shapes. (Note: the term ‘‘chart’’ is sometimes

preferred to ‘‘element’’, due to the influence of smooth

manifold theory [23] on the design of FieldML. ‘‘Chart’’

avoids confusion with ‘‘XML element’’ in the context of

the XML representation of FieldML 0.5, and also ‘‘element

of a set’’ in the context of set theory.) Nevertheless, these

functions and element shapes are listed in the FieldML

library, which is just an ordinary FieldML file, and are

declared there as if they were defined elsewhere.22 This is

because we plan to introduce the facility to represent their

descriptions in FieldML itself. Recent design work23 on a

future version of FieldML includes design proposals for

how to represent these descriptions. Nevertheless, current

software needs to recognise these objects by their string

identifiers, and they may be used by reference in FieldML

documents.

In FieldML 0.5, fields are defined through the compo-

sition24 of a series of compatible evaluators to form an

evaluator pipeline, similar to the composition of mathe-

matical functions. A field in version 0.5 is therefore syn-

onymous with an evaluator pipeline. The number of

possible ways of defining fields by means of different

evaluator pipeline compositions is essentially limitless, and

this innovative approach gives FieldML version 0.5 broad

expressive power.

FieldML version 0.5 does not yet fully support the ori-

ginal vision for the range of ways that different domains

can be represented, as described in [7]; rather it relies on

types; nevertheless, in the descriptions that follow, the

terms domain and type are used interchangeably.

More details on how evaluators and their pipelines, and

types are defined are provided in the following subsections.

The detailed XML syntax is described in Section 11 which

is in Appendix A (ESM), and the relevant references to the

subsections of Appendix A (ESM) are given where

appropriate.

5.1 Evaluators

There are seven ways to define an evaluator: argument,

parameter, piecewise, aggregate, reference, external and

constant, each of which will be discussed in turn.

Fields are defined over domains and may, in general,

vary between points in the domain. FieldML version 0.5

can deal with this variation in fields over a domain by

treating an evaluator pipeline as a function, with the point

in the domain on which the field is defined as an input to

(domain of) the function, and the value of the field at that

point as the output (codomain) of the function.

An argument evaluator allows references to be made to

this functional domain. Individual argument evaluators

name a specific argument. An argument is more than just a

value from a domain, such as the set of real numbers; it

also attaches semantic meaning (e.g. ‘‘time’’ could be an

argument). Different argument evaluators in the same

evaluation pipeline may refer to different arguments; in this

case, each argument evaluator only refers to a component,

or factor, of the domain over which the field is defined.

Consider, for example, an evaluation pipeline that con-

tains only one evaluator, an argument evaluator. The field

will be equivalent to the identity function over the argu-

ment. An evaluation pipeline that takes two argument

evaluators, for real-valued arguments x and y, respectively,

and adds25 them would be equivalent to a function from R
2

to R, where R is the set of real numbers.

(The specifics of using XML to define an argument

evaluator are provided in Sect. 11.7).

A parameter evaluator describes piecewise functions

from N discrete, finite-membered discrete domains (called

ensembles and discussed later) to some other space (which

must be either a scalar continuous type or an ensemble

type), by looking up values in stored data. Individual

parameter evaluators refer to one or more delegate

21 The term domain is used in two different ways in FieldML.

Whenever the usage might be ambiguous, FieldML domain is used to

refer to a set of points defined in FieldML, and function domain is

used to refer to the set of possible inputs to a function (analogous to

codomain being the set of possible outputs of a function).
22 See Sect. 5.7.
23 See the section ‘‘Future work’’.
24 Composition here means mathematical function composition, as in

h ¼ f � g means hðxÞ ¼ f ðgðxÞÞ:
25 Arbitrarily adding fields is not yet supported in FieldML version

0.5, although planned for future versions, so this is just illustrative.
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evaluator inputs, called indices, and a reference to data that

describes the output values corresponding to each input

value. The data array can be dense over any index

(meaning that for all values of the index in a contiguous

range, there is a corresponding parameter value) or sparse

over any index (meaning that a parameter value exists only

for some of the index values in a contiguous range). For

example, a parameter evaluator could define a mapping

from a node identifier to a point in the 2D Cartesian plane

represented as the tuple (x,y), where x and y are the

Cartesian coordinates:

f ðnÞ ¼

ð0; 0Þ if n ¼ 1

ð1; 0Þ if n ¼ 2

ð0; 1Þ if n ¼ 3

ð1; 1Þ if n ¼ 4

8
>><

>>:

(The specifics of using XML to define a parameter

evaluator are provided in Sect. 11.8).

A piecewise evaluator defines a piecewise function from

a discrete domain to the codomain. Usually, piecewise

evaluators serve as the final step in the pipeline for defining

a field over a FEM mesh. The discrete domain (called the

index) usually identifies an element in the mesh. The

codomain is defined by input-dependent references to

evaluators (called delegate evaluators). The function

domain of each of the delegate evaluators is a domain that

represents the element shape. For example, the value of a

field over a mesh may use a different type of interpolation

within different elements. An example of a piecewise

function that can be represented by a piecewise evaluator is

as follows. For the delegate evaluators g and h, an evalu-

ator f can be defined using a piecewise evaluator:

f ðn; nÞ ¼ gðnÞ if n ¼ 1

hðnÞ if n ¼ 2

�

Here n is the parameter for the location within the

relevant mesh element.

(The specifics of using XML to define a piecewise

evaluator are provided in Sect. 11.9).

An aggregate evaluator is structurally similar to a

piecewise evaluator, except that it is used to define a vec-

tor26 value by defining each component of the vector. In an

aggregate evaluator, each item of the vector is identified by

an index from a specified ensemble (with data ordered in the

numerical order of member identifiers in that ensemble).

For example, this would allow for a constant three-dimen-

sional Cartesian vector (0.5,-1, 20.1) to be defined.

(The specifics of using XML to define an aggregate

evaluator are provided in Sect. 11.10).

A reference evaluator allows an evaluator to be created

through reference to another evaluator. Used by itself, this

creates an evaluator that is an alias for another evaluator.

However, reference evaluators are most useful when used

to bind argument evaluators (discussed below).

For example, if an existing evaluator, f(x), had already

been defined, a new evaluator g(x) could be defined by

reference, essentially equivalent to stating that g = f.

(The specifics of using XML to define a reference

evaluator are provided in Sect. 11.11).

External evaluators declare additional evaluators, pro-

viding an extension mechanism. The semantics repre-

sented by an external evaluator must be described by a

convention, usually just by means of an accompanying

(not necessarily machine readable) document. These

external evaluator types are generally referenced by a

reference evaluator, which makes use of the binding

functionality to associate the arguments with the external

evaluator with user-defined delegate evaluators. External

evaluator types are used for many different types of

function in FieldML documents (e.g. to define fields as an

interpolation from other fields). A standard library of

external evaluator types is presented in Sects. 5.7 and

11.16.

(The specifics of using XML to define an external

evaluator are provided in Sect. 11.11).

Finally, constant evaluators represent constants, for

example, the real number 1059.87 or the integer 57.

FieldML version 0.5 has the limitation that there must be a

supported way of representing the constant value as a

string, and so constant evaluators on their own cannot be

directly used to represent data that has more complexity,

such as a constant vector or a constant matrix. However, in

combination with other evaluators, such as aggregate

evaluator, constant objects with more complexity can be

represented.

(The specifics of using XML to define an external

evaluator are provided in Sect. 11.11).

5.2 Binding

The reference evaluator, the piecewise evaluator and the

aggregate evaluator all allow bindings to be defined.

Bindings associate an argument evaluator input into an

evaluation pipeline with another delegate evaluator. It is

essentially equivalent to substituting terms of mathematical

expressions. The substitutions mean that the current eval-

uator connects the delegate evaluator to a connection point

that is upstream in the evaluation pipeline. The connection

point is always an argument evaluator that is referred to by

the definition of an evaluator upstream of the current

evaluator. The binding makes this connection by specifying

the name of that argument evaluator.

26 Vector here is used without conveying that it is an element of a

vector space with the accompanying algebra, but rather merely to

indicate that it is an object that consists of collection of indexed scalar

real values.

Med Biol Eng Comput (2013) 51:1191–1207 1199

123



For example, a piecewise evaluator may be defined as

follows:

gðnÞ ¼
7:1 if n ¼ 1
100 if n ¼ 2

x if n ¼ 3

8
<

:
:

Here, x stands for an argument evaluator upstream of g.

A reference evaluator could then reference g and use

binding to bind x to a constant evaluator. In other words, a

constant is substituted for x. So, using the equation

k1 = 0.331 to represent a constant evaluator, binding

would be equivalent to defining a new function:

f ðnÞ ¼ gðnÞ such that x ¼ k1:

In the above example, the argument evaluator x is a

scalar. Argument evaluators can also represent functions,

and then binding specifies that the bound evaluator be

applied to the operands of the function. For example, if

instead we had

gðnÞ ¼
7:1 if n ¼ 1

100 if n ¼ 2

hð29Þ if n ¼ 3

8
<

:
;

then binding was done as follows:

f ðnÞ ¼ gðnÞ such that h ¼ s;

which is equivalent to using s(29) for the case n = 3.

As discussed above, bindings are commonly used with

reference evaluators referring to external evaluators. For

example, a user might use the bilinear Lagrange interpo-

lator external evaluator (defined in a library as discussed

later under the section ‘‘Imports’’) and bind evaluators in

their FieldML description to the interpolation parameters,

to give a new evaluation pipeline describing an interpolated

field.

A more complex example that uses binding is provided

in Sect. 6, with the details supplied in the supplementary

material.

(The specifics of using XML to define bindings are

provided in Sect. 11.6).

5.3 Domain types

In FieldML 0.5, domain types are defined as possibly

infinite sets of values. Domain types may be continuous, or

discrete. Every evaluator in a model must have a value

type; the value type references a domain type defined in the

model.

FieldML 0.5 has four kinds of domain type: ensemble

types, Boolean types, continuous types and mesh types.

Ensemble types are discrete types for describing count-

able sets of objects or entities. The allowable values for an

ensemble type are called members and are declared as part

of the ensemble definition. For example, an ensemble can

represent the set A = {4, 37, 60, 1002}.

In FieldML 0.5, members of an ensemble are defined

with unique non-negative integer identifiers. Like mathe-

matical sets, ensembles are conceptually unordered. How-

ever, as discussed later, an order is imposed for the

purposes of serialising data indexed by the ensemble.

Applications may discard the ordering or the member

identifiers on an ensemble type (or both) once they are no

longer required to interpret the model.

(The specifics of using XML to define ensemble types

are provided in Sect. 11.2).

Boolean types declare the canonical Boolean type, i.e.

the discrete set with two elements: True and False. Field-

ML v0.5 does not have any support for Boolean operators

such as ‘‘and’’, ‘‘or’’ and ‘‘not’’, so Boolean types serve

only as the field type for the predicates that are used to

define element shapes (see below).

(The specifics of using XML to define Boolean types are

provided in Sect. 11.3).

Continuous types describe continuous n-dimensional

domains. For dimension exceeding one, FieldML 0.5

implicitly defines a corresponding ensemble for indexing

the components of the vector representing a value of the n-

dimensional domain. For example, a continuous type can

be used to declare the set of all points in R
3.

(The specifics of using XML to define continuous types

are provided in Sect. 11.4).

Roughly speaking, mesh types essentially describe a

FEM mesh. In FieldML 0.5, all elements of a mesh are of

the same dimension, and this is specified as part of the

mesh definition. Each element is itself a continuous

domain. In FieldML 0.5, the FEM element shape defini-

tions rely on an external definition. Nevertheless, they are

declared in the FieldML library by means of Boolean-

valued external evaluators. The evaluator defining the field

is called the predicate. The predicate yields the value true

within and on the boundaries of the shape and false outside

those boundaries. As mentioned earlier, current software

processing FieldML 0.5 will recognise the string names in

order to process the shapes, but this design is forward-

compatible with a proposal for a future version of FieldML

where algebraic expressions will be used to define the

predicates. It is not expected that processing software will

blindly attempt to discover the shape by evaluating the

predicate at numerous points, but rather that it will inspect

the definition of the predicate itself, which allows for direct

processing of the represented shape.

Each mesh type definition also implicitly defines an

ensemble type and a continuous type. Each mesh type

definition also implicitly defines a mechanism to access the
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element and component. The definition of the mesh itself

does not imply anything about the connectivity of the

elements.

See Sect. 6 for an example of a mesh.

(The specifics of using XML to define ensemble types

are provided in Sect. 11.5).

5.4 Strong typing

The term ‘‘domain type’’ reflects a conceptual dichotomy

where, on the one hand, a domain type represents a

mathematical set, often with a spatial interpretation, and,

on the other hand, a domain type represents a data type

akin to data types in common programming languages such

as C?? and Java. Both views are valid ways of thinking

about domain types. Taking the data type view, FieldML

0.5 is strongly typed. For example, members of an

ensemble B = {1, 2, 3} are incompatible with members

from any other ensemble type, for example, C = {1, 2, 3},

even though they have the same identifiers. Incompatibility

means, amongst other things, that function composition

would not be valid. For example, if f : A! B and

g : C ! D, then one cannot perform function composition

g � f . To reference the values of one ensemble given

another ensemble with the same identifiers, a field that

maps from one ensemble to the other needs to be defined,

so for the above example, we could define

h : B! C

such that

h(1) = 1

h(2) = 2

h(3) = 3

This allows the composition g � h � f to be formed

(Fig. 5).

5.5 Data resources and data sources

A FieldML 0.5 data resource is a link to raw/bulk data

serialised as an in-line string, external text file or HDF5

data set. A data resource declares one or more data sources

which each mark up a part of the resource as a dense array

of zero or more dimensions. This is another innovative

design aspect that permits many existing data files to be

incorporated into FieldML as one data resource, with

separate sections, rows, columns or subarrays marked up as

distinct data sources. Data sources play an important role in

defining FieldML models, for example, serving to provide

the values for the degrees of freedom (DOFs) of interpo-

lated fields, and providing element local node to mesh

global node mappings. When the data sources are used to

describe external data, it is often possible to use file posi-

tions in existing data formats. This means that other data

formats can be ‘‘wrapped’’ by FieldML and minimises the

need for data conversion.

For example, if the data representing the mapping from

the four local nodes of each square element of a FEM mesh

made up of square elements was represented as a matrix

with four columns (one column for each local node) and

one row for each mesh element, with entries representing

global node number, the data source would essentially

contain data that looked something like the following:

1 2 11 12

2 3 12 13

3 4 13 14

…
89 90 99 100

(The specifics of using XML to define data resources

and sources are provided in Sect. 11.14).

5.6 Imports

In software engineering, there are a number of widely

recognised techniques for managing software complexity,

some of which are also relevant to the representation of

field models.

One such property is abstraction: to understand one part

of a system, it is only necessary to understand the abstract

properties presented by another part. Another such property

is modularisation; a system is described through the com-

position of different modules.

To allow FieldML models to be developed using

abstraction and modularisation, evaluators and types that

are defined in one FieldML file may be imported into

another. This mechanism has essentially been borrowed

from the CellML import feature (see [9]), but is considered

innovative with regard to field formats and FEM formats.

This allows for modularity, because libraries of functions

can be defined in one file (a module) and composed in the

file that imports them. Abstraction is possible because the

imported evaluator may be defined as a pipeline of other

evaluators, which are not themselves imported, but which

provide the details that are abstracted away.

The best example of this is when a model imports the

evaluators and types declared in the standard library for
Fig. 5 Using an intermediate conversion function to allow for

compatible composition of evaluators
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FieldML version 0.5 (described next). Such an example

model is presented in Sect. 6.

5.7 The FieldML 0.5 standard library

Because the FieldML 0.5 evaluation model is very generic,

most of the specific functions needed to build useful

evaluation pipelines need to be defined using the external

evaluator functionality.

External evaluators are meaningless without a specifi-

cation of how they are evaluated. In addition, FieldML

models can only be meaningfully exchanged between tools

that support all external evaluators used in the model.

Therefore, it is important that some of the more funda-

mental external evaluators have a standardised definition.

The FieldML 0.5 standard library defines (using the

FieldML language itself) a set of external evaluators, along

with the types required by these standard external evalua-

tors, and argument evaluators for with those types. This

standard library is available at http://www.fieldml.org/

resources/xml/0.5/FieldML_Library_0.5.xml.

In summary, the library specifies:

• 1D, 2D and 3D Cartesian coordinates as continuous

domains

• Ensembles for indexing Cartesian coordinate domains

• 1D, 2D and 3D coordinates for elements of corre-

sponding dimension

• Declarations of external evaluators for common FEM

interpolation basis functions

• Ensembles for indexing these basis functions (for nodal

value interpolation, these are essentially the element

local node indexes).

• A range of element shapes (via Boolean external

evaluators).

• Argument evaluators for the above ensembles, contin-

uous domains and the ensembles that index the

components of multidimensional continuous domains

The contents of the library and the meaning of its

external evaluators are described in detail in Appendix A

(ESM) (see Sect. 6).

6 FieldML 0.5 illustrative example

This section gives an overview of a simple FieldML 0.5

example of a FEM mesh, for the purpose of illustrating

how the FieldML building blocks described in Sect. 5 are

assembled to create a model. The full listing of the Field-

ML XML is provided as supplementary material and

accompanied by a line-by-line explanation that also pro-

vides mathematical notation of the domain and field defi-

nitions of the example. FieldML is used to represent the

geometry of the mesh, as well as a scalar field (which

represents some measure of pressure in this example). A

visualisation created using cmgui is shown in Fig. 6.

A schematic highlighting the main objects discussed is

shown in Fig. 7, with details of the schematic shown larger

in the figures that follow after it. The objects used in the

FieldML model consist of those defined within the model

file itself and those imported from the library. Here, only

the objects from the library that are used by the model are

of interest (Fig. 8). The objects defined in the model itself

fall into three main categories: geometry, pressure and

shared (Fig. 9). The objects that are shared relate to the

aspects of the mesh that are shared by the geometry and

pressure fields, such as the elements, their shapes and the

local node to global node mapping that arises from the

connectivity of the nodes (Fig. 10). The shared objects can

be thought of as collectively defining a field template that

will be used for the pressure and geometry fields. The

pressure field is slightly simpler than the geometry field. It

uses a reference evaluator to bind the pressure DOFs to the

template (Fig. 11). The geometry field performs a similar

binding, but needs to use an aggregate evaluator, since the

geometry field is three dimensional, rather than just being

scalar-valued (Fig. 12).

7 Future work

FieldML 0.5 does not adequately represent topological

structure or differential structure. Addressing this

Fig. 6 Simple FieldML 0.5 example, colour variation represents the

scalar pressure field
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shortcoming is the first priority for the next version of

FieldML. As mentioned earlier, FieldML 0.5 also cannot

directly represent the arbitrary algebraic expressions needed

to define interpolation methods, and it also lacks the ability to

express PDE systems or, more generally, any implicit field

descriptions. Design work to address these shortcomings is

well advanced, and a prototype has already been created27

that can represent fields purely algebraically as well, sup-

porting the FEM fields directly via an algebraic style. This

prototype also allows for topological structure to be con-

veyed, but does not represent differential structure. How-

ever, this prototype relies on being embedded in the Haskell

language. At the time of writing, progress has also been made

on a second prototype that allows the testing of design ideas

in a self-contained language.28 Both of these prototypes are

Fig. 7 Schematic overview of the example FieldML model XML and

mathematical structure, the figures that follow after this show detail

on parts of this schematic. Key: CT continuous type, EE external

evaluator, ET ensemble type, MT mesh type, PW piecewise evaluator,

AE aggregate evaluator, PE parameter evaluator, DS data source,

ArgE argument evaluator, RE reference evaluator. Structure is shown

for the relevant parts of the standard FieldML library, and for the

example model. Each evaluator or type entity’s label consists of the

abbreviation of the type according to the legend, a brief description

and the symbol used in the mathematical representation describing the

example (see line-by-line annotation in supplementary material). See

the following figures for details on each of the major sections of this

schematic

Fig. 8 Detail of imports from library used in example model (see

overview schematic for the explanation of abbreviations)

Fig. 9 More detail of model structure. The structures in the example

model are grouped by relevance to the pressure field, the geometric

field or shared structures, and detailed schematics for these are

presented in the figures that follow

27 https://github.com/codecurve/FieldML-Haskell-01. 28 https://github.com/A1kmm/declarative-fieldml-prototype.
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based on designs that are still in the proposal stage, with

prototyping being used to allow for more robust testing of the

design ideas. A key issue to address is whether the algebraic

approach to representing FieldML domains and fields can

scale to meet the requirements of large high-performance

computational simulation codes. Once the algebraic repre-

sentation feature is available in FieldML, it will mark a

significant capability that is not yet available in any com-

parable field representation data format.

An immediate goal for FieldML is to support a broader

range of methods for describing FieldML domains, such as

forming subsets of existing FieldML domains, which would

be useful for metadata annotation of anatomical regions of

interest in generic models, or regions of interest in individu-

alised models such as regions of the myocardium with

ischaemic damage. This is part of the top priority work being

done for the next version of FieldML. A method for repre-

senting this is demonstrated in the aforementioned prototypes.

Nevertheless, a large number of FEM meshes and their

associated fields can be effectively represented using

FieldML version 0.5. Much work is needed to improve the

adoption of FieldML, and this will largely depend on

implementing FieldML I/O support in relevant software.

An approach that has been tried on a small scale for the

CellML format and API is to directly contribute code to

open source third-party software projects that express an

interest in supporting CellML. A similar approach may

prove useful for FieldML too.

Although the number of models represented in the most

up-to-date versions of the FieldML format is still relatively

small, a large number of models exist in its predecessor

formats, and these will be converted to FieldML and made

available in the model repository in the future.

The FieldML API support for parallel I/O via HDF5 still

needs to be validated, and it is expected that more com-

prehensive access to configuration options via the FieldML

API will be needed so that fast I/O can be achieved for a

wider variety of execution environments. Support for other

underlying parallel I/O data format systems, such as Net-

CDF [35], is also likely in future. Work has already begun

on implementing FieldML parallel I/O via parallel HDF5

in OpenCMISS, and using this for the I/O of distributed

computations for FEM solution data will help guide this

aspect of the FieldML design in the near future. Support for

high-performance parallel I/O for large-scale problems is

currently being treated as the second-highest-priority issue

for the next version of FieldML.

Fig. 10 Detailed schematic for

the part of the model shared by

both the field definitions for

pressure and geometry (see

overview schematic for the

explanation of abbreviations)

Fig. 11 Detailed schematic for the pressure-specific part of the

example model (see overview schematic for the explanation of

abbreviations)

Fig. 12 Detailed schematic for the geometry-specific part of the

example model (see overview schematic for the explanation of

abbreviations)
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Direct interchange of FieldML data between applica-

tions without having to first serialise this data is a feature of

the API that is planned for the future. The ability to directly

evaluate fields using the API is also likely to be incorpo-

rated into a future version of the API.

A current focus for CellML is the improvement of tools

for annotation of CellML models [2], and this will also be

an important feature of FieldML. For CellML, some pro-

gress towards this has been made by the development of

the OpenCOR open source software.29

CellML has for a long time had comprehensive support

for specifying the physical units used within a model, and

this is a feature that will be needed in FieldML. CellML

has always used algebraic expressions to describe the bulk

of the model structure. Nevertheless, efficient computa-

tion is possible by means of code generation, which is the

approach used by the CellML API. This approach may

prove useful for processing FieldML, although the focus

on supporting large models efficiently, especially on

parallel computing architectures, will mean that funda-

mentally new approaches to code generation will be

needed.

There is the potential for FieldML and CellML to be

merged in the future, especially once FieldML has full

support for representing both algebraic and differential

equations, and once FieldML has support for physical units

of measure on scalar-valued fields and scalar components

of more complex fields. Indeed, as the development of

standards such as CellML and FieldML progresses in

future, we envisage that they will possibly eventually

converge to a smaller number of more unified standards.

A key area of future work for PMR is integration with

metadata standards and technologies. This will allow

model authors to submit data to PMR that has been

annotated and that the PMR system will then index. This

will allow for more advanced methods of discovering

models housed in PMR, and of presenting information

about those models.

8 Conclusion

FieldML is under active development; nevertheless, its

design is based on well-established formats, and version

0.5 is already able to represent a wide range of models. Key

innovations include the flexible composability of evalua-

tors, the flexible referencing of intact external data sources

and the facility to modularise and abstract field represen-

tations by means of external evaluators. The design of

FieldML version 0.5, and perhaps more importantly the

experience gained from creating this design during the

euHeart project, also provides a strong foundation for the

design of the next version, for which prototypes are already

being developed.

The mathematical model representation challenge that

CellML addresses is simpler than that for FieldML, and so

it has been possible to bring the CellML standard and tools

to a level of maturity, and we have attempted to apply some

of the lessons learnt from developing CellML to the

development of FieldML.
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