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Abstract
Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or
disfiguring defects. These post-therapy impairments require the development of safe regenerative
therapy strategies during cancer remission. Many current tissue repair approaches exploit
paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or
restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells
(MSC). Yet, a major concern in the application of regenerative therapies during cancer remission
remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare
subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in
specific niches awaiting reactivation via unknown stimuli. Many of the components required for
successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue
growth promotion) are also critical for tumor progression and metastasis. While bidirectional
crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including
tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of
local or systemic MSC delivery for regenerative purposes on persisting cancer cells during
remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported
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in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-
like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells
which benefited from the presence of supportive MSC. The secretome of MSC isolated from
various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6,
TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article
reviews published models for studying interactions between MSC and cancer cells with a focus on
the impact of MSC secretome on cancer cell activity, and discusses the implications for
regenerative therapy after cancer.
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1. Introduction
Cancer treatment often relies on non-selective tumor ablative techniques that can result into
severe functional impairments or disfiguring damages. Cellular therapy using hematopoietic
stem cells (HSC) is already well established to rescue the bone marrow from the massive
cytotoxic effects associated with dose-intensive treatment of hematologic malignancies. The
emergence of regenerative medicine strategies using non-HSC populations offers
comparable alternatives to restore other organ functions and rebuild excised tissues after
cancer surgery. Mesenchymal stem/stromal cells (MSC) exhibit a set of pro-regenerative
features (multi-lineage differentiation capacity, homing to sites of injury and inflammation,
and paracrine immunomodulatory, pro-angiogenic, anti-apoptotic and pro-proliferative
effects, Figure 1) that make them an attractive candidate for modulation of immune
disorders and regenerative therapy approaches [1–3]. Unfortunately, the tumor and wound
microenvironments share a lot of similarities [4] and MSC have been shown to similarly
respond to tumor-associated inflammatory signals and home to malignant sites [5]. While
this MSC tumor tropism has been encouragingly exploited to develop tumor targeting
strategies [6], it also indicates that caution is required when delivering MSC to cancer-
surviving patients for regenerative purposes [7–9]. A number of studies have stressed the in
vivo recruitment of MSC by pre- or co-injected cancer cell lines in a variety of animal
models and the subsequent promotion (or inhibition) of either tumor growth or metastasis
(Table 1). This review outlines the conflicting data currently available in the literature from
in vitro and in vivo models of cancer cell-MSC interactions with an emphasis on MSC-
secreted factors and their role on tumor development. We discuss the potential impact of
these interactions under regenerating conditions.

2. MSC and regenerative therapy after cancer
The attractiveness of MSC for cell-based regenerative therapies relies not only on their
capacity to differentiate into multiple mesenchymal lineages [10], but also on the delivery of
various paracrine signals responsible for chemoattractant, immunomodulatory, angiogenic,
anti-apoptotic, anti-scarring, and pro-survival effects [11]. Yet, the same MSC-secreted
factors that accompany tissue regeneration and revascularization have also been linked to
the promotion of cancer growth and metastasis (Figure 1) [7]. The safety of bone marrow
(BM)-derived MSC (BM-MSC) was assessed in clinical trials in 1995 [12] and MSC-based
strategies were subsequently introduced for regenerative trials for bone [13, 14] and
cartilage [15] defects, or immunomodulation of graft versus host disease [16, 17],
autoimmune disease [18] and stroke [19]. HSC transplantation was widely used in the 1990s
to rescue the hematopoietic system of breast cancer patients undergoing intensive
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chemotherapy [20]. This strategy was ultimately abandoned because no significant
therapeutic effect could be demonstrated over conventional therapies. However, the co-
administration of MSC and HSC in breast cancer patients significantly accelerated the
restoration of the hematopoietic compartment [21]. Several studies have investigated the
effects of BM-MSC and HSC co-transplantation to facilitate engraftment or reduce graft-
versus-host disease into patients treated for hematopoietic malignancies [16, 22, 23].
Autologous BM-MSC were also delivered in a fibrin spray to accelerate wound healing in
patients with acute wounds including skin cancer surgery-induced lesions [24], and our
group has recently validated in vitro an analogous strategy using unpassaged adipose-
derived MSC [25]. Intrabone and systemic delivery of MSC has been tested in a multiple
myeloma animal model for simultaneous inhibition of tumor growth and regeneration of
bone lesions [26].

Another MSC-based approach currently under consideration for regenerative therapy after
cancer is cell-assisted soft tissue reconstruction for patients treated for head and neck or
breast cancer [7]. Cosmetic restoration after disfiguring surgical tumor excision remains an
important part of the treatment. Soft tissue reconstruction after breast cancer was pioneered
in late 19th century by Czerny [27] and could provide satisfactory short-term cosmetic
results, but remained flawed mainly due to poor long term volume retention [28, 29].
Recently, MSC-assisted autologous fat transfer approaches for soft tissue reconstruction
have been developed and have been shown to enhance graft survival and local angiogenesis
to sustain stable, functional and natural appearance [7].

3. Models of MSC-tumor cell interactions
A list of currently published studies examining interactions between MSC and cancer cells is
summarized in Table 1. Most investigators relied on established cancer cell lines rather than
clinical isolates to mimic tumor behavior in epithelial, hematopoietic and mesenchymal
cancers. These studies exposed a variety of cell-cell and paracrine interactions (including
both pro- and anti-tumor activities) relying primarily on breast cancer cell lines and MSC
isolated mostly from human BM and adipose (Table 1). These studies are sometimes
contradictory, and MSC can be shown to either promote or inhibit tumor progression within
the same cancer model (Table 1), occasionally using identical cancer cell lines. For example,
human adipose-derived MSC support proliferation of the glioma cell line U87MG in vitro
and tumor growth in vivo [30], while human umbilical cord-derived MSC were shown to be
cytotoxic to the same line in a separate publication [31]. Such discrepancies are even more
evident in studies of MSC interactions with epithelial cancers. MSC interactions can vary
tremendously depending on numerous factors, including MSC tissue of origin, cancer type
and model, pre-treatment of MSC using cytokines or small molecules, and a variety of in
vitro and in vivo system-related discrepancies, including the relative number of both MSC
and cancer cells, simultaneous or individual injection of MSC and cancer cells, local versus
systemic MSC delivery or the kinetics of tumorigenesis. Human BM- and adipose-derived
MSC were demonstrated to respectively promote and inhibit the in vitro proliferation of the
breast cancer cell line MCF7, as well as the in vitro survival or in vivo growth of the PC3
prostate cancer line [32–36]. BM-MSC and foreskin-derived MSC respectively promoted
and inhibited SGC-7901 gastric cancer growth in vivo [37, 38]. Lung cancer models using
the identical cancer cell line (A549) or similar Lewis tumors revealed diverging effects of
MSC on either tumor in vitro proliferation or in vivo growth [38–41]. These inconsistencies
can even be detected using both the same source of MSC and cancer cell line (BM-MSC
pro-and anti-proliferative effects on breast cancer MDA-MB-231 line [32, 42] or pro- and
anti-tumor growth in vivo with the prostate cancer PC3 line [35, 36]). Some authors
preferred using immortalized MSC lines, which could also affect the outcomes, as mouse
BM-MSC had no effect on the proliferation of the multiple myeloma cell line RPMI8226,
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whereas the mouse C3H10T1/2 line exerted potent inhibitory activity [39, 43]. Co-
implantation of rat BM-MSC with COS1NR osteosarcoma cells accelerated early onset of
tumor growth, but not metastasis, whereas intravenous MSC injection did increase the
number of metastatic nodules without affecting tumor growth [44]. Finally, some authors
emphasized aberrant behavior of MSC isolated from cancer clinical isolates, compared with
healthy BM- or adipose-derived MSC [45].

3.1. How to model regenerative therapy after cancer?
MSC selection techniques can vary in the literature, but plastic adherence is typical and
considered axiomatic [46]. This crude selection method does not exclude heterogeneity of
MSC sources within a single tissue (e.g. adipose) [47–49] or persistence of hematopoietic
lineages at early passages (e.g. macrophages) [50, 51]. Although all MSC populations share
basic similarities immunophenotypically and functionally, differences can be demonstrated
using high resolution techniques [52, 53] and are reflected in variability within their
secretome [7, 54]. A growing number of studies have developed models to study MSC-
tumor interactions (Table 1). Only a few groups have investigated these interactions using
clinical isolates [26, 45, 51] (including ours) which may be more relevant to the in vivo
tumor heterogeneity than homogeneous cancer cell lines. The source of MSC in these
studies can vary tremendously, including differences of species (human, mouse, rat, rabbit)
and tissue of origin (i.e. normal bone marrow, umbilical cord, placenta, subcutaneous,
omental and breast adipose, or cancer tissue). Some authors relied on immortalized MSC
lines (mouse C3H10T1, human fetal derm Z3 and rat MCP1cE), but most studies employed
the two most prevalent MSC currently used in clinical practice: human BM and
subcutaneous adipose (SA) –derived MSC. Dissimilarities between BM-MSC and adipose-
derived MSC (termed adipose-derived stem/stromal cells or ASC), have already been
reviewed in [55].

3.1.1. MSC variability—Multipotent MSC were originally isolated from bone marrow
[10] and have been defined as a plastic-adherent fibroblastic cell population, exhibiting a
defined immunophenotype (e.g. expression of CD73, CD90, CD105 and lack of expression
of hematopoietic/endothelial markers), and capable of clonal differentiation towards
mesenchymal lineages (e.g., adipogenic, osteogenic and chondrogenic lineages) [46].
Similar mesenchymogenic populations have been isolated from the connective tissue of
multiple tissues [56], including adipose [57]. Recent studies have unraveled transcriptomic,
proteomic or epigenomic [53, 58–60] disparities between tissue-specific MSC, which may
mark some degree of niche-associated bias. The inherent heterogeneity of the pool of
mesenchymogenic progenitors participating in the MSC activity of each tissue can be
reflected by some disparities measured at the secretome level [7, 54]. Yet, it seems that
shared sources of MSC, such as the ubiquitous pericytes, retain functionality across discrete
niches. CD146+ perivascular cells, or pericytes, represent a ubiquitous source of MSC
throughout various organs [61, 62], whereas other more specialized progenitor populations
may contribute to MSC activity in tissues such as fat [47–49]. CD146+ BM-resident
subendothelial cells are in vivo precursors of BM-MSC and can organize the hematopoietic
niche via their secretome (i.e. release of Angiopoietin-1) and support adult HSC [63]. This
presumably BM-specific function is retained by non-medullar sources of MSC such as
adipose [64], although this activity seems to be restricted to the CD146+ pericytic source of
ASC [65]. Inversely, ASC secrete adipose-specific factors, such as leptin and adipsine [7],
which are not shared with BM-MSC, and may reflect heterogeneity and/or specialization
within the pool of adipose progenitors [66]. The bulk of MSC-secreted factors comprises a
common core, independently of their tissue of origin, including an overlapping set of anti-
apoptotic, immunomodulatory, anti-scarring, supportive, angiogenic and chemoattractant
factors such as interleukin-6 (IL6), chemokine C-C motif ligand 2 (CCL2), PAI-1,
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transforming growth factor-beta1 (TGFβ1), CD106 and vascular endothelial growth factor
(VEGF) [11, 67]. A few studies have compared the effects of distinct MSC populations in
cancer models. Both BM-MSC and adipose-resident cells have been shown to be recruited
to sites of ovarian tumors, where BM-MSC preferentially give rise to tumor-associated
fibroblasts (TAF) while the adipose stroma contributes to vascular/fibrovascular lineages
[68]. Yet, both BM-MSC and subcutaneous adipose-derived MSC can acquire a TAF
phenotype in presence of ovarian cancer cells [69]. Breast-derived ASC are potent activator
of basal-type breast cancer progression and invasiveness [70] via secretion of specific
factors (Matrix metalloproteinase-1 (MMP1), MMP3) not expressed by BM-MSC. Adipose
tissue is distributed in multiple depots, which may have distinct developmental origins and
visceral fat possesses potent inflammatory activity. Klopp et al. compared the behavior of
BM-MSC, visceral and subcutaneous ASC [54] in both in vitro and in vivo studies of
endometrial cancer. Both BM-MSC and omental-ASC displayed robust tumor-homing, pro-
angiogenic (including higher pericyte coverage), extra-cellular matrix (ECM)-remodeling
and pro-proliferative activities in vivo. While the tumor proliferation enhancing effects of
omental ASC were confirmed in vitro, BM-MSC seemed to display an opposite behavior in
co-culture experiments. Surprisingly, subcutaneous ASC did not display any significant
effect for all pro-tumoral activities [54]. Omental ASC were also the only MSC population
to protect cancer cells from necrosis in vivo. Szebeni et al analyzed mouse BM-MSC and
subcutaneous ASC interactions with breast cancer and melanoma in vivo models [71], but
did not report any divergent effects on tumor growth, vascularity and metastasis support. In
another study, human cord blood-derived MSC and breast-derived ASC exhibited a similar
behavior when injected intravenously in a breast cancer model, including tumor tropism and
inhibition of both tumor growth and metastasis [72]. A multiple myeloma model revealed
minor differences between mouse and human BM-MSC in the presence of tumor cells,
although both populations contributed to tumor growth augmentation [43]. Both mouse and
human ASC have been shown to support the growth of breast cancer cell lines [73] and any
direct distinction between species remains to be investigated.

3.1.2. Tumor effects on MSC—Some authors have also analyzed the effects of tumor-
derived MSC populations [45, 74, 75] on cancer progression. Evidence has been
accumulating concerning the existence of deranged tumor-resident MSC isolated from
several cancers including multiple myeloma [76–80], breast cancer [81], liver cancer [74]
and ovarian cancer [45, 75, 82]. The tumor-supporting properties of MSC
(immunomodulation, angiogenesis, cell survival or migration) often seem to be enhanced in
tumor-derived MSC populations [45, 74, 75]. For instance, human ovarian cancer-derived
MSC showed higher pro-tumor growth activity than normal human BM-MSC and ASC,
promoting the acquisition of a phenotype resembling putative cancer stem cells (CSC) [45],
in support of local tumor-MSC crosstalk leading to specialized tumor-resident MSC
populations. Both BM- and adipose-derived MSC display tumor tropism due to various
tumor-released chemotactic factors including CCL25 [43], C-X-C motif chemokine-1
(CXCL1) [54], epidermal growth factor (EGF) [83, 84], hepatoma-derived growth factor
(HDGF) [85], IL-8 [54], platelet-derived growth factor (PDGF) [84], stromal cell-derived
factor-1 (SDF1, a.k.a. CXCL12) [86, 87], TGFβ [88], and VEGF [84]. Recruited tumor-
resident MSC populations or their direct progeny (i.e. TAF, myofibroblasts) often possess
augmented ability to promote tumor growth [45, 75, 77, 82] and invasion [74, 75] compared
with healthy donor MSC via superior angiogenesis [75, 77, 80, 82, 89], or abnormal
immunomodulation [76, 79, 81], resulting in increased release of cytokines/growth factors
including hepatocyte growth factor (HGF) [80, 82], IL-6 [76, 77, 79, 82], IL-10 [81],
fibroblast-specific protein-1 (FSP1, a.k.a. S100A4) [74], TGFβ [79, 81] and VEGF [75, 80,
82] by tumor-resident MSC.
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3.1.3. Tumor-initiating cells—Hematopoietic rescue by autologous blood or bone
marrow transplantation following high dose chemotherapy is possibly the most exploited
strategy to treat hematologic malignancies and can achieve significant clinical responses, but
does not invariably prelude future cancer relapse. Similarly, therapy for epithelial cancers
such as breast cancer is rarely curative and cancer recurrence remains a significant cause of
mortality after induction of successful and often durable remissions. Late recurrence is well
documented and provides direct evidence for the persistence of tumor-initiating cells at a
subclinical level, referred as cancer dormancy. The cell cycle state (quiescent or
homeostatic) of dormant cancer cells and their reactivation after a symptom-free interval
remain both poorly understood. Tumor-initiating cells, often referred as CSC, are restricted
to specific tumor subsets within the heterogeneous bulk of malignant cells in several
cancers, and are characterized by the expression of markers originally associated with
normal stem/progenitor cells. These include CD44, CD90, CD117, and CD133 [90]. While
cancer dormancy depends on the sub-clinical persistence of rare tumor-initiating cells, the
CSC paradigm might offer clues to how tumor subsets may escape anti-cancer therapies [91,
92]. In vitro cellular models of cancer dormancy [93–96], CSC [97], or other tumor-
initiating cells possibly involved during cancer relapse remain poorly established and only
rare studies rely on the purification of resting subsets of tumorigenic cells akin to the cells
involved during relapse [51]. Dormant and active breast cancer cells possess distinct
genome-wide expression signature, especially angiogenesis-related genes [96] and our own
published work support that resting and active tumor-initiating breast cancer cells respond
differently to MSC signals [51]. Our in vivo xenograft approach relied on an animal model
utilizing unpassaged sort-purified breast cancer clinical isolates injected in limited number
and resulting in small (5–10mm3) tumors developing 6 or more months after injection.
Breast tumor-initiating activity is enriched in the CD44+CD24-CD326+ fraction of breast
cancer cells, which was originally shown to contain both quiescent and actively proliferating
cells [98]. We previously refined the breast cancer tumor-initiating activity to a CD90+
subset of CD44+ cells [99], which is localized at the invasive front in breast cancer tumors
[90]. Small (low light scatter) resting CD90+ breast cancer cells give rise to tumors with
high efficiency (<100 cells/injection) [90, 99], independently of supportive stroma/ASC
[51]. Large (high light scatter) CD90+ tumor-initiating cells include a large number of
dividing/aneuploid cells and are only tumorigenic at higher dose (>600 cells) [90, 99],
although co-injection with ASC can rescue their tumorigenic potential at lower dose (100
cells) [51]. Importantly, our in vivo mouse model displayed tumor growth kinetics and
incidence similar to dormant cancer cell line models [93–96], in contrast to studies relying
on aggressive cancer cell lines and resulting often into >100mm3 tumors less than a month
after implantation [7]. Models using aggressive cell lines have little relevance to
regenerative therapy after cancer, but may be more appropriate for evaluating potential
suppressive effects of MSC on rapidly growing high-grade therapy unresponsive tumors.

4. The MSC secretome and cancer cells
MSC can be mobilized and recruited to active tumor sites, where they can incorporate into
the tumor’s microenvironment [5, 68, 100–103]. There they can potentiate further
tumorigenesis via differentiation into tumor-nurturing stroma (TAF, myofibroblasts) [82,
104], direct cell contact interaction with cancer cells [105, 106] or release of paracrine
factors (Table 2). Tumor-MSC interactions studies have revealed MSC tumor-supporting
paracrine activities (local immunosuppression and angiogenesis, promotion of tumor growth
and invasion (i.e. acquisition of epithelial-mesenchymal transition (EMT)/CSC phenotype or
ECM remodeling), inhibition of tumor apoptosis or necrosis) in a large spectrum of cancers
(Table 1). Table 2 summarizes published MSC-secreted factors that have been identified
during MSC-cancer cell interactions and their reported effect on cancer cells. Several
cytokines usually involved during MSC-mediated tissue regeneration (e.g. IL-6, TGFβ,
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VEGF) are secreted at elevated levels by MSC upon recruitment by cancer cells and support
actively growth or invasion of cancer cells. As mentioned previously, the exact role(s) that
MSC play in the modulation of tumor cell growth remains controversial [7–9] and release of
some factors such as DKK1 can inhibit the proliferation of hematopoietic cancer cells [33,
43, 77]. Pro-tumorigenic effects of MSC can be inhibited by pretreatment of MSC with
imatinib (PDGF-receptor inhibition) [107], gefitinib (EGFR inhibition) [83] or interferon-
gamma (INFγ) [108] while some preconditioning treatment (hypoxia, irradiation, genetic
engineering) enhance MSC migratory and pro-tumoral activities [32, 109–111]. Obesity
may also accelerate tumor growth, via an increased endogenous ASC reservoir, which
directly contribute to sustain the tumor microenvironment [112]. IL-6 is an MSC-secreted
inflammatory cytokine displaying pro-survival, pro-growth and pro-angiogenic activities
[11], which has been implicated in tumor progression of various cancers including breast
cancer [113, 114]. Secretion of elevated levels of IL-6 by MSC has been detected upon
interaction with malignant cells in several epithelial, hematopoietic and mesenchymal
cancers (Table 2) [43, 69, 76, 77, 82, 115–119]. In these studies, MSC-released IL-6
supported tumor growth by stimulating cancer cell proliferation and survival or protecting
from apoptosis. BM-MSC and ASC could also potentiate cancer cell migration, invasion and
metastasis via the release of IL-6 in the tumor microenvironment [116, 120]. BM-MSC and
ASC can also secrete a combination of anti-apoptotic and angiogenic factors [121],
including HGF, SDF-1/CXCL12, CD106 (sVCAM) and VEGF which can promote tumor
growth, local angiogenesis and metastasis [42, 84, 122–127]. Secretion levels of some
cytokines, such as VEGF, can vary depending on the tissue from which MSC are derived.
Subcutaneous adipose-derived MSC populations seem to secrete lower level of VEGF than
BM-MSC [7, 54] or visceral ASC [54]. The monocyte chemoattractant protein-1 (MCP1) or
CCL2 is commonly detected among MSC secreted cytokines/chemokines [7, 128]. Although
not reported in direct tumor cell-MSC interaction studies (Table 2), MCP1 can be secreted
by stromal [129] or tumor cells (to recruit MSC [130] and macrophages). MCP1 is a critical
chemoattractant responsible for the recruitment of macrophages into tumor and for
angiogenesis in breast cancer [131, 132], and may contribute to indirect crosstalk between
MSC and cancer cells via recruitment of tumor-resident macrophages. The
immunosuppressive activity of MCP1 has been implicated in the progression and metastasis
of cancer in animal models of skin papilloma [133], colon carcinoma [134], prostate cancer
[135], breast cancer [136, 137] and lung cancer [138]. MSC-mediated immunosuppression
activity has been shown to be modulated via tumor necrosis factor-alpha (TNFα) [139].
MSC have also been shown to release elevated levels of TGFβ upon interaction with breast
and prostate cancer [32, 35, 81], resulting into stimulation of the proliferative and migratory
capacities of the cancer cells. The implication of TGFβ signaling in promotion of tumor
invasion and metastasis [140] via EMT [141] is well established. Another MSC-secreted
pro-metastasis cytokine, CCL5 (RANTES), can be secreted upon interaction with cancer
cells and is associated with tumor progression and invasion in various cancers [73, 87, 100,
142–144]. CCL5 can be secreted by both BM-MSC and ASC [100, 144] and displays pro-
proliferative activities on breast cancer cell lines [145, 146]. Other MSC-secreted factors
upregulated during interactions with cancer cells and exhibiting potent effect on tumor cells
include BMP2, CXCL1, CXCL5, CXCL6, CXCL7, EGF, IL4, IL8, IL10, IL17b or S100A4.

5. Summary and conclusions
Early cancer recurrence following hematopoietic or epithelial cancer treatment is often
characterized by very aggressive active disease [7], a clear contraindication to regenerative
reconstructive therapy. On the other hand, patients with responsive disease who enter
clinical remission are nonetheless at risk for late relapse, implying the persistence of a
distinct population of dormant cancer-initiating cells. While bi-directional cross-talk
between MSC and aggressive cancer cells is well documented, specific interactions between
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MSC and dormant-like tumor-initiating cells remain poorly established. A non-obvious
parallel comes from our experience in cellular reprogramming of myeloid progenitors to
pluripotency [147]. Many of the same reprogramming elements are shared between
pluripotency and tumorigenicity [148] and the most commonly used reprogramming factors
for induced pluripotent stem cell (iPSC) technology are known oncogenes (MYC) or have
been directly linked to tumorigenicity in a variety of human cancers (NANOG, SOX2,
OCT4) [148]. Indeed, non-tumorigenic epithelial mammary cells have been shown to be
induced with CSC activity via cellular reprogramming [149]. Interestingly, hematopoietic
progenitors seem to be more amenable to cellular reprogramming than conventional stem
cells [150] and we have demonstrated that MSC co-cultured with actively dividing myeloid
progenitor cells facilitate their acquisition of induced pluripotency, via both cell-cell
contacts and release of multiple cytokines and growth factors [147]. These studies illustrate
differential reprogramming behavior of progenitor and stem cell populations and confirm
that MSC cross-talk with progenitor populations can potentiate their cellular fate.

Cancer cells can display fluctuating levels of stem-like activities [151]. In fact, MSC may
exert distinct effects on tumor-initiating cell populations according to their degree of
stemness. This may result into promotion of a pro-resting CSC niche [152, 153] for the most
therapy-resistant stem-like cells, or recruitment and promotion of tumorigenesis for more
active progenitor cells. Our previously published in vivo breast cancer model provides the
only available data on the interaction of adipose-derived MSC with tumor cell subsets sort-
purified from unpassaged clinical isolates. A basic comparison of the major cytokines,
chemokines and growth factors secreted by ASC revealed a close correspondence to the
secretome of BM-MSC, including the major cytokines implicated in promotion of tumor
growth, such as IL-6. Although levels of VEGF secreted by ASC were moderate, we could
still detect the development of human blood vessels within tumor xenografts coinjected with
human ASC. The effects of a few secreted factors unique to adipose derived MSC, such as
leptin and adipsin, remain unclear, although, leptin has been associated with tumor
progression in breast cancer [154]. Engraftment and tumorigenesis of active tumor cells
significantly benefited from the coinjection of ASC. Yet, resting cells were not responsive to
local ASC signals, although they were consistently able to generate tumors from a limited
number of injected cells. We could not detect differences (size, histology) between tumors
generated by active and resting tumor-initiating cells.

Taken together, the secretome of MSC exert potent tissue remodeling effects. The results
from multiple laboratories suggest that the effects of MSC on tumor cells are multiple and
may depend on the state of the tumor cell, the properties of specific MSC populations, and
interactions with other cell types, such as tumor infiltrating immune cells..
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BA breast adipose

BM bone marrow

CCL chemokine C-C motif ligand

CSC cancer stem cells

CXCL C-X-C motif chemokine

ECM extra-cellular matrix

EGF epidermal growth factor

EMT epithelial-mesenchymal transition

FSP1 fibroblast-specific protein-1

HDGF hepatoma-derived growth factor

HGF Hepatocyte growth factor

HSC hematopoietic stem cells

IL-6 interleukin 6

INFγ interferon-gamma

IPSC induced pluripotent stem cell

MCP1 monocyte chemoattractant protein-1

MMP matrix metalloproteinases

MSC mesenchymal stromal/stem cells

OA omental adipose

PDGF platelet-derived growth factor

SA subcutaneous adipose

SDF1 stromal cell-derived factor-1

TAF tumor-associated fibroblasts

TGFβ transforming growth factor-beta

TNFα Tumor necrosis factor-alpha

UC umbilical cord

VEGF vascular endothelial growth factor
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Highlights

• MSC regenerative potential relies in part on paracrine activities.

• MSC secretome can interact with tumor-initiating cancer cells.

• Same MSC signals are involved in regenerative and pro-cancer activities.

• Dormant cancer may not respond to the same signals as active malignant tumor.
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Figure 1.
MSC paracrine activity and incidence on oncogenesis. MSC exert paracrine interactions by a
combination of direct (MSC-secreted) and indirect (released by MSC differentiated progeny
or neighboring cells) secreted factors. MSC can secrete a large array of cytokines,
chemokines and growth factors natively or upon interactions with other cell types.
According to the MSC tissue of isolation, levels of MSC secreted factors may vary. MSC
secretome shares similar activities during wound healing and interactions with active tumor,
including pro-migratory, pro-angiogenic, pro-proliferative, anti-apoptotic and
immunosuppressive effects. MSC can also affect the cellular fate of surrounding cells
(including tumor cells) and their state of differentiation. Upon interactions with cancer cells,
MSC may promote acquisition of pro-tumorigenic CSC activity, or pro-invasion epithelial-
to-mesenchymal transition. While MSC multilineage differentiation capacity is a great
advantage for regenerative purposes, MSC may also directly support tumor progression by
replenishing the local stroma (tumor-associated fibroblasts) or supporting the development
of the tumor vasculature (pericytes/myofibroblasts). While the effects of MSC on active
tumor seems to mimic wound healing activities, interactions with resting tumor-initiating
cells involved during delayed cancer relapse is still poorly characterized.
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Table 2

MSC-secreted factors detected during studies of cancer cell-MSC interactions.

MSC-secreted factors MSC source cancer reported MSC paracrine activities on
cancer cells references

IL-6
human BM, human

SA, human BA,
mouse BM

breast cancer, ovarian cancer,
prostate cancer neuroblastoma,

multiple myeloma, osteosarcoma

tumor tropism, pro-growth, pro-survival, pro-
proliferation, anti-apoptosis, pro-migration,

pro-invasion, pro-metastasis

[43, 69, 76,
77, 82, 115–

120]

VEGF

human BM, human
OA, human SA,
ovarian cancer,

mouse BM

endometrial cancer, gastric cancer,
ovarian cancer, pancreas cancer,

prostate cancer, multiple myeloma
tumor tropism, pro-angiogenesis

[43, 54, 69,
75, 80, 82,
84, 86, 89]

CCL5 human BM, human
SA breast cancer, osteosarcoma pro-migration, pro-invasion, pro-metastasis [73, 87, 100,

144]

TGFβ human BM, human
BA breast cancer, prostate cancer pro-survival, pro-proliferation, pro-migration,

pro-invasion
[32, 35, 81]

DKK1 human BM, human
SA, mouse BM erythroleukemia, multiple myeloma anti-proliferation [33, 43, 77]

IL-17b human BM breast cancer pro-migration, pro-metastasis [88]

S100A4 human liver cancer hepatocellular carcinoma pro-proliferation, pro-invasion, pro-metastasis [74]

BMP2 (BMP4, BMP6) human BM, human
SA, ovarian cancer ovarian cancer pro-growth, pro-proliferation, pro-CSC

phenotype
[45]

IGF1 human BM, mouse
BM

prostate cancer, multiple myeloma,
osteosarcoma pro-survival [43, 118, 119]

SDF1 human BM, human
SA, mouse SA endometrial cancer, ovarian cancer pro-migration, pro-metastasis [54, 69, 73]

EGF human BM ovarian cancer pro-proliferation [82]

HGF human BM ovarian cancer, multiple myeloma - [80, 82]

IL-10 human BM, human
BA, mouse BM breast cancer, multiple myeloma - [43, 81]

IL-4 human breast cancer breast cancer - [81]

IL-8, CXCL5, CXCL6,
CXCL7, CXCL1 human BM breast cancer - [115]

FGF human BM, human
OA, human SA

endometrial cancer, ovarian cancer,
multiple myeloma - [54, 80, 82]

TSP1, TnC, SL1 human BM ovarian cancer - [82]

Non-specified paracrine factors

human BM, human
SA, human UC,
human foreskin,
mouse C3H10T1

line

breast cancer, gastric cancer, lung
cancer, pancreatic cancer, prostate

cancer, renal cancer

pro-engraftment, anti- or pro-growth, anti- or
pro-proliferation or no effect, pro-apoptosis,

pro-angiogenesis pro-EMT phenotype

[34, 36–40,
156, 157,

159]
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