Skip to main content
. Author manuscript; available in PMC: 2013 Nov 12.
Published in final edited form as: IEEE Trans Pattern Anal Mach Intell. 2011 Mar 10;33(10):2051–2065. doi: 10.1109/TPAMI.2011.50

TABLE 6.

Performance of non-rigid SFM methods on synthetic and motion capture data. For the related PTA and CSF-Bnr methods, factorization rank is also indicated by the value of K in parenthesis.

Dataset XCK EM-PPCA MP PTA CSF-Bnr
eR e 3D eR e 3D eR e 3D eR e3D (K) eR e3D (K) initial e3D (K)
Drink .3359 3.5186 .2906 .3393 .2859 .4604 .0058 .0250 (13) .0055 .0223 (6) .0854 (6)
Pick-up .4687 3.3721 .4277 .5822 .2506 .4332 .1549 .2369 (12) .1546 .2301 (6) .2685 (6)
Yoga 1.2014 7.4935 .8089 .8097 .8711 .8039 .1059 .1625 (11) .1021 .1467 (7) .1528 (7)
Stretch .9489 4.2415 .7594 1.1111 .8174 .8549 .0549 .1088 (12) .0489 .0710 (8) .0966 (8)
Dance 2.9962 .9839 .2639 .2958 (5) .2705 (2) .3259 (2)
Face1 .0434 .0734 .1247 (3) .0637 (5) .1487 (3)
Face2 .0329 .0357 .0444 (5) .0363 (3) .0451 (3)
Shark .0501 .1571 .1796 (9) .0081 (3) .3195 (3)
Walking .4917 .5607 .3954 (2) .1863 (2) .6823 (2)