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Understanding multiple-exciton generation (MEG) in quantum dots (QDs) requires in-depth
measurements of transient exciton dynamics. Because MEG typically faces competing ultrafast energy-loss
intra-band relaxation, it is of central importance to investigate the emerging time-scale of the MEG kinetics.
Here, we present ultrafast spectroscopic measurements of the MEG in PbS QDs via probing the ground-state
biexciton transients. Specifically, we directly compare the biexciton spectra with the single-exciton ones
before and after the intra-band relaxation. Early emergence of MEG is evidenced by observing transient
Stark shift and quasi-instantaneous linewidth broadening, both of which take place before the intra-band
relaxation. Photon-density-dependent study shows that the broadened biexciton linewidth strongly
depends on the MEG-induced extra-exciton generation. Long after the intra-band relaxation, the biexciton
broadening is small and the single-exciton state filling is dominant.

T
he limiting factor for improving solar-cell efficiency lies in the simple physics that single-photon absorp-
tion generates one electron-hole pair1. The possibility of generating multiple charge carriers per photon,
known as carrier multiplication (CM) or multiple exciton generation (MEG), is of crucial importance for

developing efficient solar-cell devices2–8. Semiconductor quantum dots (QDs) represent well-defined structures
to explore the quantum limit of harnessing solar-conversion efficiency9–13. By engineering the sizes of QD
composites, it has been demonstrated that not only the optical properties14,15, but also the MEG efficiency in
QDs can be modified16. MEG in a photo-excited QD system is a prominent route for enhancing the conver-
sion efficiency because carriers confined in spatial dimensions that are smaller than the bulk exciton Bohr
radius lead to the formation of discrete excitonic states such that efficient MEG is possible either by suppres-
sing the ultrafast electron-phonon relaxation4,17,18 or by enhancing the Coulomb interactions via reduced
dielectric screening at the QD surface19.

Numerous investigations have shown that the kinetic origin of MEG dynamics in QDs is intrinsically complex
because the photo-generated single exciton initially suffers from extremely fast intra-band relaxation20–22, whose
interaction time-scale is typically in the range of a few ps6. To enhance the MEG efficiency, it is desirable to
circumvent the ultrafast energy-loss intra-band process23,24. Recent studies suggest that the MEG is an instant-
aneous phenomenon occurring before the intra-band energy relaxation25 via virtual single excitonic26 or biexci-
tonic optical transition27 or coherent superposition among multi-exciton states12. Other investigation suggests
that the intra-band relaxation rate competes with the MEG formation rate6.

The above mentioned photo-physical complexity of MEG is largely due to the nature of intrinsic multi-particle
(or multi-exciton) interaction28. When more than two excitons are created under high-energy excitation con-
dition, the lowest lying energy state is not the single exciton; the mutual interaction between two excitons results
in the formation of a Coulomb-correlated two excitonic state, called biexciton29–33. The biexciton is energetically
more stable than the single exciton such that it exists below the single-exciton state32,34. Recent studies have
reported that the final biexciton density strongly influences the solar-conversion efficiency25,26,35. Although it is
important to study the impact of the MEG on the transient biexciton spectra, no experimental investigations have
been provided to compare the MEG-induced biexciton dynamics with the intra-band relaxation dynamics.
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The key experimental observation in this study is that the optic-
ally-induced MEG is an extremely fast process, arising before the
intra-band relaxation. By exploring the lowest observable biexciton
dynamics, we directly measure that the biexciton bleaching comes
from early emergence of the photo-induced MEG, in which the effect
of extra-exciton generation is manifested by the increased broaden-
ing of the biexciton linewidth via multi-exciton interaction. Note
that, in contrast to the conventional single-exciton MEG spectro-
scopy11,36–39, our ultrafast time-resolved experiments were performed
both in the MEG and in the non-MEG regimes via photon-energy
and density-controlled measurements on the single- and biexciton
spectra.

Results
Single-exciton MEG dynamics. Figure 1a shows data for the broad-
band optical absorption of the colloidal semiconductor PbS QDs and
Fig. 1b shows a schematic for the ultrafast pump-probe measure-
ments (See method for the detailed description of sample preparation
and ultrafast spectroscopy). The lowest single-exciton bandgap
energy Ex is identified as 0.93 6 0.01 eV, and the ground-state
biexciton energy Exx is estimated to be 0.87 6 0.03 eV30–33.

Before the discussion on the biexciton dynamic, it is instructive to
present detailed measurements on the intra-band relaxation dyna-
mics because the linewidth broadening of single excitons and biex-
citons is necessary related to the competing relaxation rate between
the MEG and the intra-band dynamics, in which the time scale of the
intra-band relaxation is typically a few ps16,40,41, comparable with the
MEG time scale. In the experiment, the colloidal semiconductor PbS
QD sample was pumped by two different pump-photon energy
Epump with 1.55 eV and 3.10 eV, and the average number of initially
photo-generated excitons per QD ÆN0æ, or initial exciton occupancy,
was controlled from 0.1 to 2.2 to investigate the photon density-
dependent Ex dynamics.

In order to determine the intra-band relaxation rate, we measured
the Ex dynamics in a short Dt range between 21 ps and 7 ps as
shown in Figs. 2a and b. By examining the rising edge of the Ex peak,
we show that the relaxation process is completed at pump-probe
delay Dt 5 1 ps for 1.66Ex excitation (non-MEG regime) and Dt
5 2 ps for 3.3Ex excitation (MEG regime). This 2 ps time constant
is consistent with prior experimental studies of hot-carrier MEG
dynamics in PbS quantum dots, where the reported value of intra-
band relaxation is in the range of 2–2.5 ps16,40,41.

Figure 2c shows the Ex transients excited by low Epump (5 1.66Ex).
The observed step-like signals with a small A/B ratio (amplitude ratio
of the early to late pump-probe delay Dt) are not attributed to the

MEG transients, because the MEG typically requires Epump greater
than a few Ex. When the QDs are excited by high Epump (5 3.3Ex), we
observed fast (90 ps) and slow decay (,100 ns) components with a
large A/B ratio, as depicted in Fig. 2d. The experimentally determined
A/B ratio of the QD occupancy was modelled via Poisson statistics
(Fig. 2e)42. Since multiple excitons generated by the MEG decay via
Auger recombination, the amplitude at long Dt (denoted by B in
Fig. 2c and d) provides a scaling factor for calculating the exciton
multiplicity ÆNxæ 5 A/B, where A is the amplitude of single-exciton
population immediately after pump excitation (denoted by A in
Fig. 2c and d). By comparing the measured A/B ratios in the limit
of ÆN0æ R 0, a strong indication of the MEG for the 3.3Ex pump was
identified43. As reported previously16,36,38,40,44, these observations con-
firm that the typical MEG dynamics are observable via probing the Ex

dynamics.

Transient Stark shift and biexciton linewidth broadening. The
central issue to address in this paper is to investigate how the
biexciton dynamics is influenced by the early formation of MEG.
Figures 3a and b display the biexciton transients for the 1.66Ex

pump and 3.3Ex pump as a function of Dt with controlled
excitations from ÆN0æ 5 0.22 to ÆN0æ 5 2.2. Immediately after
pump excitation, the photo-induced absorption (PA) exhibits
rapid bleaching at Exx within the first Dt 5 400 fs with a much
larger PA peak for the 3.3Ex pump than the 1.66Ex pump. While
both signals decay non-exponentially, the signals pumped by
1.66Ex decay to zero after a few ps, and the transients pumped by
3.3Ex change their signs from positive to negative near Dt 5 2 ps.

In a strong quantum-confinement regime, the pump-created local
electric field induces a large transient shift of absorption, a phenom-
enon known as transient Stark shift42,45. This effect is more consid-
erable with increasing photo-generated carriers, which in turn
produces a stronger local field and complicates the ultrafast PA
spectra as schematically shown in Fig. 3c. Note that the increased
carrier density is reflected both by the carrier-induced Stark shift and
by the absorption linewidth C that leads to a broader feature46,47. As
discussed later, this broadened C directly determines the effect of
MEG on the biexciton dynamics through extra-exciton generation.

It is expected that high Epump excitation, larger than Ex, enhances
the C broadening due to the extra-exciton generation. Immediately
after the pump (Dt 5 400 fs), we clearly observe that the biexciton C
is broader for the 3.3Ex excitation case than for the 1.66Ex one, as
shown in Figs. 3d and e with two different excitations of ÆN0æ for each
Epump excitation. Thus, the observed transient PA dynamics can be
understood by combined effects of both the carrier-induced transient
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Figure 1 | QD absorption spectra and experimental setup. (a) Linear absorption spectra of the colloidal PbS QDs used in the study. Inset: schematic

energy levels for the single-exciton Ex and the ground-state biexciton Exx, respectively. (b) Schematic for the ultrafast pump-probe measurements. For the
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the 1.66Ex pump (d) and for the 3.3Ex pump (e) with two different ÆN0æ. Solid lines represent numerical fits using equation (1). The obtained biexciton C
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Stark shift and the MEG-induced biexciton C broadening. We addi-
tionally notice that the spectrally-integrated areas of the broadened
biexciton absorption remain the same regardless of ÆN0æ as shown
Fig. 3f. This constraint indicates that the broadening is determined
by the number of excitons, and it ensures that the biexciton PA peak
is reduced by the exciton-exciton collision-induced broadening
rather than the phase-space filling argument46.

Quantitative analysis of the MEG-induced biexciton broadening
and the early emergence of MEG. The entire pump-induced changes
of the absorption spectra can be faithfully fit via the following third-
order susceptibility function31,33,

Da!= x 3ð Þ vð Þ
� �

~= ELj j2 {
m4

X

v{EXziC
z

m4
XX

v{EXzDXXziC

� �� �
,

ð1Þ

where EL is the electric field of the pump, DXX is the biexciton
binding energy, and mX and mXX are the transition dipole moments

from the ground state to Ex and to Exx, respectively. The first term
represents the bleaching at Ex and the second term represents the PA
at ground-state Exx. For the PA dynamics measured at Dt 5 400 fs
(Figs. 3d and e), because the intra-band relaxation time (2 ps) is
longer than Dt of 400 fs, the absorption change measured at Ex

was not induced by the single-exciton state filling. In addition,
Auger recombination and impact ionization (Auger processes) can
be neglected because the time-scale of Auger processes is much
slower (100 , 200 ps) than the intra-band relaxation. On the
other hand, the difference in C, obtained from a fit of equation (1)
to the measured PA spectra, shows that the broadening is associated
with the MEG-induced biexciton broadening.

For quantitative analysis, the biexciton C is plotted as a function of
the average number of total excitons per QD ÆNxæ, and the results
are displayed in Fig. 3g. Here, we note that the definition of ÆNxæ
(obtained from the measured A/B ratios in Fig. 2c) differs from that
of ÆN0æ in a sense that ÆNxæ includes both the average number of
initially photo-generated excitons and the MEG-induced excitons
per QD; ÆN0æ is the average number of photo-generated exciton
per QD11. In other words, the biexciton broadening is directly related
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to the total number of excitons ÆNxæ, not by the initial exciton occu-
pancy ÆN0æ. By plotting the C as a function of ÆNxæ, we obtain a linear
relationship of

C(Nx)~C(0)zcNx, ð2Þ

where c (5 6.8 meV per exciton) is the C broadening parameter per
exciton. Because C(0) represents the linewidth broadening in the
absence of photo-generated excitons, the value should corresponds
to the Ex broadening in Fig. 1a. A simple Gaussian fit shows that the
Ex broadening in Fig. 1a is 100 6 5 meV, well corroborated with the
fittedC(0) 5 98 meV of the biexciton broadening. The characteristic
broadening of C with increasing ÆNxæ entails the effect of MEG, i.e. as
more excitons are injected, more broaden feature of biexciton C is
expected.

Discussion
The early emergence of the MEG is substantiated by measuring the
single- and biexciton spectra before/after the intra-band relaxation of
2 ps. It is expected that C should be large if Dt is shorter than the
intra-band relaxation time, i.e. if the MEG-induces exciton-exciton
scattering occurs earlier than the intra-band relaxation, C before the
intra-band relaxation is larger than C after intra-band relaxation.
Figures 4 (a) and (b) show the PA signals at Dt 5 1 ps. As expected,
the C broadening at Dt 5 1 ps is smaller than at Dt 5 400 fs, but
larger than at Dt 5 2 ps. Figures 4c and d show the spectra at Dt 5

2 ps for the 1.66Ex pump and for the 3.3Ex pump, respectively. The C
at 2 ps for 3.3Ex with ÆN0æ 5 2.2 is 110 meV while the C at Dt 5

400 fs with same condition is 123 meV. Indeed, we clearly see that C
at Dt 5 2 ps is smaller than that of before intra-band relaxation both
for the two ÆN0æ excitations (see Fig. 3e and Figs. 4b and d).

Long after the intra-band relaxation finishes, the carrier-induced
Stark shift becomes weak, and the single-exciton state filling is dom-
inant (Figs. 4e–h). As schematically shown in Fig. 4i, the weak Stark
shift is rendered as the absence of PA signals at 0.85 eV, but the effect
is not completely vanished; negative PA peaks appear at 0.97 eV
instead of the single-exciton energy of 0.93 eV in Fig. 1a. Because
the PA peak is proportional to the generated exciton numbers, the
magnitude of bleaching is larger for the case of 3.3Ex pump than the
1.66Ex pump case. We note that the chosen two Epump (1.66Ex and
3.3Ex) set the below and upper limit on the occurrence of MEG such
that the observed two dynamics (before and after the intra-band
relaxation) are distinguishable in comparing the MEG-induced biex-
citon lineshape and the single-exciton-dominated one. There is a
possibility that significant re-shaping of single-exciton spectra can
be observed at longer Dt, which may occur when as many as 50% of
QDs are occupied by multiple electron-hole pairs (i.e. ÆN0æ , 1). This
scenario can be excluded in our investigation because the PA peaks at
Dt 5 2 ps show negligible energy shifts48 even when ÆN0æ . 1.

To investigate the effect of Auger and single-exciton recombina-
tion on C, we compare the PA spectra at Dt of 10 ps and 500 ps. We
noted that the single-exciton decay dynamics consists of two relaxa-
tion components (see Figs. 2c and d): one is ‘‘fast’’ Auger recombina-
tion (known as biexcitonic relaxation component6) and another is
‘‘slow’’ single-exciton recombination (referred to as excitonic back-
ground6). Figures 4e and f display the PA spectra at Dt 5 10 ps.
Because the Auger recombination is not completed, C at Dt 5

10 ps is smaller than C at Dt 5 2 ps. After the Auger recombination
is finished, ÆNxæ at Dt 5 500 ps approaches one both for the 1.66Ex

and 3.3Ex pump cases. Because nearly one exciton is left at Dt 5
500 ps, C for both Epump (Figs. 4g and h) is identical with C of
100 meV, representing negligible effect of single-exciton recombina-
tion on C.

The measured data are summarized in Fig. 4j. Two main aspects
are addressed. First, C at Dt 5 400 fs is the largest compared to the C
atDt . 400 fs, providing an evidence for the large biexcitonC broad-
ening in early Dt. Second, by observing the fact that the decreasing

slope of C with Dt for 3.33Ex excitation is steeper than the 1.66Ex

excitation up to Dt 5 2 ps, we can find that the effect of MEG on C is
strongly influenced by extra-exciton generation before the intra-
band relaxation.

To conclude, we have investigated the transient dynamics of biex-
citon, located below the single-exciton energy, and have explored the
impact of MEG on the biexciton spectra. Our ultrafast spectroscopy
shows that the linewidth broadening of the biexciton spectra pro-
vides direct evidence on the early emergence of the MEG compared
to the intra-band relaxation time. We additionally have presented
quantitative analysis that the broadening parameter C per exciton
increases linearly with increasing the total number of excitons. For
detailed time-resolved spectral analysis, the PA spectra are compared
with single-exciton ones at Dt 5 400 fs and longer delays. The com-
parison underscores that C broadening before Dt 5 2 ps is larger
than the C after Dt 5 2 ps, corroborating that the MEG indeed
occurs before the intra-band relaxation.

Methods
Synthesis of PbS quantum dots. Our PbS colloidal quantum dots are capped using
eleic acid and dispersed in toluene. The synthesis of the sample followed a procedure
that used standard air-free solution based technique49. In a typical synthesis,
2.0 mmol of PbO (0.445 g), 8.0 mmol (2.25 g) of oleic acid (OA), and 9.9 mmol
(2.5 g) of 1-octadecene (ODE) are placed in a flask and heated to 100uC under
vacuum, and then nitrogen was introduced. The temperature was controlled to the
appropriate injection temperature (100 to 150uC) to obtain the desired particle size.
The sulfur precursor was prepared by mixing bis(trimethylsilyl)sulfide with ODE.
Removal of excess ligand was completed by repeated the followings: precipitation in
acetone, centrifugation of the particles, and dispersion in toluene.

PbS QDs and ultrafast spectroscopy. The sample used in this experiment is
semiconductor colloidal PbS QDs dispersed in toluene with an average diameter of
approximately 5.1 nm. The broadband optical absorption is measured by a Fourier
transform infrared (FTIR) spectrometer (Bomem DA8). For the ultrafast pump-
probe spectroscopy, the colloidal PbS QDs are maintained in a 3-mm cell contained in
the toluene liquid with two optically-transparent MgO windows, and the samples are
actively stirred using a magnetic stirrer to ensure that photo-charging does not occur
during the measurements (Fig. 1b)50. Using a 250 kHz Ti-sapphire regenerative
amplifier (Coherent RegA 9050), the samples are excited by 50 fs pulses with a pump-
photon energy Epump of 1.55 eV and its second harmonic Epump of 3.10 eV for
investigating the MEG photo-dynamics. A fraction of the amplifier output is used as a
probe pulse with photon energy Eprobe of 0.93 eV for the lowest Ex and 0.87 eV for the
Exx. Both probe pulses are delivered from wavelength-tunable optical parametric
amplifier (Coherent OPA 9850).
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