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Increases in the demand and price for industrial metals, combined with

advances in technological capabilities have now made deep-sea mining

more feasible and economically viable. In order to balance economic interests

with the conservation of abyssal plain ecosystems, it is becoming increasingly

important to develop a systematic approach to spatial management and

zoning of the deep sea. Here, we describe an expert-driven systematic conser-

vation planning process applied to inform science-based recommendations to

the International Seabed Authority for a system of deep-sea marine protected

areas (MPAs) to safeguard biodiversity and ecosystem function in an abyssal

Pacific region targeted for nodule mining (e.g. the Clarion–Clipperton fracture

zone, CCZ). Our use of geospatial analysis and expert opinion in forming

the recommendations allowed us to stratify the proposed network by biophysi-

cal gradients, maximize the number of biologically unique seamounts within

each subregion, and minimize socioeconomic impacts. The resulting propo-

sal for an MPA network (nine replicate 400� 400 km MPAs) covers 24%

(1 440 000 km2) of the total CCZ planning region and serves as example of

swift and pre-emptive conservation planning across an unprecedented area

in the deep sea. As pressure from resource extraction increases in the future,

the scientific guiding principles outlined in this research can serve as a basis

for collaborative international approaches to ocean management.
1. Introduction
The deep sea begins at the shelf break (more than 2200 m depth) and spans

360 000 000 km2 forming the largest environment on the Earth, which harbours

both extraordinary biodiversity and supports distinct biological communi-

ties containing high levels of endemism [1–4]. The seabed is characterized

by a number of unique habitats and ecosystem types, including abyssal

plains, seamounts, hydrothermal vents and cold seeps [1,5,6]. In addition,

commercially valuable mineral resources, including nickel- and copper-rich

manganese nodules and cobalt-rich crusts, are also present in these envi-

ronments [7,8]. Recent advances in technological capabilities have led to

competing spatial demands between conservation of the unique deep-sea eco-

systems and economic mining interests. These competing spatial interests are

complicated by the consideration that deep-sea biota are particularly vulnerable
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Figure 1. Spatial domain of the study area, nine replicate blocks to guide the MPA replicate placement, and location of mining claims in the Clarion – Clipperton
fracture zone.
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to the impacts of extractive activities owing to slow growth

rates and delayed maturity [9,10].

In light of the vulnerability of these unique ecosystems, it is

critical to conserve areas of the deep sea in the face of immi-

nent resource extraction. The Clarion–Clipperton fracture

zone (CCZ) in the equatorial North Pacific is a focal area for

mining interests, and mining operations are expected to

be initiated in the CCZ by 2025 [10]. The CCZ is estimated

to contain 340 million tonnes of nickel and 265 million

tonnes of copper [8]. Mining of abyssal manganese nodules

will affect large areas of the seafloor owing to direct mining

disturbance (estimated scales of 300–600 km2 per year)

and re-deposition from sediment plumes (over scales of

10–100 km from the mining site; see [11–14]).

The seabed of the CCZ is located beyond national jurisdic-

tions and has been declared the ‘common heritage of mankind’

by the United Nations General Assembly and the parties to the

Third United Nations Convention on the Law of the Sea

[15,16]. The International Seabed Authority (ISA) is tasked

with developing rules and regulations for exploration and

extraction of minerals from the deep sea [17], and is required

to use the precautionary approach, as reflected in Principle

15 of the Rio Declaration. The Regulations on Prospecting

and Exploration for Polymetallic Nodules in the Area stipulate

that prior to the issuance of test-mining and exploitation per-

mits, MPAs (e.g. ‘preservation reference areas’) will be

delineated ‘in which no mining will occur to ensure represen-

tative and stable biota of the seabed in order to assess any

changes in the flora and fauna of the marine environment’

[18, p. 20]. Regulations for management of mining impacts

clearly identify a requirement for MPAs, and establish an
opportunity for spatial ecosystem-based management. In the

case of the CCZ, an established MPA network has social

advantages in reducing uncertainty about future restrictions

among mining contractors and would assist in guiding the

mining industry in minimizing impacts to the marine environ-

ment during resource extraction [19]. Establishing protections

at the international scale would also represent a major

marine management accomplishment in areas beyond national

jurisdiction, which has been the focus of much discussion for

conservation action [20,21].

Here, we describe an expert-driven systematic conservation

planning process that was used as part of a collaborative stake-

holder initiative to develop science-based recommendations for

the establishment of a network of MPAs in the deep sea. The

stakeholders developed these recommendations by applying

ecosystem-based management principles together with spatial

analysis of biophysical and social datasets, which helped

assess trade-offs in the planning region and ultimately select

an approach that best balanced the competing interests of

biodiversity protection and resource use. We show how this

integrated approach has global implications for conservation

in areas beyond national jurisdiction, and how similar approa-

ches can be used to implement ecosystem-based approaches in

systematic conservation planning processes elsewhere.

The planning region is located in the eastern central Paci-

fic Ocean (figure 1 and table 1), and is bounded to the north

and south by the Clarion-Clipperton fracture zones. The

planning region spans approximately 6 000 000 km2 and

encompasses a broad range of habitat types, including abys-

sal plains and hills, seamounts and fracture zones. The

majority of the planning region lies in areas beyond national



Table 1. GIS datasets used in spatially articulating guiding principles for
deep-sea MPA network design.

data layer units strata

mining claims km2 contractors

reserved

seamounts M ,200 m

200 – 1000 m

1000 – 2000 m

.2000 m

nitrogen flux mmol N cm22 d21 100 m

200 m

500 m

bathymetry M continuous

polymetallic nodule

abundance

kg m22 continuous

EEZ km2

macro invertebrate

abundance

continuous
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jurisdiction, resulting in a diversity of stakeholder inte-

rests that needed to be incorporated into the MPA network

design process, including the policy leaders from the ISA,

UNCLOS signatories, nodule mining claim holders, NGOs,

marine scientists, legal experts and mining experts.
2. Systematic conservation planning in the deep
sea: a collaborative approach

Systematic conservation planning involves the development of

quantitative conservation objectives, usually based on robust

ecological assessments that underpin the design and imple-

mentation of spatial conservation areas [22]. The ecological

assessments used to inform these quantitative conservation

objectives rely on well-established methods to document

patterns of biodiversity, habitat distribution, other critical bio-

physical attributes, as well as guiding frameworks to include

these assessments into conservation planning to set targets

and develop action plans [22,23]. However, for these methods

to be effective, they need to be adapted to the specific ecological

and socioeconomic context of a planning region (e.g. the deep

sea). Systematic conservation planning was first applied suc-

cessfully for terrestrial conservation [24] and has since been

applied in the coastal environment [23,25]. Recently, a systema-

tic conservation planning framework was outlined for the high

seas [26], and several examples exist in which this approach has

been applied in practice [27,28].

To develop guidelines for conservation planning in the

deep sea, a workshop was convened with the support of

the Pew Fellows Programme in Marine Conservation, as

well as Census of the Diversity of Abyssal Marine Life

(CeDAMar) and Global Census of Marine Life on Seamounts

(CenSeam). The goals of the workshop were to develop

recommendations regarding the creation of a network of

MPAs for the ISA to consider for implementation in the
CCZ. In order to address this aim, the workshop was orga-

nized in three stages. First, a panel of scientists and legal

experts reviewed the general principles of MPA network

design, the legal framework of environmental protection in

the high seas and conservation activities in the deep sea

and areas beyond national jurisdictions to date. The second

stage of the workshop concentrated on identifying and char-

acterizing the distribution of anthropogenic threats (e.g.

mining, fishing, etc.) to deep-sea biodiversity and developing

a robust ecological assessment of the key physical, biogeo-

graphic, ecological and biodiversity features in the planning

region. The final stage focused on applying the MPA network

design principles to the ecological assessment to develop a

series of management alternatives.

The workshop was specifically designed to be participa-

tory in nature to ensure that all stakeholder interests were ‘at

the table’ in negotiating both the design principles and in

reviewing assessments and alternatives to be incorporated

into the design process. Workshop participants comprised

experts representing the interests of a broad consortium of sta-

keholders, including the ISA, consultants, non-governmental

organizations and the scientific research community. Through

this participatory process, a series of general, scientific-based

design guidelines were developed. Below, we describe the

specific steps applied during the systematic conservation plan-

ning process and discuss how the MPA network design

principles and ecological assessment coalesced into an

ecosystem-based management recommendation to the ISA

for the CCZ.
3. Developing design principles for a marine
protected area network in the deep sea

We relied on a set of design principles that were initially

developed to guide the establishment of networks of coastal

MPAs [29–31], and workshop experts worked to adapt these

guidelines to the biophysical, socioeconomic and governance

context of the deep sea. These principles have since been

further developed as guidance for ecosystem-based manage-

ment approaches in the open ocean [32–34]. Below, we

outline these design principles and highlight the key litera-

ture on marine ecosystem-based management and the deep

sea that informed their development.

(1) Marine protected area (MPA) design and implementation
should fit into the existing legal framework of the International
Seabed Authority for managing seabed mining and protecting
the marine environment. The ISA’s mandate requires that

preservation reference zones (i.e. MPAs) are delineated

where mining may not occur [17]. In addition, the ISA is

tasked with using the precautionary approach and ensur-

ing the effective protection of the marine environment

from harmful effects arising from mining activities. There-

fore, recommendations should be developed such that

they are consistent with the mission, regulations and

policy processes of the ISA, to ensure maximum likelihood

of consideration and adoption.

(2) To the extent that it is scientifically sound, the proposed net-
work should minimize socioeconomic impacts. The MPA

network should ideally be designed to have minimal

overlap with the existing spatial footprint of nodule

mining claims granted by the ISA up to 2007 (the time
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of the workshop), thus minimizing socioeconomic

impacts to mining contractors. The network design

should be flexible in the location of specific MPAs to

allow input from potentially affected stakeholders (e.g.

mining contractors), and to allow reserve locations, size

or boundaries to be altered as claim areas change in

location and number (i.e. be adaptable in response to

socioeconomic concerns).

(3) The MPA network should maintain sustainable, intact and
healthy marine populations in the planning region. The

MPA network should provide large-scale ecosystem

benefits to deep-sea biota and protect all species, life

stages and critical habitats necessary for deep-sea biota

[35,36]. The network should protect all the different habi-

tat types in the planning region, and should place under

protection replicates of habitat types to ensure persistence

and enshrine complementarity in the network.

(4) The MPA network should take into account biophysical gradi-
ents which affect the biogeography of marine biodiversity in the
planning region. In reserve networks that span broad geo-

graphical areas, biogeographic representation is one of

the key ecological design criteria and supports the goal

of maximizing the protection of biodiversity [37]. The

CCZ region should be divided into three east–west and

three north–south strata for conservation management,

because strong productivity-driven gradients drive pat-

terns of marine biodiversity from east to west and

south to north [14,38]. Representative reserves should

be located in each of the nine resultant subregions.

(5) Each MPA should protect a full range of habitat types found
within each subregion. To preserve representative and

unique habitats, all habitat types for a subregion should

be included within an MPA. A variety of general habitat

types can be recognized within the CCZ, including abyssal

plains/abyssal hills, seamounts and fracture zones. Most

of these habitats are continuously distributed across the

region, except for seamounts. Seamounts are isolated fea-

tures hosting vulnerable benthic communities, which can

be rapidly and severely impacted by human activities

[39]. Seamount communities, in particular, have a high

potential to be impacted by midwater sediment plumes,

which may disperse large distances [11]. Thus, it is rec-

ommended that as many seamounts from a subregion as

possible (with a target of at least 40%), and portions of

known facture zones, be included within MPAs.

(6) Each MPA should be large enough to maintain minimum viable
population sizes for species potentially restricted to a subregion.

For the CCZ, this requires that protected areas be at least

200 km in length and width (40 000 km2). Macrofaunal

and meiofaunal invertebrates constitute the vast majority

of biodiversity in the CCZ and almost certainly include

species with the most limited dispersal capabilities and

biogeographic ranges. A number of studies in shallow-

water habitats suggest that mean dispersal distance for

most benthic invertebrate species is less than 100 km

[40,41]. Available current-metre data from the CCZ [14]

indicate that the physical transport processes at the abyssal

seafloor in the CCZ are weaker than in most shallow-

water settings, suggesting that mean dispersal distance

for most benthic species will be similar to or smaller

than that of shallow-water species. To ensure persistence

of populations without the certainty of larval recruitment

from elsewhere, a substantial fraction of dispersing larvae
and adults of targeted species must remain within an

MPA. To this end, an accepted conservation approach is

to make the length and width of the MPA at least two

times the mean faunal dispersal distance [40]. This

indicates a size of the core area of each MPA of 200 �
200 km.

(7) Each MPA should be surrounded by a buffer zone to insure that
biota and habitats in the protected area are not affected by
anthropogenic threats occurring outside the MPA. Nodule

mining is expected to produce two types of sediment

plumes that may impact benthic habitats: (i) near-

bottom plumes created by tailings from the mining head

during nodule extraction from the seafloor; and (ii)

plumes in the water column derived from sediments

attached to nodules during lifting from the seabed [42].

Over a broad range of hydrodynamic conditions, more

than 99% of the mass of the near-bottom sediment

plumes is expected to settle within one month and

within 100 km of the mining head [11]. In situ tracer

studies and advection–diffusion models also suggest dis-

persal scales for neutrally buoyant particles of less than

100 km over timescales of one to two months in abyssal

ecosystems [43,44]. On timescales of weeks to months,

and sometimes even years, the mean abyssal velocities

in most regions of the deep sea are dominated by mesos-

cale eddies [45], implying that there is no defined

‘downstream’ direction, i.e. the sediment plumes gener-

ated by mining can travel in any direction. Seamount

communities have a high potential to be impacted by mid-

water sediment plumes, which may disperse large

distances (e.g. 100 km; [42]). Thus, a buffer zone of

100 km around an MPA is required to protect the core

area from significant impacts from near-bottom sediment

plumes, which may come from any direction. This results

in a 200 � 200 km core protected area surrounded by a

100 km buffer zone, resulting in a 400 � 400 km

(160 000 km2) MPA. The boundaries will be straight

lines that will facilitate recognition, monitoring and

enforcement of the MPA network.

(8) The boundaries of MPA should be straight lines to facilitate
rapid recognition and compliance. The use of straight-line

boundaries is a basic principle of the design of MPAs

that facilitates recognition, compliance and enforcement

of MPAs [46].

(a) A spatial approach to ecosystem assessment
in the deep sea

Moving towards ecosystem-based management requires

comprehensive ecosystem assessments to characterize plan-

ning regions and develop conservation planning targets

[34]. Ecosystem assessments are defined as a ‘formal syn-

thesis and quantitative analysis of information on relevant

natural and socioeconomic factors, in relation to specified

ecosystem management objectives’ [47]. Such assessments

are recognized as a critical step in systematic conservation

planning, and provide critical information to inform planning

targets (e.g. protecting 20% of a given area) and the spatial

design of MPA networks [22,23]. The first step in our ecosys-

tem assessment in the CCZ region was to define the spatial

domain that bordered, but did not overlap with any EEZs

in the region (figure 1). The spatial domain covered



Table 2. Summary statistics for chemical, physical and geological information associated with Clarion – Clipperton spatial domain. ‘N flux’ represents the vertical flux of
organic nitrogen in sinking particulate material.

attributes units range mean (s.d.) n

N flux 100 M mmol N cm22 d21 0.18 – 4.04 1.46 (0.73) 77 861

N flux 200 M mmol N cm22 d21 0.07 – 1.43 0.52 (0.26) 77 861

N flux 500 M mmol N cm22 d21 0.01 – 0.11 0.04 (0.02) 77 861

nodule abundance kg m22 0.01 – 39.69 4.90 (3.26) 77 861

depth metres 578 – 6560 4793.91 (463.94) 569 364
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approximately 6 000 000 km2 of the deep sea in depths ran-

ging between 4000 and 6000 m. Spatial datasets that

represented biological and physical characteristics of the

CCZ were synthesized from a variety of sources and included

(i) bathymetry (m); (ii) seamounts; (iii) organic nitrogen flux

(mmol N cm22 d21) in sinking particulate organic carbon,

i.e. an index of food availability in the detritus based deep

sea; (iv) polymetallic nodule abundance (kg m22); and (v)

macroinvertebrate abundance (table 2 and figure 2). Organic

nitrogen flux (mmol N cm22 d21) was derived from Yool

et al.’s [48] production model at three depth ranges (100,

200 and 500 m). A nearest neighbour interpolation was con-

ducted in ARCGIS SPATIAL ANALYST on the macrofaunal and

polymetallic nodule abundance datasets (10 km grid size)

in order to provide a continuous raster surface of abundance

across the EEZ.

There are strong north–south and east–west gradients in

productivity in the CCZ [6,14,38,49], and these gradients

drive major changes in benthic community composition

across the region [49]. The fauna of the CCZ exhibits high

species diversity (especially in the macrofauna and meio-

fauna), and there is large variation in community structure

from east to west and south to north [49–51]. To address

the strong productivity-driven gradients in ecosystem struc-

ture in the replicate network design, the spatial domain

was split into a 3 � 3 block design placement [49,51]. This

large MPA network is not a true replicate network in the

sense that the communities are expected to have a high

degree of larval transport and interconnection; however, the

replicates were applied as an insurance policy.

Bathymetry was derived from the National Geophysical

Data Center ETOPO2 Global 20 Elevations dataset from

September 2001. Seamount data were acquired from the Sea

Around Us Project, which inferred possible seamount

locations from the ETOPO2 data [52]. Seamount data were

binned into strata of seamount depth ranges to ensure MPA

design incorporated a diversity of seamount depth ranges

and associated faunal assemblages. The number of sea-

mounts in each of the proposed MPA networks ranged

from 36 to 42 in total. The first proposed MPA network pro-

tected a greater number of seamounts than the other two, but

it only encompassed seamounts with summit depths more

than 2000 m. Although MPA scenario 2 and 3 included

fewer seamounts, they both incorporated seamounts within

multiple ranges of summit depth (e.g. 21000 to 2000 and

more than 22000 m) that likely would protect a greater

diversity of species.

All spatial datasets were synthesized in geographical infor-

mation systems (GIS) to form the basis for the spatial ecosystem
assessment and inform the systematic conservation planning

process. A synthesis of biophysical characteristics, such as

organic nitrogen flux (mmol N cm22 d21) at 2100, 2200 and

2500 m, as well as depth and nodule abundance, was derived

for each MPA design scenario to support the ISA’s evaluation of

the proposed networks (table 3). The design principles were

applied to the final spatial ecosystem assessment to support the

development of proposed MPA network configurations.

The spatially explicit nature of a majority of the design prin-

ciples supported the direct transfer of principles to proposed

MPA map products for submission to the ISA. Design prin-

ciples were used in conjunction with the spatial ecosystem

assessment to develop three MPA network configurations

(figure 3). These alternatives operationalized the network

design principles and the ecological assessment, and were

developed in a manner consistent with the regulations and

policy context of the ISA.
4. Moving from principles to practice: insights
from an expert-driven process

Recovery from mining impacts in the CCZ will require dec-

ades or more for soft-sediment fauna and thousands to

millions of years for biota specializing on manganese nodules

[10,13,14,53,54]. The slow ecosystem recovery rates at the

abyssal seafloor make it likely that the environmental impacts

of large-scale mining will be widespread across the CCZ

before any single location recovers. It is therefore critical to

conserve areas of the deep sea in the face of imminent

resource extraction. The proposed MPA alternatives describes

a network of MPAs that cover 24% of the total 6 000 000 km2

CCZ management area. In 2007, claim areas constituted

about 19% of this total area, and the alternatives were opti-

mized in their placement so as to minimize socioeconomic

impacts while still adhering to design principles that would

ensure a scientifically sound biodiversity conservation out-

come. This alternative balances the competing interests of

biodiversity protection and resource use, resulting in an effi-

cient allocation that maximizes benefits and minimizes the

costs to mining claims. Developing analyses that accurately

assess trade-offs while optimizing outcomes can help support

ecosystem-based management approaches in ocean environ-

ments [55]. This is even more pressing for the CCZ

considering that, mining claim licences continue to be

granted by the ISA, with five new claims of 150 000 km2

each granted since 2007, putting more than 30% of the man-

agement area within mining claims (http://www.isa.org.jm/

files/images/maps/CCZ-Sep2012-Official.jpg).

http://www.isa.org.jm/files/images/maps/CCZ-Sep2012-Official.jpg
http://www.isa.org.jm/files/images/maps/CCZ-Sep2012-Official.jpg
http://www.isa.org.jm/files/images/maps/CCZ-Sep2012-Official.jpg
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Mapping geomorphic features (e.g. seamounts) and

dynamic oceanographic characteristics (e.g. primary pro-

duction at multiple depth zones) were useful in ensuring

that the guiding scientific principles were implemented in

a spatial framework. The challenges of implementing a

geospatial approach in the deep sea and open ocean can

be great, given the lack of comprehensive biological data

[56], the logistics of managing a large, dynamic MPA

far from shore [57], and the uncertainty surrounding
connectivity and recovery timescales in these areas [58].

The acquisition of such data at these broad spatial scales

would have been cost prohibitive only a few years ago

[59]. These spatial datasets can be used as proxies for

species distribution and make up for the lack of in situ bio-

logical assessments in the abyssal plains, seamounts and on

the high seas. Continued efforts to map and monitor

dynamic oceanographic characteristics and static geo-

morphic features across space and time will provide a



Table 3. Summary statistics for chemical, physical, and geological information associated with three proposed MPA design scenarios. ‘N flux’ represents the
vertical flux of organic nitrogen in sinking particulate material.

attribute MPA design 1 MPA design 2 MPA design 3

N flux 100 M range 1.02 – 1.91 0.94 – 1.45 0.92 – 1.73

mmol N cm22 d21 mean (s.d.) 1.37 (0.24) 1.22 (0.13) 1.29 (0.22)

N flux 200 M range 0.35 – 0.68 0.33 – 0.51 0.33 – 0.62

mmol N cm22 d21 mean (s.d.) 0.48 (0.09) 0.43 (0.05) 0.46 (0.08)

N flux 500 M range 0.03 – 0.05 0.03 – 0.04 0.03 – 0.05

mmol N cm22 d21 mean (s.d.) 0.04 (0.01) 0.03 (0.01) 0.04 (0.01)

nodule abundance range 0.78 – 13.82 3.06 – 9.50 1.55 – 12.44

kg m22 mean (s.d.) 5.15 (1.87) 5.24 (0.98) 5.16 (1.93)

depth (m) range 3280 – 5268 3409 – 5431 3560 – 5245

mean (s.d.) 4773 (192) 4897 (190) 4719 (187)

seamounts ,2000 m 0 4 3

.2000 m 42 33 33
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strong foundation to support growing efforts to spatially

manage the deep sea and open ocean [6,60,61].

An interdisciplinary framework, supported by an empiri-

cally driven geospatial approach, reinforced a planning process

that effectively balanced biodiversity conservation and socioeco-

nomic goals. The broad group of specialists that engaged in the

planning process represented different areas of expertise and

interests, and a collaborative workshop environment engendered

direct communication and collaboration among participants,

including resource managers at the ISA, throughout the process.

This approach allowed for the guiding scientific principles estab-

lished at the workshop to be spatially articulated. The value of

using a geospatial approach was clearly demonstrated as it

allowed for the consideration of recommended MPA locations

to protect as many seamounts within a subregion as possible,

gave us the ability to stratify the proposed network by biophysi-

cal gradients (e.g. productivity, faunal assemblage structure and

turnover, etc.), minimize overlap with existing mining explora-

tion and reserved claim areas, and mitigate the potential

impacts of sediment plumes from deep-sea mining. Sound scien-

tific consideration guided the spatial approach in this work and

demonstrated the importance of the essential and iterative link

between biological, socioeconomic and geospatial experts.

This expert-driven systematic conservation planning pro-

cess demonstrates how collaborative development of

scientific guiding principles supported the creation of MPA

alternatives that addressed the competing interests of biodiver-

sity protection and resource use. Following the development

and submission of these recommendations [62], in July 2012,

the ISA adopted an environmental management plan for the

CCZ to be implemented on a provisional basis for 3 years.

The management plan includes the designation of nine

400 � 400 km ‘Areas of Particular Environmental Interest’

that are closed to mining claims (ISBA/18/C/22). The distri-

bution of the ISA’s ‘Areas of Particular Environmental

Interest’ (http://www.isa.org.jm/files/images/maps/CCZ-

Sep2012-Official.jpg) closely resembles the MPA design scen-

ario presented in our figure 3a, with MPA 8 shifted to the

northeast. If the ISA permanently adopts these ‘Areas of Par-

ticular Environmental Interest’ as areas protected from
mining, then it will set a major international precedent in

marine management in areas beyond national jurisdiction.
5. Conclusion
The framework developed in this systematic conservation

planning process for establishing preservation reference

zones provided a unique and unprecedented opportunity

for stakeholders to design a network of MPAs prior to the

initiation of extraction activities and the further granting of

mineral exploration leases. The establishment of MPAs

prior to extraction is significant as it may be more challenging

to establish MPAs after resource extraction begins [58]. Fur-

thermore, establishing a network of deep-sea MPAs would

help meet important environmental and social goals. A

large-scale protected area network would ensure that biodi-

versity and ecosystem function are safeguarded from

mining, and could be designed to fulfil international commit-

ments to sustainable development expressed in the United

Nations Rio þ20 Conference on Sustainable Development,

as well as provisions of the Convention on Biological Diver-

sity calling for the protection of biological diversity [63,64].

Implementation of an MPA network as an a priori conserva-

tion action also provides a buffer against current or future

environmental threats and should be designed to mitigate

those perceived threats [35]. Furthermore, the establishment

of the MPA network may reduce uncertainty about future

restrictions among mining contractors, protecting existing

claims and economic investments in these claims.

This integrated and collaborative approach has global

implications for conservation in areas beyond national jurisdic-

tion or other complex ocean zones, and similar approaches may

be useful for implementing ecosystem-based approaches in sys-

tematic conservation planning processes. The proposed CCZ

MPA network (1 440 000 km2) is approximately four times

the size of the Great Barrier Reef Marine Park (345 400 km2)

and will be a significant addition to the large global MPAs in

the Pacific Ocean. Assuming that the ISA permanently protects

its system of nine ‘Areas of Particular Environmental Interest’

http://www.isa.org.jm/files/images/maps/CCZ-Sep2012-Official.jpg
http://www.isa.org.jm/files/images/maps/CCZ-Sep2012-Official.jpg
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from mining activities, an important precedent will be set in

applying swift and pre-emptive management actions across

an unprecedented expanse of the deep sea.
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2011 Deep-sea nematode assemblage has not
recovered 26 years after experimental mining of
polymetallic nodules (Clarion – Clipperton Fracture
Zone, Tropical Eastern Pacific). Deep-Sea Res. Part I:
Oceanogr. Res. Pap. 58, 885 – 897. (doi:10.1016/j.
dsr.2011.06.003)

55. White C, Halpern BS, Kappel CV. 2012 Ecosystem
service tradeoff analysis reveals the value of marine
spatial planning for multiple ocean uses. Proc. Natl
Acad. Sci. USA 109, 4696 – 4701. (doi:10.1073/pnas.
1114215109)

56. Treblico R, Halpern BS, Flemming JM, Field C,
Blanchard W, Worm B. 2011 Mapping species
richness and human impact drivers to inform
global pelagic conservation prioritization. Biol.
Conserv. 144, 1758 – 1766. (doi:10.1016/j.biocon.
2011.02.024)

57. Dunn DC, Boustany AM, Halpin PN. 2011 Spatio-
temporal management of fisheries to reduce
by-catch and increase fishing selectivity. Fish Fish.
12, 110 – 119. (doi:10.1111/j.1467-2979.2010.
00388.x)

58. Van Dover CL, Smith CR, Ardron J, Dunn D, Gjerde K,
Levin L, Smith S. 2012 Designating networks of
chemosynthetic ecosystem reserves in the deep sea.
Mar. Policy 36, 378 – 381. (doi:10.1016/j.marpol.
2011.07.002)

59. Friedlander AM et al. 2011 Integration of remote
sensing and in situ ecology for the design and
evaluation of marine protected areas:
examples from tropical and temperate ecosystems.
In Remote sensing of protected lands (ed. YQ Wang),
pp. 245 – 279. Boca Raton, FL: CRC Press.

60. Harris PT, Whiteway T. 2009 High seas marine
protected areas: benthic environmental conservation
priorities from a GIS analysis of global ocean
biophysical data. Ocean Coastal Manage. 52,
22 – 38. (doi:10.1016/j.ocecoaman.2008.09.009)

61. Clark MR, Watling L, Rowden AA, Guinotte JM,
Smith CR. 2011 A global seamount classification to
aid the scientific design of marine protected area
networks. Ocean Coastal Manage. 54, 19 – 36.
(doi:10.1016/j.ocecoaman.2010.10.006)

62. Smith C et al. 2008 Rationale and recommendations
for the establishment of preservation reference
areas for nodule mining in the Clarion-Clipperton
Zone. Fourteenth session. Kingston, Jamaica, 26
May – 6 June 2008. http://www.isa.org.jm/en/
sessions/2008/documents: Legal and Technical
Commission, International Seabed Authority.
Technical document no. ISBA/14/LTC/2.

63. United Nations General Assembly. 2012 The future
we want. Rio de Janeiro: United Nations General
Assembly.

64. Veitch L, Dulvy NK, Koldewey H, Lieberman S,
Pauly D, Roberts CM, Rogers AD, Baillie JEM. 2012
Avoiding empty ocean commitments at Rioþ20.
Science 336, 1383 – 1385. (doi:10.1126/science.
1223009)

http://dx.doi.org/10.3354/meps240157
http://dx.doi.org/10.1016/S0967-0645(01)00069-8
http://dx.doi.org/10.1016/S0967-0645(01)00069-8
http://dx.doi.org/10.1016/j.dsr.2011.06.003
http://dx.doi.org/10.1016/j.dsr.2011.06.003
http://dx.doi.org/10.1073/pnas.1114215109
http://dx.doi.org/10.1073/pnas.1114215109
http://dx.doi.org/10.1016/j.biocon.2011.02.024
http://dx.doi.org/10.1016/j.biocon.2011.02.024
http://dx.doi.org/10.1111/j.1467-2979.2010.00388.x
http://dx.doi.org/10.1111/j.1467-2979.2010.00388.x
http://dx.doi.org/10.1016/j.marpol.2011.07.002
http://dx.doi.org/10.1016/j.marpol.2011.07.002
http://dx.doi.org/10.1016/j.ocecoaman.2008.09.009
http://dx.doi.org/10.1016/j.ocecoaman.2010.10.006
http://www.isa.org.jm/en/sessions/2008/documents
http://www.isa.org.jm/en/sessions/2008/documents
http://www.isa.org.jm/en/sessions/2008/documents
http://dx.doi.org/10.1126/science.1223009
http://dx.doi.org/10.1126/science.1223009

	From principles to practice: a spatial approach to systematic conservation planning in the deep sea
	Introduction
	Systematic conservation planning in the deep sea: a collaborative approach
	Developing design principles for a marine protected area network in the deep sea
	A spatial approach to ecosystem assessment  in the deep sea

	Moving from principles to practice: insights from an expert-driven process
	Conclusion
	Acknowledgements
	Funding statement
	References


