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Although increasing efforts are being made to restore tropical forests, little

information is available regarding the time scales required for carbon and

plant biodiversity to recover to the values associated with undisturbed

forests. To address this knowledge gap, we carried out a meta-analysis com-

paring data from more than 600 secondary tropical forest sites with nearby

undisturbed reference forests. Above-ground biomass approached equival-

ence to reference values within 80 years since last disturbance, whereas

below-ground biomass took longer to recover. Soil carbon content showed

little relationship with time since disturbance. Tree species richness recov-

ered after about 50 years. By contrast, epiphyte richness did not reach

equivalence to undisturbed forests. The proportion of undisturbed forest

trees and epiphyte species found in secondary forests was low and changed

little over time. Our results indicate that carbon pools and biodiversity show

different recovery rates under passive, secondary succession and that coloni-

zation by undisturbed forest plant species is slow. Initiatives such as the

Convention on Biological Diversity and REDDþ should therefore encourage

active management to help to achieve their aims of restoring both carbon

and biodiversity in tropical forests.
1. Introduction
Tropical forests contain between half and two-thirds of terrestrial global bio-

diversity [1], and approximately 37% of the global terrestrial carbon pool [2].

These forests also provide vital ecosystem services at local, regional and

global scales [3,4]. Despite these benefits, tropical forests are undergoing wide-

spread loss, largely as a result of agricultural expansion [5]. These losses have

led to increased carbon emissions, species extinctions and structural alteration

of the majority of tropical forests worldwide [3,4].

To combat these ongoing losses, many projects have been implemented in

different countries over the past two decades with the aim of restoring millions

of hectares of tropical forest [6,7]. The need for tropical forest restoration is

recognized in international policy through the Convention on Biological Diver-

sity (CBD) and REDDþ initiatives [8,9]. The 2020 targets of the CBD aim to

enhance biodiversity and carbon stocks by restoring 15% of the world’s

degraded ecosystems [9]. In addition, REDDþ aims to enhance carbon stocks

partly through forest restoration, using funding from carbon credits [8]. How-

ever, despite the perceived importance of restoring tropical forests for both

carbon storage and biodiversity, information is lacking on their patterns and

rates of recovery following disturbance.

To determine the relative value of recovering forests as carbon pools and for

biodiversity conservation, comparison with a reference forest is required (e.g. a

site that is relatively free of human disturbance). Previous studies of carbon

accumulation in tropical secondary forests [10,11] have not undertaken com-

parisons against such reference systems. As such, these syntheses provide

limited information about the recovery of carbon pools in tropical forests, but

rather examine the factors explaining differences in biomass and soil carbon
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among tropical secondary forest sites, with climate emerging

as a major driver [11–13].

As biomass recovers following disturbance, it is to be

expected that forest ecosystems should accumulate carbon

pools with time [10,14]. In the case of secondary tropical for-

ests, little information is available regarding the time period

required for recovery of these carbon pools to the values

of undisturbed forests. The most studied of these pools

is that associated with above-ground biomass, for which

recovery appears to become asymptotic over time [15–18].

However, the time required for this pool to recover comple-

tely has been hypothesized to be anywhere between 50 and

200 years [15,17]. Below-ground biomass has been studied

less frequently, but may require similar periods for complete

recovery, with Saldarriaga et al. [16] suggesting an interval of

over 80 years.

Changes in soil carbon in secondary forests are less well

documented than biomass recovery. A transition from agri-

cultural use to secondary forest generally results in an

increase in soil carbon content [19], but the evidence for

soil carbon accumulation during secondary succession is con-

flicting. Recovery of soil carbon in secondary tropical forests

to values similar to those in undisturbed forest can take

20–100 years [20,21], but some secondary forests have

higher soil carbon than undisturbed forests [22].

In contrast to studies of carbon pools, there have been a

number of syntheses of biodiversity recovery in secondary tro-

pical forests. These suggest that faunal species richness recovers

relatively quickly during succession [23], but more than 150

years may be required for community composition to reach

equivalence to undisturbed forests [24]. However, relatively

little is known about changes in plant communities during

secondary succession in tropical forests. The only previous

synthesis—albeit of only eight locations across Central and

South America—of plant biodiversity in secondary forests

suggests that they may take longer to become equivalent to

undisturbed forest than faunal communities, with only 40%

of undisturbed forest species having colonized secondary

forests after 80 years of recovery [25].

No integrated meta-analysis of the recovery of both carbon

pools and plant biodiversity in tropical forests has been under-

taken previously. Such information is urgently required to

inform policy and management practice. To address this

knowledge gap, we address the following questions by

conducting a meta-analysis based on systematic review:

— At what age following forest clearance do carbon pools in

secondary tropical forests reach equivalent values to those

of undisturbed forests?

— At what age following forest clearance do plant species

richness and the proportion of undisturbed forest species

in secondary tropical forests reach equivalent values to

those of undisturbed forests?

— How do the rates of recovery of biodiversity and carbon

pools compare, and what are the consequences for

tropical forest restoration policy?

2. Material and methods
(a) Systematic review
We defined a tropical secondary forest as a previously forested

area undergoing secondary succession following total or near-

total removal of trees [26], located between the latitudes 408 N
and 408 S [27]. To collate relevant studies, a systematic review

was carried out using standard methodologies [28], outlined in

the electronic supplementary material, appendix S1. Studies

were retained if they included: (i) at least one measurement of

above-ground biomass, below-ground biomass, soil carbon con-

tent, plant species richness and/or plant species community

composition in both a secondary tropical forest and a reference

undisturbed forest (following [29]); (ii) the time since last dis-

turbance for secondary forests; and (iii) definition of the type

of disturbance prior to secondary succession, which included

conversion to pasture, cropland or small-scale shifting agricul-

ture. In addition, we extracted data on forest type determined

by Holdridge life zone [30] (hereafter referred to as forest

type), and geographical location. Although methodologies dif-

fered among studies, measurements in secondary and

undisturbed forests within a study were carried out using the

same methods and the same plot sizes.

Almost all of the data we collated came from chronosequence

studies where secondary forest stands of different ages were used

to infer successional dynamics. One of the assumptions of chron-

osequences is that all sites have been subjected to the same

environmental conditions, though in practice this condition is

rarely met [31]. For the purposes of our study, we also assumed

that undisturbed forests had stable carbon pools and species

composition. This assumption is again unlikely to be met as

many undisturbed forests are known to be increasing in biomass

[32] and undergoing changes in biodiversity, but we consider

these changes to be less dramatic than those caused by secondary

succession. As such, our study is reflective of the wider second-

ary forest literature, which tends to make similar assumptions

about chronosequences.

(b) Statistical analysis
We calculated secondary forest carbon pool and species richness

recovery using the equation

logit
ðð�Xsec � �XrefÞ/�XrefÞ þ 1

2
;

where �Xsec is the mean of a measurement in a secondary forest

and �Xref is the mean of the same measurement in the correspond-

ing undisturbed reference site. This is a logit transformation of

the proportional difference between secondary and undisturbed

forests that conforms to the assumptions of linear models. Fol-

lowing model fitting, predicted values were converted to

proportions relative to reference forests by calculating the inverse

logit and multiplying by two.

As most studies did not provide estimates of variation along

with measurements of carbon pools or species richness, an

unweighted analysis was used. Although this technique gives

equal weight to studies that may differ in quality and accuracy,

it has been used frequently in the ecological literature [33–35],

where data reporting standards are very variable. A linear

mixed model was constructed for each variable of interest

using time since last disturbance, disturbance type and forest

type as explanatory variables. We included quadratic or log

relationships with time since disturbance where our hypotheses

suggested there may be nonlinear changes during succession.

A random factor was included to group secondary forests

that shared an undisturbed forest reference site, eliminating the

problems of pseudo-replication at the study scale [36]. In

addition, random variables were included to account for differ-

ences in study methods, such as in measurement depth for soil

carbon and whether allometric equations for calculation of bio-

mass were locally derived or represented general multi-species

allometries [37]. Random variables accounting for the difference

in minimum diameter at breast height (DBH) of trees included in

assessments of species richness were also considered, but were

found to add little explanatory value, and thus were excluded
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Figure 1. Recovery of above-ground biomass (n ¼ 326), below-ground biomass (n ¼ 76) and soil carbon (n ¼ 185) in secondary tropical forests, relative to undis-
turbed reference forests. Solid lines represent model predictions, with different colours representing different disturbance types. Parameters included in figures have AICc
importance values greater than 0.5. The horizontal dashed line represents no difference between secondary and undisturbed forests. (Online version in colour.)
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from models (see the electronic supplementary material, table S15

for details of different minimum DBH used in studies). The

proportion of the undisturbed forest plant species found in second-

ary forests was used as a metric of changes in community

composition [25,38] and was analysed using a binomial gene-

ralized linear mixed model with logit link. While there are

techniques that are better suited to determining whether species

are undisturbed forest specialists [39], they require detailed data

for each study, to which we did not have access.

All possible additive models were computed using restricted

maximum-likelihood methods. Model comparison was based on

AICc, excluding all models with DAICc � 7 [40]. We estimated

the goodness of fit of each model by calculating the marginal

R2 using the equations developed by Nakagawa & Schielzeth

[41]. Coefficients were derived from the weighted mean of all

models with DAICc � 7. The importance of variables in explain-

ing recovery of carbon pools and plant biodiversity was assessed

by summing up the weight of all models that included the vari-

able [40]. Analyses were performed in R v. 2.15.3 [42], with

model averaging using the MuMIn package [43], and all

graphs were produced using the ggplot2 package [44].
3. Results
The systematic review yielded data for 607 secondary forest sites

from 74 studies describing above-ground biomass, below-

ground biomass, soil carbon, plant species richness or plant

species composition, with comparable data for a reference
undisturbed forest (further details in the electronic supplemen-

tary material, table S1). The majority of these sites were

relatively young, with mean ages between 20 and 30 years for

each variable of interest (see electronic supplementary material,

figure S1). Thus, biomass and carbon recovery were measured

for forests up to 85 years old. Biodiversity data were available

for forests up to a little over 150 years old, although virtually

all sites were under 100 years old. Most sites were in Central

or South America (see electronic supplementary material,

figure S2), with a few sites in Africa or Asia.

Model selection suggested that the best model describing

above-ground biomass recovery in secondary forests included

only a log relationship with time since disturbance. This

model predicted recovery of above-ground biomass to slow

over time and to be about 83% of that of undisturbed forests

after 85 years (figure 1). This model had an AICc weight of

0.57 and a marginal R2 of 0.56 (see electronic supplementary

material, table S1). The relationship between relative biomass

recovery and age was much more important than those of

forest type and prior land use (see electronic supplementary

material, table S14).

Below-ground biomass increased more slowly than

above-ground biomass as a function of forest age. As with

above-ground biomass, there was a log relationship with time

since disturbance; after 80 years stocks in sites previously

subjected to shifting agriculture were still only about 50% of

those in reference forests (figure 1). Forests established on
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Figure 2. Recovery of epiphyte (n ¼ 65) and tree (n ¼ 204) species richness in secondary tropical forests, relative to undisturbed reference forests. Solid lines
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Figure 3. Recovery of species associated with undisturbed tropical forest in secondary forest (n ¼ 50). The horizontal dashed line represents no difference between
secondary and undisturbed forests.
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pastures appeared to recover below-ground biomass more

rapidly than those following shifting agriculture, with recovery

to 76% of reference levels in approximately 80 years. Forest

type was not important in explaining differences between

undisturbed and secondary forests (importance value ¼ 0;

electronic supplementary material, table S14). Models with

DAICc� 7 had marginal R2 values of 0.60–0.64 (see electronic

supplementary material, table S3).

Soil carbon stocks showed very weak relationships with all

variables; an intercept-only model had the most support (AICc

weight ¼ 0.43; electronic supplementary material, table S3).

However, models predicting slight increases in soil carbon

with time since disturbance were also supported, although

these had extremely small marginal R2 of less than or equal

to 0.01 (see electronic supplementary material, table S4).

Plant species richness increased with time since last dis-

turbance—again following log relationships—with epiphyte

richness showing slower recovery than tree richness (figure 2).

Tree species richness was predicted to recover after approxi-

mately 50 years, whereas epiphyte richness was predicted to

take longer than 100 years. Model fits of tree species richness

were also much better than those for epiphytes, with marginal

R2 of 0.24–0.26 and 0–0.08, respectively (see electronic

supplementary material, tables S5 and S6). By contrast, a
relationship between time since last disturbance and proportion

of species associated with undisturbed forest was relatively

poorly supported (importance value ¼ 0.35). The proportion

of species associated with undisturbed forest was generally

low, with a mean of 26% of species also being found in second-

ary forest (upper CI¼ 67%, lower CI¼ 6%; figure 3; electronic

supplementary material, tables S7 and S13).
4. Discussion
This study is the first to assess the recovery of both carbon

pools and plant biodiversity across a large number of second-

ary tropical forest sites. Our results indicate that the various

carbon pools and measures of biodiversity recover at differ-

ent rates. Above-ground biomass approaches recovery

85 years after the last disturbance. Below-ground biomass

also increases over time, with former pastures recovering

75% of below-ground biomass after about 80 years, whereas

areas affected by shifting agriculture take longer to recover.

Soil carbon remained largely unchanged over time. In

terms of biodiversity, tree species richness reached equival-

ence to reference forests after approximately 50 years and

epiphyte richness only approached recovery after 100 years,
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(a) Recovery of carbon pools
Although previous work has suggested that rates of biomass

accumulation differ between dry, moist and wet tropical

forests [45], as well as among disturbance types [10], our

study indicates that these factors are largely unimportant in

determining the rate of recovery towards the state of

undisturbed forests. Our estimated time required for above-

ground biomass to reach approximately 85% of undisturbed

forest levels is similar to suggested rates for basal area recovery

in the neotropics [46]. While our results and previous obser-

vations [46] suggest that forest biomass approaches that of

undisturbed forest within a century, full recovery may take sub-

stantially longer. This is because secondary forests are often

composed of relatively small-stemmed trees and lack the very

large trees characteristic of old-growth forest, which can have

very high biomass [47]. However, without more data from

older secondary forests it is difficult to determine how long

the full recovery takes. One important caveat regarding

above-ground biomass recovery is that allometric equations

used for its estimation are usually derived from undisturbed

forest plots [48]. As a result of this, measurements in secondary

forests, which are often dominated by trees with low DBH, may

overestimate their biomass [48], possibly because of differences

in secondary forest height–diameter relationships [49]. This is a

potential bias in all the individual studies we used, and we

suggest that further research should aim to develop and test

allometries designed for use in secondary forests to characterize

recovery more accurately.

Below-ground biomass represents an average of 19% of

total biomass in tropical forests [50], although root : stem

ratios tend to be higher in younger forests [51,52]. Thus, we

would expect below-ground biomass to recover more rapidly

than those of above-ground biomass, and it is surprising that

we found the opposite pattern. However, this effect may be

an artefact because those sites for which we had below-

ground biomass data had lower above-ground biomass than

other forests of similar age (see electronic supplementary

material, figures S3 and S4).

We found that secondary tropical forests have soil carbon

contents similar to undisturbed forests, contradicting a recent

meta-analysis [53], which suggested lower soil carbon in sec-

ondary forests. The differences between our study and that of

Don et al. [53] result from differing definitions of secondary

forest, which they considered to be forests affected by any

human disturbance. That definition conflates different types

of disturbance, and covers human-impacted forests and plan-

tations as well as those undergoing secondary succession. As

such we believe that our study more accurately represents

soil carbon content in secondary forests as it covers more

than usually defined—those that are recovering from near

total removal of tree cover [26]. Our findings do, however,

support those of Marı́n-Spiotta & Sharma [11], who also

found similar soil carbon pools in secondary and undisturbed

tropical forests. These results indicate either that soil carbon

in tropical forests is resilient to moderate, short-term land-

use change or that carbon is accumulated rapidly following

abandonment of farmland. However, as with below-ground

biomass, further research is required to explain the drivers

of differences in soil carbon between sites. Given that the
world’s soils contain two to three times the carbon stored

in above-ground biomass [54], such research should be

considered a priority.

Former land use had an inconsistent effect on recovery of

carbon pools in our study: there was no effect on above-

ground biomass or soil carbon, but below-ground biomass

recovered faster in former pastures than following shifting

agriculture. The intensity and length of time under previous

land-use influence factors, for example soil nutrient content,

undoubtedly play important roles in biomass recovery [55].

For example, research has suggested that above-ground

biomass is lower in secondary tropical forests that have

experienced multiple cycles of conversion for shifting agricul-

ture [56,57]. However, such detailed data were not collected

for the majority of studies we analysed, and future studies

should do so to aid our understanding of the factors that

control carbon stocks in secondary forests.

Overall, these findings suggest that when attempting to

restore carbon pools on tropical forest sites cleared for agri-

culture, the greatest gains are likely to be made in plant

biomass, as soil carbon appears to be relatively insensitive

to moderate land-use change. Independent of forest type,

carbon pools in secondary forest sites could be expected to

be 77–81% of those of undisturbed forests approximately

80 years after disturbance, given that above-ground biomass

has been estimated as five times that of below-ground

biomass in tropical forests [50].

(b) Recovery of species richness and community
composition

We found that tree species richness recovered within 50 years,

compared with more than 100 years for epiphyte richness. We

have less confidence in the prediction of a continuing increase

after 50 years, which is likely to be an artefact of the steep

increase in younger forests and the relatively few data for

older forests, meaning that the shape of the log relationship

was constrained. Indeed, the data suggest relatively little

increase after 50 years, and our model tends to overpredict

tree richness in older forests. In addition to differing recovery

rates, our model of tree species richness change also showed

a much better fit than that of epiphyte richness. These dif-

ferences in recovery and our ability to explain changes in

richness are likely to be driven by contrasting dispersal traits

and requirements for establishment. Secondary tropical forest

tree communities are initially dominated by short-lived pio-

neer tree species, and these are sequentially replaced by

longer-lived species [46]. Some secondary forests may be iso-

lated from seed sources, leading to an impeded recovery of

richness, but our results, and the observations of others [46],

suggest that this is relatively rare. By contrast, epiphyte disper-

sal is largely local and propagation is often restricted to

individual trees [58]. In addition, epiphytes seem to occur

more commonly on large trees [59]. These factors may lead

to relatively poor recovery of epiphyte species because many sec-

ondary forests are fragmented and tend to consist of smaller-

stemmed trees [46]. An important caveat of our analysis is

that few estimates of species richness were rarefied by

either number of individuals or area sampled. It is possible

that, as secondary forests almost always have higher stem

densities, our analysis overestimates species richness recov-

ery. However, from a conservation perspective, given that

plot size was equal for the secondary and undisturbed plots
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in all pairwise comparisons, our estimation of species per

unit area remains valid.

Although tree species richness recovers relatively well in

secondary forests, there was little or no accumulation of

species associated with the reference undisturbed forests.

This contrasts with the more rapid colonization rates of

animal species, communities of which may attain similarity

to those of undisturbed forests within 150 years [24]. The

poor recovery of plant community composition is likely to

be the result of a number of interacting mechanisms. First,

small secondary forest patches are likely to be subjected to

greater edge effects than larger undisturbed patches,

making them less likely to be colonized by species adapted

to old-growth forest conditions [60]. Second, patches of sec-

ondary forest can be distant from undisturbed forests [61],

and thus receive few seeds from them. Finally, the extent of

degradation of the landscape surrounding secondary forests

will also influence seed dispersal processes, such as the

behaviour of frugivorous birds [55].

In addition to these ecological mechanisms, which might

explain differences in the responses of species richness and

community composition in secondary tropical forests, our

study is subjected to some of the limitations of the literature

we used in our analyses. The most important factor is likely

to be associated with distance-decay in community similarity

[62]. Sites used in this study are likely to vary in their distance

from undisturbed reference sites, and thus the proportion of

species shared with undisturbed forests would be expected

to vary, even without any human disturbance [62,63]. Unfortu-

nately, very few studies give details of distances between

secondary and reference sites. We hope that future studies

might record such landscape metrics. Despite this, our find-

ings suggest that natural colonization alone may not be

sufficient to restore tropical forest plant biodiversity effectively

in less a century.

(c) Comparative rates of carbon and biodiversity
recovery

Our results indicate that carbon pools and tree species rich-

ness recover more quickly than epiphyte species richness,

whereas undisturbed forest plant species do not accumulate

over time in secondary forests. Analyses of the carbon and

biodiversity benefits of avoided deforestation have often

suggested synergistic relationships between these goals

owing to overlap of priority areas for biodiversity conserva-

tion and carbon storage [64,65]. By contrast, reforestation

schemes that have the primary aim of carbon sequestration

have often been criticized as they may support relatively

little forest biodiversity [66]. Our study suggests a more

nuanced relationship between biodiversity and carbon in

secondary tropical forests: while both carbon storage and

conservation value increase as secondary forests age, the
trajectories of these increases differ. As a result of this, tropi-

cal forests recovering from agricultural conversion are likely

to have greater value for carbon storage and sequestration

than for biodiversity, especially during the first 100 years of

development. These differing rates of recovery should be

acknowledged by policies targeting the recovery of biodiversity

and carbon in tropical forests.

The failure of species associated with undisturbed forest

to colonize secondary forests effectively is worrying for

those aiming to conserve biodiversity in tropical forest land-

scapes subjected to human disturbance. These species are

likely to be adapted to old-growth conditions, and thus are

likely to be sensitive to human disturbance and have small

ranges and populations [67], and, as a result, they are likely

to face greater threats of extinction [68]. This result clearly

indicates that old-growth forests are vital for the conservation

of some specialist species, but also that if goals to conserve

species in human disturbed ecosystems are to be achieved

we require novel solutions and further research.
5. Conclusion
This study is the first integrated meta-analysis of both plant

biodiversity and carbon pool recovery in tropical secondary

forests. We have shown that the recovery periods for the

two differ markedly. This has important implications for pol-

icies that target recovery of both carbon and biodiversity,

such as the CBD and REDDþ. Carbon pools may take

approximately 80 years to recover following disturbance,

faunal biodiversity 150 years [24] and plant biodiversity

well over 100 years. Thus, initiatives aiming to support recov-

ery of both biodiversity and carbon should not assume that

the two are closely coupled. Enhancement of carbon stocks

to the values associated with local undisturbed forests

appears possible through passive restoration. However, in

many situations active restoration involving human inter-

ventions (e.g. planting trees) or other strategies, such as

increasing seed dispersal across the non-forest matrix by

creating woodland islets [69], may be required to enable

long-term recovery of plant species community composition.

In addition, further research into active restoration of tropical

forests is required to identify novel solutions to this problem.
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