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Recent attempts to predict the response of large food webs to perturbations

have revealed that in larger systems increasingly precise information on the

elements of the system is required. Thus, the effort needed for good pre-

dictions grows quickly with the system’s complexity. Here, we show that

not all elements need to be measured equally well, suggesting that a more

efficient allocation of effort is possible. We develop an iterative technique

for determining an efficient measurement strategy. In model food webs,

we find that it is most important to precisely measure the mortality and pre-

dation rates of long-lived, generalist, top predators. Prioritizing the study of

such species will make it easier to understand the response of complex food

webs to perturbations.
1. Introduction
Predicting the result of environmental perturbations, such as the arrival of new

species, is a major goal in ecology [1–3]. What makes this challenging is the

complex interconnected nature of ecological systems. In any densely connected

system, a perturbation of one element can percolate across the network of inter-

actions. This is particularly true for the complex food webs that form the

backbones of most ecosystems [4–7]. Even perturbations acting on a small

subset of species may propagate through the network and lead to serious sys-

temic changes [3,6,8,9] such as the destruction of native fish populations

following the introduction of a new species [10].

A central factor determining the response of a food web to perturbations is

its topology, the precise map of predator–prey interactions. It has been shown

that topological properties affect local and global dynamical stability [11–15].

Moreover, the food web topology gives an indication of the relative importance

of species when studying notions of robustness such as the likelihood of

secondary extinctions [16–19].

Topology alone, however, is not sufficient for reliable predictions of pertur-

bation effects [4,20–22]. Taking into account biomass flows between the

different species leads to better results [23]. For more detailed predictions,

numerical simulation of mathematical models is often used [21,22].

An accurate prediction of the impact of a perturbation requires information

about underlying biomass flows and the control coefficients characterizing the

nonlinearity of processes. Such parameters require extensive measurements,

and errors in their estimation quickly reduce the accuracy of predictions

[4,24]. A lack of precise information on biomass flows and control coefficients

thus limits the predictability of responses. For instance, for systems of more

than 25 species, predictions are practically impossible with current methods,

unless very detailed information is available [25].

Here, we ask whether food web responses to a perturbation are more sensitive

to particular species or parameters [17,26,27]. We investigate the predictability of

responses to perturbations in a broad class of food web models. Our results show

that all parameters and species do not need to be measured with the same
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accuracy. We use analytical calculations and numerical demon-

strations to show that it is possible to assign to each species a

value that indicates the importance of precise knowledge

about this species for the quality of the prediction. Finally,

we demonstrate that this importance can be estimated reason-

ably well from imprecise information, and explore correlations

of a species’ importance and its ecological properties.

The paper is structured as follows: we start in §2 by introdu-

cing a method for predicting the impact of given perturbations

in a broad class of food web models. The method is illustrated

in §3 with two examples. In §4, we then derive measures

for species’ influence on others and for their sensitivity to

perturbations. In §5, we test these predictions in a series of

numerical experiments. The numerical results illustrate a feas-

ible strategy for field studies, where mathematical analysis

and experimental measurements are used to iteratively improve

predictions about the response of food webs to disturbance. In

§6, we use computer experiments and statistical association to

determine which parameters and types of species are most

important to measure.
2. Impact evaluation
(a) Derivation of the perturbation impact
Consider a biological system described by a set of state vari-

ables X1, . . . ,XN denoting, for instance, the abundances of

established species in a food web. The system is now sub-

jected to a perturbation characterized by another set of

variables Y1, . . . , YM, for instance the abundances of newly

arriving species.

We assume that, in the absence of the perturbation, the

variables X1, . . . , XN are governed by a set of ordinary differ-

ential equations of the form

d

dt
Xi ¼ AiðX1; . . . ;XNÞ; ð2:1Þ

where Ai is a function representing the right-hand side of

the differential equations. The generalized model for food

webs [28] used here describes the dynamics of the popu-

lations X1, . . . ,XN by N differential equations of the form

dXi=dt ¼ GiðXÞ þ SiðXiÞ � LiðXÞ �MiðXiÞ; where Gi, Li, Mi

and Si are unspecified functions describing, respectively,

the gain by predation (Gi), the loss by predation (Li), the

loss owing to natural mortality (Mi) and the gain by primary

production (Si) of the focal species.

Following Novak et al. [25], we consider the case where the

unperturbed system resides in a stable equilibrium X* and

where the perturbation is characterized by a small and constant

Y*, such as new species persisting at a low constant abundance

in the ecosystem owing to initially positive growth or constant

influx. These new species affect the right-hand side of (2.1).

Because the stationary abundance, X�i , of a given estab-

lished species i is dependent on the new species Y*, we can

regard it as a function X�i ¼ X�i ðY�Þ. We then define the

impact Ii,j of a perturbation variable Y�j on a resident species

abundance X�i as the change of X�i per unit Y�j , i.e.

Ii;j ¼
@X�i
@Y�j

�����
0

; ð2:2Þ

where j0 indicates that the derivative is evaluated in the limit

of vanishing densities of the arriving species Y�j . In other

words, the entries of the impact matrix Ii,j state the change
of units of the established species i per unit of arriving species

j that enters the system.

In small systems, the impact can be computed by first defin-

ing the model functions, then solving (2.1) for the stationary

solution X�i ðY�Þ, and subsequently computing the derivative

in (2.2). However, for more than three species, the analytical

computation typically becomes prohibitively difficult.

Computing the stationary solution can be avoided by

recognizing that the stationary density of a resident species

X�i can be considered as an implicit function that is defined

as the solution of the stationarity condition 0 ¼ Ai(X
*,Y*).

Using a corollary to the implicit function theorem [29], we

can then write the impact matrix as

I ¼ �J�1K; ð2:3Þ

where the superscript 21 indicates the matrix inverse. The

matrix J is the so-called Jacobian, which is defined as the

derivatives of Ai with respect to the abundances of established

species [30], i.e. Ji;j ¼ @Ai=@Xj
��
�, where j� indicates that the

derivative is evaluated in the equilibrium under consideration.

The matrix K is defined by Ki;j ¼ @Ai=@Yj
��
�;which captures the

direct impact of an arriving species j on an established species i.
For instance, this direct impact may occur due to a reduction in

production, an increase in mortality or an increase in predation

gain of the established species per unit of the arriving species.

To establish K prior to the arrival therefore requires infor-

mation about the resident species with whom the arriving

species is likely to interact.

We note that, beyond the example of perturbations caused

by an arriving species, (2.3) applies to press perturbations on

an established community in general. For instance, to estimate

the impact of a slight drought, the entry Ki of the perturbation

vector indicates the direct impact of the drought on species i;
mathematically, we can approximate Ki ¼ DAi(X

*), where

DAi(X
*) denotes the absolute change of Ai owing to the drought.

In summary, (2.3) establishes a relationship between the

direct proximal impact of a press perturbation, and the indir-

ect ultimate impact I. As a note of caution, we remark that

(2.3) holds up to linear order. The impact-approximation

therefore remains valid only as long as the perturbation

caused is reasonably small.
(b) Parametrization of J
In the equations shown above, we refer to the steady state of the

system, which seems to imply that information about this state is

required. However, relationship (2.3) remains valid indepen-

dently of the specific steady state under consideration. When

the matrices are evaluated, the steady state appears only in the

Jacobian, which contains elements of the form Ji;j ¼ @Ai=@Xjj�.
For instance, in the generalized food web model (see the

electronic supplementary material for a review), this leads to

expressions such as @Gi=@Xij� [28]. Because we cannot evaluate

this expression without further assumptions, it is an unknown

quantity. However, we note that for any specific system the

expression is simply a number. In other words, this means that

the unknown derivatives appearing in the Jacobian constitute

unknown parameters of the model.

So far, we have recognized that the unknown derivatives

can be formally treated as unknown parameters. However, as

such, these parameters are hard to interpret and are thus not

suitable for an ecological discussion. We solve this problem

by using a slightly different parametrization, which is obtained



Table 1. Generalized model parameters as defined in Gross & Feudel [28]. For numerical simulations, the turnover rates ai are scaled by the species’ fitness ni

corresponding to the niche value used to generate the underlying topology [35], while the other parameters are drawn from the indicated ranges.

name interpretation value(s)

scale parameters: defining the biomass flows in the steady state

ai rate of biomass turnover in species i ai ¼ 0:08ni

bi,j contribution of predation by i 0 (no feeding)

to loss rate of species j [0.1,1] (else)

xi,j contribution of species i 0 (no feeding)

to the prey of species j [0.1,1] (else)

ri fraction of growth in species i 0 ( producers)

gained by predation, not primary production 1 (consumers)

si fraction of mortality in species i 0 (top pred.)

resulting from predation, not mortality [0.5,1] (others)

elasticities: sensitivities of interactions to state variables

gi sensitivity of predation in species i to is prey density [0.5,1.5]

li,j exponent of prey switching 1 ( passive)

mi exponent of closure in species i [1,2]

fi sensitivity of primary production in species i to the density of species i [0,1]

ci sensitivity of predation in species i to the density of predators [0.5,1.5]
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either by a special normalization procedure [28] or directly by

the identity @Gi=@Xij�¼ G�i =X�i @ðlog GiÞ=@ðlog XiÞ
��
�; which is

true for G�i ;X
�
i . 0 (a condition that is generally met by defi-

nition; see Kuehn et al. [31] for X�i ¼ 0).

The factors G�i =X�i and @ðlog GiÞ=@ðlog XiÞ
��
� have a direct

interpretation in most applications. The first is a per capita
rate. Such rates have the dimension of inverse time and can

be directly interpreted as characteristic turnover rates, i.e.

the per capita growth rate of the members of species i by

predation on other species.

The second factor is a logarithmic derivative. Such deriva-

tives are also called elasticities and have been proposed in

economic theory [32], metabolic control theory [33] and ecol-

ogy [34]. They can be estimated well from observational data

and interpreted straightforwardly. For every power-law,

f(x) ¼ Axp, the logarithmic derivative is @ log f=@ log x ¼ p,

independently of A or x. Thus, for instance, any linear function

has an elasticity of one, regardless of the slope. For functions

that are not power-laws, the elasticity still provides an intuitive

nonlinear measure of the sensitivity in the steady state.

Each partial derivative of the process in the steady state is

thus the product of two constant factors, describing the per
capita rate and the sensitivity of the process, respectively.

These factors are well-defined ecological parameters in their

own right, which can be understood and discussed even if

the steady state of the system is unknown. For food webs,

this parametrization leads to a Jacobian matrix shown in the

electronic supplementary material [28] and parameters given

in table 1. Using (2.3), the Jacobian that is thus parametrized

can then be used to relate a perturbation to its eventual impact.
(c) Remarks
We note that the approach in this paper is closely related to that

of Novak et al. [25]. Our main methodological contribution is to

apply this approach to generalized models. The advantage of
generalized modelling is its high numerical efficiency, which

enables a detailed and statistically sound numerical explora-

tion. For the practical application to real-world food webs,

generalized models offer additional advantages. In contrast

to half-maximum concentrations and maximal growth rates

used in conventional models, all parameters of the generalized

model are defined in the state observed in nature. The par-

ameters can therefore be measured directly without requiring

a fitting procedure. Furthermore, the parameters are defined

in such a way that their estimation from noisy data converges

maximally fast [32,36].

The formulation of the generalized model is straightfor-

ward (see the electronic supplementary material for a short

review). Based on Gross & Feudel [28], or with a parametri-

zation algorithm [37], even large models with tens to

hundreds of species can be set up in few hours. The impact

of different species can then be computed in seconds on a

small laptop, using a simple algorithm [37]. Once the

model has been set up, integration of new data requires enter-

ing new numerical values. The computation of impact and

importance therefore presents only a small additional effort

to the fieldwork needed to measure parameters.
3. Examples
For illustration, we consider two examples: a simple predator–

prey system and the real-world food web of Gatun Lake shown

in figure 1. In the predator–prey system, a predator of abun-

dance X1 consumes a producer of abundance X2. A detailed

treatment and discussion of the stability of this system in

terms of the generalized model parameters can be found

in references [28,38].

The Jacobian matrix of this system near the steady state is

J ¼ a1ðc� mÞ a1g

�a2sc a2ðf� sg� ð1� sÞmÞ

� �
; ð3:1Þ
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where ai represents each species’ turnover rate, s the relative

loss of the producer owing to predation (instead of natural

mortality), f the elasticity (i.e. sensitivity) of primary pro-

duction to the producer abundance, g the elasticity of

predation to primary producer abundance, c the elasticity

of predation to predator abundance and m the elasticity of

natural mortality to a species’ own abundance.

We now consider the impact of the arrival of a competing

predator. It can be assumed that the new predator has a direct

negative effect on the primary producer but no direct effect on

the established predator, such that the perturbation matrix K

contains the entries K1,1 ¼ 0 and K2,1 , 0. As shown in detail

in the electronic supplementary material, the impact on the

established predator and producer is

I1 ¼
a1

det J
gK2 and I2 ¼

a1

det J
ðm� cÞK2; ð3:2Þ

where det J � 0 is the determinant of J.

We see that generally the impact on the established predator

is negative. This result is intuitive as the established predator is

now in exploitative competition with the arriving predator.

Of particular interest is the case where the established pre-

dator suffers from linear loss (m ¼ 1) and also affects the

producer linearly (c ¼ 1, i.e. there is no interference between

the predators). In this limit, det J ¼ a1a2sg. The impact on the

producer, I2, is zero, because c 2 m ¼ 0. However, the impact

on the established predator, I1 ¼ K2=ða2sÞ, is negative and

corresponds directly to the fraction of producer biomass, con-

sumed by the new predator. This is a manifestation of the

well-known competitive-exclusion principle, which generally

precludes the coexistence of the predators in this case [39,40].

The assessment of impact in larger food webs can be car-

ried out analogously, but requires numerical computations in

which the generalized parameters are set to specific values.

Here, we illustrate this assessment by the example of the

Gatun Lake food web [10] (figure 1) for a simple set of

such parameters. We focus on the impact of a predatory

fish, such as the peacock bass Cichla ocellaris (figure 1a). A

step-by-step breakdown of the parametrization is presented

in the electronic supplementary material.

The proposed approach predicts that peacock bass have a

strong and generally negative impact on the secondary
consumers on which they feed, a generally positive impact

on the consumer’s prey, and a generally negative impact on

other top predators. These observations are consistent with

basic ecological reasoning. Counterintuitive results are found

for species 11 (black tern), which benefits from the strong

decrease of its competing predators 9 (bigmouth sleeper) and

10 (tarpon) and for 7 (sailfin molly, mosquito fish), which

benefits from the reduction of 6 (tetras) with whom 7 is both

in exploitative and apparent competition.

Real-world observations of the Gatun Lake showed [10] that

the introduction of the peacock bass strongly decreased the sec-

ondary consumers (5–7) and their predators (9–12), but

increased the consumers prey (3–4) and, counterintuitively,

species 8 (blackbelt cichlid). Comparing the predictions of the

model with the real data, we note that the model correctly pre-

dicted the change in the producers 1–4, the decrease in the

consumers 5 and 6 and the decrease in predators 9, 10 and 12.

The model predictions do not agree with the observed

decrease in species 11 (black tern), and 7 (sailfin molly, mos-

quito fish) and with the increase in species 8 (blackbelt

cichlid). A likely reason for the discrepancy between pre-

dicted and observed results is the simple parametrization

used here, which we based on allometric scaling relationships

rather than on direct observations. Reviewing the results, we

can guess that the incorrect prediction regarding species 11 is

due to an overestimation of the sensitivity of its competing

top predators (9–10) to the decrease in their common prey

5 (silverside). Further, the incorrect prediction of the

responses of 7 and 8 might result from incorrectly estimating

the sensitivity of 12 (herons and kingfishers) to its prey (6–8).

This exercise shows how food webs often follow the basic

logic of direct and indirect effects, but that the details can

be sensitive to incorrect parametrization.
4. Sensitive and influential species
To obtain better theoretical predictions for real-world sys-

tems, such as Gatun Lake, a more precise parametrization

of the model is highly desirable. However, not all species

are of equal importance in the food web and thus also precise

information is more important for certain parameters than for
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others. To gain insights into the importance of various

species in the web, we now identify sensitive species which

are easily perturbed by disturbances propagating through

the web and influential species which have a strong effect on

other species, when directly perturbed.

Close to a steady state, the dynamical properties of

a system are characterized by its dynamical modes that con-

sist of the eigenvectors and eigenvalues of the Jacobian

matrix [30]. For each eigenvalue lk of a given matrix, there

is generally a corresponding right eigenvector v(k) and left

eigenvector w(k) [41].

One can visualize dynamical modes as vibrations travelling

through a drum when it is struck. Here, the different modes

correspond to different notes that are played on the drum.

The right eigenvectors characterize the pattern of vibration

when a specific note is played. Specifically, the elements of

the right eigenvector describe how strongly the respective

area of the drum vibrates in that note. The same is true for

the food web. In a stable steady state that is hit by a short

(pulse) perturbation the right eigenvectors govern how the

system returns to the steady state after the perturbation.

Drummers know how to play different notes by striking

different parts of the drum. This is captured by left eigenvec-

tors. Specifically, the elements of the left eigenvector for a

given dynamical mode describe how strongly the specific

mode is excited when the drum is struck in a given area.

Similarly, in the food web, the left eigenvectors characterize

the strength of a specific dynamical response when a given

species is perturbed.

Intuitively, one can think of each dynamical mode as a

possible response of the system to a perturbation. The right

eigenvector denotes the impact of response (which species

‘feel the vibrations’), whereas the corresponding left eigen-

vector denotes the type of perturbation that can trigger a

particular response (which species needs to be perturbed to

‘play a given note’). For instance, consider the pair of a

right eigenvector v ¼ (1,2) and a left eigenvector w ¼ (1,0).

This mode can be excited only through perturbation of the

first species, but when it is excited the second species feels

the system’s response twice as strong as the first.

The strength of a mode’s response is determined by its

excitability. The excitability is, for a given mode, given by

the corresponding eigenvalue 21/lk of the inverse Jacobian

matrix J21, which has the same eigenvectors as J. Intuitively,

the (negative) eigenvalue lk of a dynamical mode indicates a

system’s resistance to a particular perturbation. The impact of

such a perturbation is therefore inversely proportional to this

resistance (see the electronic supplementary material for

more details).

In the case presented here, we consider that a perturba-

tion continuously excites the same dynamical modes (press

perturbation). The impact is therefore the combined continu-

ous excitation resulting from the perturbation of these

dynamical modes.

The potential impact that a species experiences owing to a

given dynamical mode is the product of the mode’s excit-

ability and the component of the right eigenvector on this

species. Furthermore, the potential impact from all modes is

the sum over the contributions from the individual modes

k. Taking the logarithm of this sum to bring the numerical

values into a more manageable range, we therefore define

the sensitivity of a species, Sei ¼ logð�
P

k jv
ðkÞ
i j=lkÞ; where

jvðkÞi j is the absolute value of the entry vi of the right
eigenvector corresponding to mode k. For a more formal

derivation, see the electronic supplementary material.

The potential impact that a species causes by exciting a

given dynamical mode is the product of the mode’s excit-

ability and the component of the left eigenvector on this

species. Analogous to the sensitivity, we therefore define

the influence Ini ¼ logð�
P

k jw
ðkÞ
i j=lkÞ.

The Gatun Lake example shows that the general results

for influence and sensitivity are largely consistent with the pre-

dicted response to the introduction of peacock bass (figure 1).

Because the perturbation affects several influential nodes

(e.g. species 6 and 9), most of the species of the food web are

affected. In particular, sensitive nodes (e.g. species 6, 7, 11)

respond strongly to the perturbation (see the electronic

supplementary material for more details).

To further confirm the relationship between importance,

sensitivity and actual impact of a perturbation, we consider

an ensemble of 106 randomly generated food webs with 50

species and average connectance 0.04 generated as described

in Gross et al. [14] and as reviewed in the electronic sup-

plementary material. The topology of these food webs is

generated using the niche model [35]. Then, for the numerical

computations, the generalized parameters characterizing the

species are drawn uniformly and independently from the

ranges given in table 1. For these food webs, the colour

code in figure 2 indicates the average impact that a focal

species of given sensitivity experiences when a species of

given importance is perturbed. This reveals a strong corre-

lation of the impact with both the sensitivity of the focal

species and the importance of the perturbed species.

Considering the ensemble of model food webs again, we

observe that the number of the very influential and very sen-

sitive species in each food web is small. For instance, we find

that on average for each web only 15.4% of all species have a

sensitivity value in the upper 30% of the sensitivity range for

this web, and only 18.6% have an importance value in the

upper 30% of the influence range for that web.

Summarizing the above, knowledge of the Jacobian of a

specific food web enables us to predict the impact of specific

perturbations and also allows us to gain a more general

understanding of the species’ sensitivity and influence with

regard to perturbations of the network. The main challenge

for impact assessment is thus to collect the necessary data

for constructing the system’s Jacobian. As hinted previously,
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5. Iterative parameter estimation
It is intuitive to assume that accurate predictions hinge on pre-

cise measurements of the parameters of the most influential and

sensitive species. However, our approach to identifying these

species builds on analysis of the Jacobian and thus itself requires

the same type of information. It is thus not possible to deter-

mine a priori which species are important or influential. To

address this dilemma, we now propose an iterative strategy in

which existing preliminary information is used to estimate the

impact and sensitivity of species. This assessment can be used

to improve parameter estimates on seemingly important

species. Once additional data on these species becomes avail-

able, they can be used to further improve the estimates of the

impact and sensitivity of species, refining the process. Thus, a

cycle is formed in which the necessary information for precise

impact predictions is iteratively assembled.

We explore the quality of impact predictions in a series

of numerical experiments. In each experiment, we predict

the impact of a random perturbation to a food web that is

generated according to the procedure described in §4. This

procedure determines values of the generalized parameters

of the true Jacobian of the food web by drawing them uni-

formly from the ranges indicated in table 1. Based on this

true Jacobian, we additionally generate an estimated Jacobian

with slightly different generalized parameter values to simu-

late measurement errors. More precisely, we draw each

generalized parameter value used in the estimated Jacobian

from a lognormal distribution centred on the corresponding

parameter value used in the true Jacobian; the lognormal dis-

tribution is chosen to allow large errors while keeping the

sign of parameters consistent. We then compute the true

impact of the random perturbation, I based on the true Jaco-

bian, and the estimated impact ~I based on the estimated

Jacobian. The quality Q of the impact estimation is then eval-

uated as the cosine of the angle between the true and the

estimated impact vectors (see the electronic supplementary

material for details), i.e.2 1 � Q � 1.

Now, we introduce a numerical implementation of the

iterative strategy described earlier. We consider numerical

experiments in which the knowledge of the Jacobian is

initially poor, such that the generalized parameters are

drawn from a lognormal distribution with a standard devi-

ation of 10% of the true value. We furthermore assume that

additional empirical work can be carried out on specific

species that reduces the error in all parameters of the respect-

ive species to 2%. Our aim is to carry out the precise

measurements in the order that leads to the most rapid

increase in the quality of impact prediction.

For the purpose of demonstration, we consider four

different protocols: (i) precise measurements are carried out

in random order, (ii) species are measured in the order of

decreasing influence, (iii) species are measured in the order

of decreasing sensitivity and (iv) species are measured in

the order of the decreasing sum of sensitivity and influence.

The choice of species to measure next is always based on

the estimated Jacobian that is available at the time. Thus, the

information used is only what researchers would observe

under real-world conditions.
The results shown in figure 3 demonstrate that estimating

influence and sensitivity of the species prior to each measure-

ment strongly increases the accuracy of predictions. This is

particularly pronounced if measurements focus on the species

with the highest sum of sensitivity and influence. For instance,

after measuring 20% of all species according to this protocol,

we attain a quality of prediction comparable to measuring

60–80% of all species when species are chosen randomly.

Using the estimation of influence and sensitivity to focus obser-

vational or experimental efforts can thus significantly reduce

the amount of empirical work that is needed to achieve a

given prediction quality.
6. Most important parameters and species
to measure

The iterative refinement procedure proposed above needs

some initial information on the system as a starting point.

Here, we therefore explore what types of parameters and

what types of species are most important to measure.

To get an intuition of the importance of different par-

ameters for impact prediction, we consider a situation

where the estimated Jacobian is identical to the true Jacobian

except for a single parameter that carries an error. The quality

of the estimated impact decreases with increasing influence

and sensitivity of the species affected independently by the

varied parameter (figure 4). Furthermore, figure 4 shows

that the decrease in quality for sensitive and influential

species depends on the parameter under consideration;

precision in the elasticity of the mortality m, and of the
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elasticity of predation c with respect to predator abundance

were the most important.

To determine which species are most important to

measure in the absence of knowledge about the Jacobian,

we explore the correlations between sensitivity or influence

and species properties (see below) in a set of 106 model

food webs. In the analysis, we consider the correlations (not

causal effects) of sensitivity and influence with the following

potential biological indicators:

— generality, or the number of prey species of the focal

species (network in-degree);

— vulnerability, or the number of predators of the focal

species (network out-degree);

— a binary value that is 1 if the focal species is a primary

producer and 0 otherwise;

— the trophic level (TL), which we calculate by solving a set

of linear equations, such that TLi ¼ 1 for primary produ-

cers and TLi ¼ 1 þmean(TLprey) for consumers, where

mean(TLprey) denotes the mean TL of is prey;

— the biomass turnover rate (generalized model parameter

a), indicating the amount of biomass an individual con-

sumes in comparison with its own mass; and

— the weighted topological importance of a species (WIs)

introduced in Jordán et al. [42]. It estimates the indirect

effect on a species, based on topology and biomass flows.

Parameter s indicates the maximum number of direct

interactions, through which indirect effects are perceived.

If for a given web, xi indicates one of these properties for

species i in this web, and yi its sensitivity or influence, then

we denoted the correlation coefficient between x and y as

R ¼ ðxi � �xÞðyi � �yÞ=ðsxsyÞ; where �x denotes the mean of xi

over all species i, and where sx denotes the standard deviation

of the xi.

The correlation analysis (figure 5) shows that high

TLs and low biomass turnover rates (e.g. long lifespan) cor-

relate strongly with sensitivity and influence. This result

suggests that top predators and other large and long-lived

species, despite their typically small total biomass, play a dis-

proportionate role in the systems’ response to perturbations.

This corresponds well with observations of real-world sys-

tems [10,27,43]. When no specific information on biomass
flows is available, these species should be targeted for

initial parametrization.

The sensitivity of a species is highly correlated with its

generality, whereas its influence appears to be independent

of its generality. Intuitively, this can be interpreted as general-

ist species being sensitive to all of their prey species, while

having relatively little impact on those species.

The weighted topological importance correlates strongly

with sensitivity and weakly with influence. This suggests

that indirect effects from proximal species in the web play

generally a large role in the response, whereas indirect effects

from distal species are relatively minor.

To improve perturbation assessments in the Gatun Lake

ecosystem, fieldwork should prioritize better measurements

of species 6 (tetras), 7 (sailfin molly, mosquito fish), and, to a

lesser degree, the large predators 10–12 that have the highest

combined sensitivity and influence (figure 1). Even, if the expli-

cit sensitivity and influence values were not available, the

correlation would suggest to prioritize these large predators,

because of their low turnover rates, and their high generality

and TLs. Furthermore, the most significant improvements

should be obtained by focusing in the measurement pro-

cess on the elasticities of mortality m and of predation c of

these species.
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7. Conclusion
Previous work has suggested that without near-perfect infor-

mation on a range of parameters, it may be intractable to

predict the effects of perturbations to large, complex systems

[25]. In this paper, we proposed a method to predict the

impact of perturbations on complex systems more efficiently.

We used this method to investigate the relative importance of

different species in food webs. We found that there are typi-

cally a small number of species that are highly important,

because they are sensitive to perturbations, have a strong

influence on others, or both.

The proposed method is based on the linear stability of

steady states in food webs. Strictly speaking, it therefore

describes the consequences of small perturbations to systems

close to a state of stable species coexistence. However, linear

stability is often found to agree well with other stability cri-

teria for food webs, such as robustness against noise [44],

or permanence which measures the boundedness of a trajec-

tory in a plausible part of the state space [45]. One can

therefore expect that our methods give at least some indi-

cations about perturbation consequences and key species in

systems that are not in a steady state.
While we have focused exclusively on food webs, we note

that the same approach can likewise be applied to other net-

works of nonlinear interactions that are found in metabolism

[46], gene regulation [47] and cellular population dynamics [48].

The presented results suggest that the potential impact of

environmental perturbations on food webs can be predicted

with reasonable accuracy if the most relevant parameters

for only a small number of important species in the web

are measured well.

Finding the important species in a food web appears as

the key to a good and efficient impact assessment. We pro-

pose to find these important species by (i) pre-selecting

species based on their biological properties, and (ii) applying

an iterative refinement method once some initial information

is available.

Our correlation analysis suggests that it is most important

to obtain precise parameter estimates for long-lived, general-

ist consumers at high trophic levels. Furthermore, our

analysis suggests that for these species, it is most important

to precisely estimate the dependence of their mortality and

predation on their abundance.
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