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Abstract
Amnestic mild cognitive impairment (MCI) is a degenerative neurological disorder at the early
stage of Alzheimer’s disease (AD). This work is a pilot study aimed at developing a simple scalp-
EEG-based method for screening and monitoring MCI and AD. Specifically, the use of graphical
analysis of inter-channel coherence of resting EEG for the detection of MCI and AD at early
stages is explored. Resting EEG records from 48 age-matched subjects (mean age 75.7 years)—15
normal controls (NC), 16 with early stage MCI, and 17 with early stage AD—are examined.
Network graphs are constructed using pairwise inter-channel coherence measures for delta-theta,
alpha, beta, and gamma band frequencies. Network features are computed and used in a support
vector machine model to discriminate among the three groups. Leave-one-out cross-validation
discrimination accuracies of 93.6% for MCI vs. NC (p<0.0003), 93.8% for AD vs. NC
(p<0.0003), and 97.0% for MCI vs. AD (p<0.0003) are achieved. These results suggest the
potential for graphical analysis of resting EEG inter-channel coherence as an efficacious method
for noninvasive screening for MCI and early AD.
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INTRODUCTION
Amnestic mild cognitive impairment (MCI) is a neurological disorder which accompanies
early-stage Alzheimer’s disease (AD) in the majority of cases that are followed
longitudinally to clinically diagnosed dementia15,16. Currently MCI is detected based on
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self/family-reported behavioral histories and some more objective measures including
written and task-based neurological and neuropsychological assessments, but typically not in
the primary care setting25. By the time a primary care provider detects significant changes,
the patient has often progressed to AD. Currently, one of the more definitive means for
diagnosing AD is determination of cerebrospinal fluid (CSF) biomarker proteins; this,
however, requires patients to undergo a lumber puncture, a painful and potentially
dangerous procedure1,26. Additionally, more advanced imaging techniques, including
computed tomography (CT), magnetic resonance imaging (MRI) and positron emission
tomography (PET) scans, may also be performed. Unfortunately, the expense and lack of
access to these diagnostic methods in a primary care setting often deters physicians from
ordering them routinely. A recent area of research has explored the development of more
convenient and noninvasive means for screening for MCI/AD, including the use of scalp
electroencephalography (EEG).

Symptoms of dementia are caused by the death of cortical neurons and cholinergic deficits
(among other concomitants) which subsequently cause a loss of local and global neuronal
connectivity in the brain7,13,19,21. The neurons of the brain constitute an extremely complex
structural network responsible for phenomena as abstract as consciousness, emotion, and
memory. The organization of neurons in the brain provides the physiological basis for
information processing. One means of attempting to quantify the structural and functional
organization of the brain is the application of graph theory to electromagnetic measures of
physiological brain activity such as functional MRI (fMRI) and EEG.

A graphical network’s complexity is typically quantified in terms of statistical randomness
and regularity among the network’s connections24. More recent research has demonstrated
that the behavior in complex systems (e.g., the human brain) is shaped by the interactions
among the network’s constituent elements5. Brain networks characteristically demonstrate
small-world behavior, or clustering3,9,17,22,23. Small-world behavior is the occurrence of
highly connected clusters of nodes within a larger network. Brain network connections are
known to exist on a microscopic level (neurons) and macroscopic level (inter-regional)5.
Connections between nodes in a graphical network are typically based on some measure of
association between nodes. In the brain, the probability of connections existing between
nodes in a network representing structural (neuronal) connectivity is highly correlated with
the physical spatial distance between nodes2,6,11. For network models of functional
connectivity, however, the relationship between functional connectivity and physical spatial
distance is more weakly correlated, as nonadjacent regions of the brain may function in
concert during certain cross-modal tasks. For example, previous investigations of network
graphs derived from fMRI measures have revealed that functionally-and anatomically-
related brain regions are more densely connected, suggesting that connection density
between nodes is likely a function of both physical spatial distance (anatomical
relationships) and level of functional codependence8,14,18.

In analyzing changes in human brain organization in dementia, fMRI and EEG networks
have clear differences. fMRI has the best spatial resolution (on the order of millimeters) but
poor temporal resolution (on the order of seconds) which restricts measurable bandwidth.
fMRI measures response-related hemodynamics rather than directly measuring neuronal
activity. The nodes used in fMRI networks are anatomically localized regions or voxels in
fMRI images. Such nodes allow for various physiological measures for which the
association of time series data may be capable of assessing both structural and functional
connectivity5. Conversely, scalp EEG has poor spatial resolution, but is capable of larger
bandwidths (e.g., 0–500 Hz). Typically, EEG electrodes are used as nodes in network
graphs. EEG is not well-suited to the study of structural organization in the brain. EEG also
has its own inherent limitations as a method of quantifying functional brain organization due
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to diffusion of voltage in EEG—namely, different electrodes at different locations across the
scalp may be affected by similar sources. For example, eye blink and other muscular
artifacts are commonly found in electrodes’ signals regardless of position on the scalp.
Despite these limitations, EEG is still capable of measuring patterns in neuronal electrical
activity more directly than fMRI5.

In this study, network features of EEG inter-channel coherence measures are examined as a
means of detecting and differentiating between normal aging, MCI, and AD at early stages.
Specifically, network features describing the global and regional uniformity in delta-theta,
alpha, beta, and gamma activity during resting state and a simple cognitive task will be
explored.

MATERIALS AND METHODS
Participants

The EEG data used in this study were collected in the laboratory of Dr. Yang Jiang of the
Behavioral Science Department and Sanders-Brown Center on Aging at the University of
Kentucky (UK) College of Medicine. Participants between the ages of 60 and 90 years were
recruited from a study cohort of cognitively normal older adults identified by the
Alzheimer’s Disease Center (ADC) of the UK College of Medicine. The patients with mild
cognitive impairments were recruited from the Memory Disorders Clinic of the ADC. The
normal older participants are screened regularly and when screenings indicate possible
cognitive decline they are referred to the ADC’s Research Memory Disorders Clinic. The
MCI and AD participants were diagnosed and recruited by cognitive neurologists Drs. C.
Smith and G. Jicha at the UK ADC Clinical Core and from its Research Memory Disorders
Clinic. A list of the neurological assessments used to make the diagnoses is provided in
Table 1. The MCI and early AD participants’ EEG data were recorded as soon as possible
after diagnoses were made, most often on the same day. All participants were required to
have no medical history of brain tumors or other abnormal brain conditions. No participants
were to have the ApoE4 allele for Alzheimer’s risk or to be on any psychoactive medication
other than antidepressants. Participants were well-matched with regards to age, with normal
controls, MCI, and AD participants having mean ages of 75.7 years (SD 5.5 years), 74.6
years (SD 9.0 years), and 76.7 years (SD 5.2 years). NC and AD participants were also well-
matched in regards to gender, with NC and AD participants being comprised of 60%
females. MCI participants were only 25% female. Difference in MCI gender was likely due
to recruiting and does not reflect population trends.

EEG Protocols
Participants were connected to 64- or 32-channel EEG caps using a Neuroscan II system
(10–20 montage). In either case, only the 32 common channels were recorded. EEG data
were recorded under a protocol using three different non-memory-task conditions. These
included (1) resting with eyes open for 5 minutes, (2) resting with eyes closed while
counting backwards by ones for 10 minutes while tapping a finger, and (3) resting with eyes
closed for 10 minutes, followed by another 5 minutes of eyes open while resting. The EEG
recording was performed without interruption at the same appointment for each subject.
EEG data were acquired at 500 Hz. The 32 EEG channels included 2 ocular channels which
were used to determine the dominant eye blink frequency. Notch filters were used to remove
dominant eye blink frequencies and to remove 60 Hz frequencies, which may have been
amplified by background electronic devices. A simple 2nd order Butterworth filter was used
to attenuate frequencies greater than 200 Hz. In addition, analysis of EEG data examined
only frequency components less than 40 Hz.
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Coherence Measures
Inter-channel coherence was computed for all pairwise combinations of the 30 electrodes
(32 channels with 2 ocular channels excluded) for samples of 2 min duration for all 3
conditions using coherence functions in MATLAB™. Magnitude squared coherence (Cxy) is
defined by Equation (1), where Pxy is the cross-power spectral density, Pxx and Pyy are the
auto-power spectral densities of electrodes x and y, respectively, and f is frequency.
Coherence was computed using Welch’s averaged, modified periodogram method with
windows of 2 seconds and 50% overlap. A 50% cosine taper was applied to each window.
Choice of window length and tapering window were based on methods for computing other
common spectral features of EEG presented by previous researchers20.

(1)

Mean coherence values ( ) were determined for four physiologically relevant frequency
bands: (1) delta-theta (δ, 0—7.5 Hz), (2) alpha (α, 7.5—12.5 Hz), (3) beta (β, 12.5—25 Hz),
and gamma (γ, 25—40 Hz). Delta-theta frequencies are associated with sleeping,
drowsiness, and daydreaming; alpha and beta bands are associated with being awake and
alert; gamma band frequencies are associated with short-term memory and cross-modal
tasks. These four mean coherence values were used to determine connections in graphical
network representations of inter-channel coherence.

Inter-Channel Coherence Networks
A graphical network representation of inter-channel coherence was constructed for each of
the four frequency bands. Nodes in each network were defined as the EEG electrode
channels. Mean coherence values for corresponding frequencies were used as measures of
associations between nodes. Weights were assigned to all pairwise connections in the
networks and were equal to the complement of the mean coherence values. For example, for

a mean coherence value between channels x and y among α band frequencies ( ), the

corresponding weight . Thus, the lower the weight, the stronger the coherence
of the given frequency activity between two electrodes. Thresholds of 0.567, 0.481, 0.402,
and 0.303 were applied to weights of the δ, α, β, and γ band networks, respectively.
Connections with weights below these thresholds were included while connections with
weights greater than these thresholds were severed. The choice of thresholds was based on
the observation that 75% of weights among all subjects were above the thresholds.

Network Features
Sixteen features were computed for each of the 4 network graphs corresponding to the 4
frequency bands for a total of 64 features; see Table 2 for a list of network features
computed. The set of features includes four global network features and 12 regional network
features. The first global network feature is connection density (D). Connection density is
equal to the percentage of possible connections which passed the threshold significance
criterion and are actually present in the network (existing connections). Other global features
included statistical features summarizing the distribution of existing connections’ weights.
Specifically, the maximum likelihood estimates of the scale (A) and shape (B) parameters
for a Weibull distribution fit of the weights’ probability density function (PDF) were
determined. These parameters allow for analysis of the general trends in the strength of
coherence between significant (existing) connections.
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An additional global network feature computed included the mean number of nodes (𝑁 ¯) in
the shortest existing pathways between nodes. Given the severing of connections via the
threshold criterion, a pathway does not necessarily exist between any two given nodes.
Furthermore, given that the length of a pathway is equal to the sum of the weights of
connections in a pathway and that the weights are equal to the complement of the coherence
between nodes, the shortest pathway between two nodes is also the pathway of strongest
coherence between constituent nodes in the pathway. Because coherence is a measure of the
correlated general trends of two time series at a given frequency, it is also a measure of
mutual information between frequency activities of the two time series. Viewed in this
context, the shortest pathway between two nodes is both the pathway of strongest coherence
and the pathway of greatest mutual information in the specific frequency band for the given
start and end nodes. The mean number of nodes in the shortest existing pathways is
therefore an average measure of the interdependence of mutual information among
connected nodes in the given frequency range.

In addition to the four global network features described above, hub order and clustering
coefficients were also examined on a regional basis. Hub order (H) for a given node is
defined as the number of existing shortest pathways which include the node, excluding
pathways which begin or end at the given node. Clustering coefficient (K) for a given node
is a measure of the connection density among local nodes. In this study, clustering
coefficient for a given node is defined as the number of direct connections between the
directly connected nodes divided by the number of possible connections between directly
connected nodes. Both hub order and clustering coefficients were averaged over six scalp
regions: central (C), frontal (F), left temporal (L), parietal (P), occipital (O), and right
temporal (R). See Fig. 1 for a diagram of the region boundaries.

The implications of the values of the chosen network features regarding the EEG electrical
activity are summarized in Table 3, where the superscript (f) denotes the frequency band and
the subscript (r) denotes the region (if applicable). A low connection density (D) value is
indicative of low global coherence and implies diverse sources for the recorded electrical
activity in the given frequency band. Conversely, high D is indicative of high global
coherence and greater uniformity in the electrical activity in the given frequency band. The
weight’s PDF scale parameter (A) has the opposite relationship, with a low value implying
high coherence and a high value implying low coherence. The PDF shape parameter (B) is
indicative of the variation in coherence values, with a low value suggesting low variation
and a high value suggesting high variation. The mean number of nodes in the shortest
existing pathways (𝑁 ¯), as mentioned previously, serves as a measure of the interdependence
of coherence values, with a larger mean number of nodes indicating lower interdependence.
Generally, low interdependence in coherence values can be interpreted as implying low
uniformity in electrical activity in the given frequency band. Regional mean hub orders

( ) also indicate interdependence of coherence, but on a regional rather than global scale.
These values can be interpreted as indicating the relative interdependence of the given

region’s coherence with the other regions. Thus, low  could imply low global uniformity
in electrical activity or a possible localized source of electrical activity in the given

frequency band near or within the specific region. High  is indicative of greater global
uniformity in the given frequency band activity. Finally, regional mean clustering

coefficients ( ) serve as indicators of intraregional coherence, with high values suggesting
the possibility of a localized source for given frequency activity.
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Feature Selection
The three groups of subjects (NC, MCI, and AD) provided three binary discrimination
problems: (1) MCI vs. NC, (2) AD vs. NC, and (3) MCI vs. AD. Sixteen network features
were computed for four network graphs based on mean inter-channel coherence for δ, α, β,
and γ frequency bands. Thus, a total of 64 features were computed for each subject for each
protocol condition. Feature selection was performed in order to assess the contribution of
individual features to discrimination performance for each binary discrimination problem
and each protocol condition. Feature selection was performed as follows. For each
discrimination problem and each condition, combinations of up to 8 of the 64 features were
tested using support vector machine (SVM) functions in MATLAB™. Quadratic kernel
functions were used in all discriminations and the cost coefficient was held constant at unity.
To help avoid over fitting, nested leave-one-out cross-validation loops were used to suggest
and test different combinations of features. The inner loop was used to generate a list of
suggested combinations of features using a forward, supervised, high-score feature selection
method where combinations were scored using leave-one-out cross-validation accuracy of
SVM model predictions based on a smaller, randomized, subset of records4. The outer loop
determined the leave-one-out cross-validation accuracy of the combinations of features
suggested by the inner loop for all available records. The contribution of individual features
was then assessed based on how often they appeared in the best 200 performing
combinations tested in the outer loop simulations. Ultimately, the six features which
appeared most often were then tested in combination.

Statistical Significance
The statistical significance of results obtained using the six selected features chosen via
feature selection was assessed using Monte Carlo permutation testing. Specifically, a
random sample of 10,000 permutations of shuffled labels was used to estimate a 95%
confidence interval for the probability that the leave-one-out cross-validation accuracies
obtained were due to chance. The p-values presented were determined using this method.

RESULTS
A summary of the feature selection results is presented in graphical form in Fig. 2, where a
color scale is used to indicate the inclusion of given features in the 200 best performing
combinations. For example, 100% would indicate that a given feature was included in all of
the 200 best performing combinations; 50% indicates inclusion in half of the 200 best
performing combinations; etc. As can be seen in Fig. 2, for most binary classification
problems and conditions, a few features are clearly highlighted as being highly
discriminatory (highly inclusive). One notable exception is the discrimination of MCI vs.
NC subjects while counting backwards with eyes closed. As seen in Fig. 2, no set of features
is capable of clearly distinguishing the two groups’ EEG frequency activity during the given
task. Statistical analyses reveal that this failure is due to high variability among feature
values within each group, suggesting that the task of counting backwards with eyes closed
may be ill-suited for discriminating between MCI and NC subjects based solely on analysis
of EEG frequency characteristics.

For each protocol condition and discrimination problem, the six features with the highest
inclusivity among feature selection results were selected for further analyses. Firstly, all six
features were tested in combination. The results are summarized in Table 4. 95% confidence
intervals for corresponding p-values of the resulting leave-one-out cross-validation
accuracies were assessed using Monte Carlo permutation testing.
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Additionally, two-sample Student’s t-distribution tests (unequal variance) were performed
on group means of individual features in order to determine whether differences between the
given samples were great enough to statistically infer differences in the groups’ populations
(90% confidence). Features for which such an inference could be made are indicated with †
in Table 4. Given the small sample sizes, such inference required large differences between
group means and small variation within groups. It should be noted that such tests are
dependent on the assumption of representative samples.

Finally, the potential implications of differences in EEG electrical activity between groups
were assessed for each feature for which differences in population means could be inferred
with statistical significance. These observations are summarized in Table 4.

When resting with eyes open, MCI subjects demonstrated greater interdependence of α
activity in the central region with other regions, greater interdependence of β activity of the
frontal region with other regions, and greater localization of β activity in the occipital region
compared to normal controls. These observations suggest overall greater uniformity in α
activity and greater localization in β activity for MCI subjects compared to NC subjects. The
eyes open, resting condition also demonstrated the greatest accuracy in MCI vs. NC
discrimination, with a leave-one-out cross-validation accuracy of 93.6% (p<0.0003) using
six selected features. Results for MCI vs. NC discrimination while counting backwards with
eyes closed were inconclusive, with feature selection failing to suggest likely discriminating
features among those tested. While resting with eyes closed, MCI subjects as a whole
demonstrated higher mean coherence in α activity and greater localization of γ activity in
the frontal region. A leave-one-out cross-validation accuracy of 87.1% (p<0.0012) was
achieved during the eyes closed, resting condition using six selected features.

A leave-one-out cross-validation accuracy of 81.3% (p<0.0042) was achieved for AD vs.
NC discrimination during the eyes open, resting condition. Group differences in selected
features indicated greater interdependence of α activity of the frontal region with other
regions and higher mean coherence in γ activity for AD subjects. Leave-one-out cross-
validation accuracies of 93.8% (p<0.0003) and 90.6% (p<0.0003) were achieved using six
selected features for the counting with eyes closed and resting with eyes closed conditions,
respectively. Lower global uniformity of δ activity and lower coherence of β activity in the
occipital region was observed for the AD subjects during the counting backward condition.
When resting with eyes closed, AD subjects clearly demonstrated greater localization of δ
activity in the left temporal region and significantly higher variability in γ activity.

The highest discrimination accuracy for MCI vs. AD was observed during the eyes open,
resting condition, with a leave-one-out cross-validation accuracy of 97.0% (p<0.0003) using
six selected features. Statistical analyses of the selected features indicate greater uniformity
in δ activity and lower uniformity in α and γ activity in AD subjects compared to MCI
subjects. AD subjects also demonstrated greater localization of γ activity in the central
region. A leave-one-out cross-validation accuracy of 87.9% (p<0.0008) was achieved for the
counting backward task using six selected features. Those features point to lower uniformity
in α and γ activity and greater uniformity in β activity in AD subjects compared to MCI
subjects. Gamma activity features also appear to have greater discriminatory power for the
resting with eyes closed condition. A leave-one-out cross-validation accuracy of 87.9%
(p<0.0007) was also achieved for the resting, eyes closed condition using six selected
features.
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DISCUSSION
In this study, EEG of resting state conditions and a simple cognitive task are explored as
likely biomarkers for discriminating NC, MCI and AD groups. Resting state protocols and
simple cognitive tasks (e.g., counting backwards) eliminate the need for a memory task.
Resting states, in particular, do not attempt to elicit specific cognitive responses, thereby
making the analysis more robust in regards to patients’ states of mind. Interestingly, while
the best discrimination between AD and NC subjects was achieved during the counting
backward condition, the best results in discriminating MCI from NC and AD subjects was
achieved during the eyes open, resting condition, suggesting that cognitively taxing tasks
may indeed be unnecessary for eliciting detectable differences in EEG activity for MCI
diagnosis.

Previous studies have explored various EEG features for the discrimination of MCI/AD
from normal individuals. Several of these researchers have observed that features which
appear to discriminate AD from NC well, do not necessarily perform well when applied to
MCI subjects10,12,20. Often, MCI individuals appear to be spread across boundaries which
otherwise clearly discriminate AD from normal subjects. These difficulties are likely due to
the nature of MCI diagnoses. By definition, neurological symptoms caused by amnestic
MCI do not significantly interfere with normal daily activities. In contrast, when patients are
diagnosed with AD, their symptoms have generally progressed significantly. Thus, the
diagnosis of MCI constitutes a gray area between normal, age-related cognitive decline (NC)
and AD. The high accuracy achieved here in discriminating between MCI and AD on the
basis of γ activity is encouraging as there is great interest in being able to detect cognitive
decline which may be associated with AD at the earliest stages. It is also worth noting that a
different set of features may be required for discriminating between NC, MCI, and AD as
features rarely appear to function as a sliding scale with NC at one end, AD at the other, and
MCI in the middle.

Previous studies have also demonstrated the applicability of synchronization, coherence, and
other association measures between scalp EEG electrodes in the discrimination of normal
individuals and those with dementia. Typically, researchers have attempted to identify
individual local association measures (e.g., coherence between two specific channels at a
specific frequency) or a few globally-averaged association measures which appear to
demonstrate significant robustness in discriminating normal individuals from those with
dementia. Unfortunately, dementia can cause different neurological changes in different
individuals—especially in the case of more enigmatic diagnoses such as MCI. Such
differences may lead to the failure in the generalization of local or globally-averaged
association measures to other data sets.

This study presents a method for analyzing coherence measures between EEG electrodes via
graphical analysis. The success of SVM discrimination between binary groupings of the
three groups of EEG records (NC, MCI, and AD) are the result of differences in uniformity
of electrical activity in specific frequency bands in resting states and during a simple
cognitive task. Specifically, MCI subjects demonstrated greater uniformity in α and β
activity than NC subjects when resting with eyes open. AD subjects also demonstrated
greater uniformity in α and γ activity when resting with eyes open. When counting
backwards, differences between MCI and NC subjects were inconclusive; however, AD
subjects demonstrated lower uniformity of δ and β activity in the parietal and occipital
regions, respectively, compared to NC subjects. When resting with eyes closed, MCI
subjects demonstrated greater uniformity in α activity and greater localization in γ activity in
the frontal region while AD subjects demonstrated greater localization of δ activity in the
left temporal region and higher variation in γ coherence. Differences between MCI and AD
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subjects were primarily observed with regards to γ activity in all three conditions. It is
possible that these differences may be the results of characteristic changes in brain network
functional organization (e.g., compensatory mechanisms) as a result of neurological
degeneration.

The results of this work suggest the possible potential for the use of network graphs
representing scalp electrical activity relationships as a means for objectively discriminating
between normal, MCI, and AD patients. Results suggest that a simple discrimination model
utilizing SVM and the network features presented here may be a viable basis for future
development of a diagnostic screening tool for MCI and early AD with applicability in the
primary care setting. Such a rapid, simple, and cost-effective tool could also prove useful in
the drug discovery process. One limitation of this study is the small number of participants.
Future work will increase the sample size to test the robustness and generality of the results
here.
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Fig.1.
Boundaries of scalp regions. C = central, F = frontal, L = left temporal, O = occipital, P =
parietal, and R = right temporal.
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Fig.2.
Feature selection results. Color scale indicates the inclusion of given features in the 200 best
performing combinations for the given protocol condition and binary discrimination
problem.
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Table 1

Cognitive Tests and Other Evaluations Used to Make MCI/AD Diagnoses

General Cognitive Measures Baseline Only

MMSE National Adult Reading Test

Clinical Dementia Rating (CDR)

Memory Domain Measures Medical Evaluation

WMS Logical Memory I & II Physical exam

California Verbal Learning Test Neurological exam

Medical history

Attention/Executive Domain Measures Medications

Trail Making Tests A & B Nutritional supplements

WAIS-R Digit Span & Digit Symbol Food Frequency Questionnaire (FFQ)

Language Domain Measures Psychiatric Evaluation

COWAT Neuropsychiatric Inventory Questionnaire (NPI-Q)

Animal Fluency Geriatric Depression Scale (GDS)

Vegetable Fluency

Boston Naming

Functional Ability Measures

Functional Assessment Questionnaire (FAQ)

Visual/Spatial Domain Measures SF-36

CERAD Figures ADCS-ADL
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Table 2

Network Features

(1) D Connection density

(2) A Scale parameter of Weibull distribution fit of weights

(3) B Shape parameter of Weibull distribution fit of weights

(4) Mean number of nodes in shortest existing pathways

(5) Mean hub order in central (C) region

(6) Mean hub order in frontal (F) region

(7) Mean hub order in left temporal (L) region

(8) Mean hub order in occipital (O) region

(9) Mean hub order in parietal (P) region

(10) Mean hub order in right temporal (R) region

(11) Mean clustering coefficient in central (C) region

(12) Mean clustering coefficient in frontal (F) region

(13) Mean clustering coefficient in left temporal (L) region

(14) Mean clustering coefficient in occipital (O) region

(15) Mean clustering coefficient in parietal (P) region

(16) Mean clustering coefficient in right temporal (R) region
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Table 3

Implications of Network Feature Values for Brain Electrical Activity

Feature Value Direct implications for coherence Implications for f band electrical activity

(1) Df low low global coherence lower uniformity

high high global coherence greater uniformity

(2) Af low high mean coherence greater uniformity

high low mean coherence &/OR high variation in coherence low uniformity

(3) Bf low low variation in coherence --

high high variation in coherence --

(4) N¯f low high interdependence of coherence greater uniformity

high low interdependence of coherence low uniformity

(5)–(10) H¯rf low coherence in region r has low interdependence of with other
regions

low uniformity &/OR
possible localized source of f band activity
near/within region r

high coherence in region r has high interdependence of with other
regions

greater uniformity

(11)–(16) K¯rf low low coherence within region r --

high high coherence within region r possible localized source of f band activity
near/within region r
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