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Abstract
Hepatitis C virus (HCV) infection of the liver is a global health problem and a major risk factor
for the development of hepatocellular carcinoma (HCC). Sensitive methods are needed for the
improved and earlier detection of HCC, which would provide better therapy options. Metabolic
profiling of the high risk population (HCV patients) and those with HCC provides insights into the
process of liver carcinogenesis and possible biomarkers for earlier cancer detection. Seventy-three
blood metabolites were quantitatively profiled in HCC (n=30) and cirrhotic HCV (n=22) patients
using a targeted approach based on liquid chromatography resolved tandem mass spectrometry
(LC-MS/MS). Sixteen of the 73 targeted metabolites differed significantly (p < 0.05) and their
levels varied up to a factor of 3.3 between HCC and HCV. Four of these 16 metabolites
(methionine, 5-hydroxymethyl-2′-deoxyuridine, N2,N2-dimethylguanosine and uric acid) that
showed the lowest p-values were used to develop and internally validate a classification model
using partial least squares discriminant analysis. The model exhibited high classification accuracy
for distinguishing the two groups with sensitivity, specificity and area under the receiver operating
characteristic curve of 97%, 95%, and 0.98, respectively. A number of perturbed metabolic
pathways including amino acid, purine and nucleotide metabolism were identified based on the 16
biomarker candidates. These results provide a promising methodology to distinguish cirrhotic
HCV patients, who are at high risk to develop HCC, from those who have already progressed to
HCC. The results also provide insights into the altered metabolism between HCC and HCV.
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Introduction
Hepatitis C virus (HCV) infection is a global health problem that causes significant
morbidity and mortality. Worldwide, 150-170 million people are currently infected with
HCV, with 3-4 million new cases and more than 350,000 deaths reported each year
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according to estimates from the World Health Organization [www.who.int/mediacentre/
factsheets/fs164/en/] [1]. HCV infection of the liver is a potent risk factor for the
development of HCC and HCC is associated with a high mortality and morbidity [2-4]. In
addition, HCV infection alone is a risk factor for progression of HCC by a factor of more
than 25 [5], and it accounts for nearly 25% of the prevalence of HCC patients [6]. Studies
have shown that the prevalence of HCV in industrialized nations such as the United States
has more than tripled since 1975 [7, 8]. As such, the incidence of HCC has risen over the
ensuing years and continues to rise to a greater extent than any other cancer subtype [9]. In
the US, HCC is often diagnosed at advanced stages, mainly due to the lack of simple and
sensitive methods for its early detection. The near causal link between chronic viral
infection and cancer identifies a patient population whereby biomarkers of cancer risk would
be instrumental in improving our current diagnostic and treatment paradigms. Better
methods to identify the subset of HCV patients at highest cancer risk would allow for: 1) the
establishment of more intense surveillance mechanisms, 2) the development of
chemoprevention protocols, and 3) improved leverage for these patients with respect to liver
transplant.

Metabolomics, in which a large number of small molecule metabolites are detected
quantitatively, often in easily accessible biofluids such as blood and urine, promises useful
information regarding early biomarkers and altered metabolic pathways. As metabolites are
the downstream products of genes and gene expression, they integrate many of the
alterations caused by disease or other biological stresses. Metabolites are exquisitely
sensitive to different biological states and therefore represent a promising approach to
identify potential biomarkers [10-12]. Several analytical techniques such as nuclear
magnetic resonance (NMR), liquid chromatography-mass spectrometry (LC-MS) and gas
chromatography–mass spectrometry (GCMS) have been used to detect metabolic changes in
a number of cancers including liver cancer [13]. Several studies using a variety of analytical
techniques have reported discovery of potential biomarkers in biological samples such as
serum, plasma and urine of subjects with HCC relative to healthy controls. While a few of
these studies have used animal models [14-16], the majority of studies were focused on
humans [3, 4, 10, 15, 17-25] using NMR [4, 10], LC-MS [3, 17, 19, 20, 25, 26], GC-MS [3,
21, 22, 24, 26] or HPLC [23] methods. These studies have reported alterations in numerous
metabolic pathways including glycolysis, amino acid, fatty acid and bile acid metabolism
based on altered metabolites in HCC. However, none of the studies have focused exclusively
on altered metabolic pathways between HCV patients, and in particular those with cirrhosis,
who have high risk of developing HCC, and those who have developed HCC. We recently
reported that three metabolites, choline, valine and creatinine differentiate HCC patients
from HCV using high resolution NMR spectroscopy, and showed the potential utility of
identification of such altered metabolites for identifying HCV patients with risk of
developing HCC [27].

In the present work, we focus on identifying additional metabolic changes and altered
metabolic pathways between HCC patients with underlying HCV and HCV patients who are
at high risk of developing HCC. All patients in the study had cirrhotic livers. To extend the
coverage of low concentration metabolites that distinguish HCV and HCC, we have chosen
a targeted method based on LC-MS/MS metabolite profiling of serum. This multiplexed
targeted LC-MS/MS approach has been shown to be quite robust and versatile in a variety of
biomarker and systems biology studies [28-31]. In the present work, a number of significant
changes were observed in several important and cancer related metabolic pathways.
Utilizing multivariate statistical analysis we could combine the top performing metabolite
biomarkers into a model that distinguishes between the two patient groups with excellent
performance. Monitoring metabolites in HCV patients may provide improved understanding
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of the timing and pathogenesis of HCC, and when further developed allow identification
HCV patients who are at high risk of liver cancer at an earlier stage.

Experimental
Chemicals and reagents

Methanol was obtained from Avantor Performance Materials (HPLC-grade; Center Valley,
PA). Acetic acid (≥99.7%) and all the standard metabolites (≥97%) used in this study (see
Supplemental Table S1) were purchased from Sigma-Aldrich (St. Louis, MO). L-
Proline-13C5, 15N1 (97-99 atom % 13C, 97-99 atom % 15N) was purchased from Cambridge
Isotope Laboratories (Andover, MA). Water was purified using an EASYpure II UV water
purification system (Barnstead International, Dubuque, IA).

Patients and Serum sample
Patient serum samples were collected from the Indiana University/Lilly tissue bank through
clinical collaboration following protocols approved by the Institutional Review Boards of
both Indiana and Purdue Universities. Sample cohorts consisted of histologically proven
HCC patients with underlying HCV and cirrhosis (n=30; mean age 55.5±10.7) and HCV
patients with cirrhosis but without HCC (n=22; mean age 52.2 ±8.1). Table 1 shows
demographic characteristics of the patient cohorts. Overnight fasted samples were collected
to minimize confounding factors arising from diet. The blood samples were allowed to clot
for 45 min; centrifuged at 2000 rpm for 10 min and the resulting sera were separated and
aliquoted into separate tubes and frozen immediately at −70 °C. The frozen samples were
then shipped over dry ice to Purdue University (West Lafayette, IN), which were stored at
−80 °C freezer until used for analysis.

Sample preparation and acquisition
Frozen patient sera were thawed at room temperature for 30 min. Protein precipitation was
performed by adding 600 μL methanol to 200 μL to each serum sample. The solution was
vortexed vigorously for 1 min and then held for 20 min at −20 °C. The samples were
centrifuged at 14,000 rpm for 20 min (Eppendorf centrifuge, model 5804, Hauppauge, NY),
and the supernatant was collected and dried using a vacuum system (Vacufuge Plus,
Eppendorf, Hauppauge, NY). Each dried sample was reconstituted in 50 μL water/methanol
(95:5) and then transferred to an LC sample vial. Labeled sample vials were placed in the
autosampler in random order and kept at −4 °C throughout the analysis. A 10 μL sample
injection was used for LCMS/MS analysis in both positive and negative modes. 13C5-15N-
proline was added to each serum sample, after deproteinization, and used as an internal
reference. Further, to assess performance of the instrument and process reproducibility, a
mixture of all the metabolites was used as a quality control sample and injected into the LC-
MS/MS after every 25 patient samples, as well as before and after cleaning the ESI source;
the ESI source was cleaned every 48 hrs. Duplicate sample runs were performed to account
for technical reproducibility. To evaluate sensitivity and linear dynamic ranges, we
determined limits of detection (LODs) and dynamic ranges from a mixture of 39 standard
metabolites at 20 different concentrations (Supplementary Table S2).

LC-MS/MS system components and MS parameters
Mass spectrometric analyses were performed on an ABI Sciex API-3000 triple quadrupole
mass spectrometer (AB SCIEX, Framingham, MA) equipped with an ESI turbo ion spray
source operated in both positive and negative ion modes. The mass spectrometer was
coupled to an Agilent 1100 series HPLC system consisting of two quaternary pumps,
solvent degassers and a temperature-controlled column oven [31]. A CTC PAL autosampler
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(LEAP Technologies, Carrboro, NC) equipped with multiple injection ports was used for
sample loading, while a VICI 2-position switching valve (Valco Instruments, Houston, TX)
allowed the MS inlet to be switched between the two pumps, one of which was used for
separating metabolites detected as positive ions and the other as negative ions. The two
pumps allowed for alternating separation and column reconditioning to increase throughput.
Multiple reaction monitoring (MRM) mode was used to detect the multiple metabolites as
they eluted off of the chromatographic column using a dwell time of 100 ms per metabolite.
Nitrogen gas was used as curtain, collision, and nebulizer gas, with flow rates set at 12, 10,
12 (arbitrary units), respectively. The ion spray needle voltages used for MRM positive and
negative modes were set at 3600 V and −3600 V, respectively. The LC-MS/MS system was
controlled by Analyst 1.5 software (AB SCIEX, Framingham, MA, USA).

Chromatography Conditions
Chromatography was performed under reverse phase conditions using an Eclipse XDB-C18
4.6×150, 5μm column (Agilent Technologies, Santa Clara, CA). The flow rate, column
temperature and sample injection volume were set to 400 μL/min, 45 °C, and 10 μL,
respectively. The optimized chromatography conditions were as follows: Solvent A: water
with 0.1% acetic acid; Solvent B: methanol with 0.1% acetic acid. The elution gradient, 0
min: 5% B; 42 min: 95% B, was used to separate metabolites detected in negative MRM
mode. For positive MRM mode, 0 min: 5% B; 35 min: 95% B were used. Before all
injections, column cleaning and equilibration steps were applied.

Compound Optimization Parameters
Information about each precursor ion m/z values (Q1) and product ion m/z values (Q3) for
MRM detection of the metabolites was obtained from previous studies [28-31]. To decrease
the chemical background noise and increase the intensity of metabolite peaks, pre-collision
cell voltages including declustering potential (DP), focusing potential (FP), collision energy
(CE), and collision cell exit potential (CXP) parameters for each metabolite were optimized.
To this end, a 2 μM solution for each metabolite in 50:50 water:methanol was prepared and
was directly infused into the mass spectrometer using a Harvard PHD 2000 Syringe Pump
(Holliston, MA) at a flow rate of 15 μL/min. The optimized metabolite parameters were
obtained and used for the appropriate MRM mode.

Data analysis
Peak intensities for the 73 measured metabolites were integrated using Analyst 1.5 software
(AB SCIEX, Framingham, MA). Peak integrals for each metabolite averaged over duplicate
sample runs were used for further analysis. The Student’s t-test was used to evaluate
statistical significance for metabolite intensity differences between HCC and HCV. Four
metabolites that showed the lowest p-values between the two patient groups were then
chosen for multivariate statistical analysis using partial least-squares discriminate analysis
(PLS-DA). PLS-DA modeling was performed using Matlab (R2008a, Mathworks, Natick,
MA) installed with the PLS toolbox (v4.1, Eigenvector Research, Wenatchee, WA). The X
matrix, consisting of the MS data, was mean centered prior to all statistical analyses. Each
subject was assigned either a “0” (for HCC) or “1” (for HCV) to serve as inputs to the one
dimensional Y matrix. Leave-one-out cross validation (CV) was chosen, and the number of
latent variables (3 in this case) was selected according to the minimum root mean square
error of CV procedure. Class predictions were made visually using a Y-predicted scatter plot
with a cut-off value chosen to minimize errors in class membership. The R statistical
package (version 2.8.0) was used to generate receiver operator characteristic (ROC) curves
and box-and-whisker plots, calculate sensitivity, specificity and area under the ROC curve
(AUROC). A schematic diagram of altered metabolic pathways was drawn based on
established databases [www.genome.jp; http://modomics.genesilico.pl/pathways/] to help
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understand the pathogenesis of the disease and indicate the relationship among the candidate
biomarkers. A second multivariate PLS-DA model was constructed to analyze the sample
data by selecting four metabolites based on their variable importance in projection (VIP)
scores derived using all 73 metabolites, and a comparison with the results obtained using 4
lowest p-value metabolites was made.

Results
Targeted analysis using LC-MS/MS in MRM mode was performed on 73 metabolites that
could be detected reliably in serum. Of these, 38 metabolites were detected in negative ion
mode and 35 metabolites in positive ion mode (see Supplemental Table S1 for metabolite
list). All 73 metabolites were detected in all HCC and HCV patient samples and could be
measured quantitatively and reliably based on the achieved MS sensitivity and
chromatographic conditions (Supplementary Figure S1 and Table S2). Good instrumental
stability was observed, indicated by the CV values of 13-20% for the metabolites in the
quality control samples, based on 24 measurements, 12 in positive and 12 in negative ion
mode.

Initial data analysis based on the averaged peak areas of duplicate sample runs indicated 16
metabolites (tyrosine, phenylalanine, glycerol, 1-methylguanosine, methionine, N-
carbamoyl-β alanine, xanthine, homocysteine, creatine, 1-methyladenosine, N2,N2-
dimethylguanosine, 5-hydroxymethyl-2′-deoxyuridine, 2-deoxyguanosine, 1-methylinosine,
aconitic acid and uric acid) had statistically significant differences in the samples of HCC
and HCV patients, as indicated by p<0.05 using the Student’s t-test. These metabolites
varied in their levels by a factor of up to 3.3 between HCC and HCV, and all except three,
creatine, 1-methyladenosine and 5-hydroxymethyl-2′-deoxyuridine were down regulated in
HCC compared to HCV. Table 2 shows the 16 metabolites along with their p-values and
fold changes between the two groups.

From the 16 distinguishing metabolites, a smaller group of metabolites was chosen, based on
their low p-values, to build a model and test classification accuracy and predictive power. A
group of four metabolites (methionine, 5-hydroxymethyl-2′-deoxyuridine, N2,N2-
dimethylguanosine and uric acid) with the lowest p-values (p≤0.0032) provided high
classification accuracy. Box-and-whisker plots for these four potential biomarkers are shown
in Figure 1 and indicate the individual discrimination power between HCC and HCV. The
median level for 5-hydroxymethyl-2′-deoxyuridine increased in HCC by factor of 1.5, while
the levels for the other three metabolites decreased. A PLS-DA model combining these four
metabolites was performed using leave-one-out cross validation. The model showed an
excellent separation between HCC and HCV patients with a sensitivity of 97% and
specificity of 95%. The ROC curve shown in Figure 2 for the prediction model has an
AUROC of 0.98. R2 and Q2 values for the model were 0.62 each, indicating that the model
had good predictability.

A second approach for metabolite selection was used based on high variable importance in
projection (VIP) scores. VIP analysis of the results of PLS-DA modeling using all 73
metabolites provided a number of metabolites with scores above 1. Four metabolites (5-
hydroxymethyl-2′-deoxyuridine, 1-methyladenosine, 2-deoxyguanosine, and 4-
hydroxybenzoic acid) were found to have the highest VIP scores. While one of the
metabolites (5-hydroxymethyl-2′-deoxyuridine) thus selected was the same, three
metabolites (1-methyladenosine, 2-deoxyguanosine, and 4-hydroxybenzoic acid) were
different from those selected based on lowest p-values. The PLS-DA model developed using
these 4 metabolites thus selected provided somewhat poorer results compared to results
derived using the 4 metabolites with lowest p-values, with a sensitivity of 90% and
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specificity of 83%. The AUROC was also lower (0.91 versus 0.98) (Supplementary Figure
S2). R2 and Q2 analysis showed that this model was not very predictive with values of 0.04
and −0.11, respectively. Further, while three of the metabolites (5-hydroxymethyl-2′-
deoxyuridine, 1-methyladenosine and 2-deoxyguanosine) differed significantly between PC
and controls (p<0.05), one metabolite (4-hydroxybenzoic acid) did not differ significantly
(p> 0.05).

Overall, the 16 distinguishing metabolites are associated with a number of important
pathways (vida infra), many of which have been previously associated with cancer [3, 4, 10,
19, 21-24]. A metabolic pathway diagram was constructed highlighting the biomarker
candidates and their relationship to various pathways and is shown in Figure 3.

Discussion
Optimized chromatographic conditions and tandem mass spectrometry by MRM in positive
and negative ion modes enabled access to a high number of reliably measured and important
metabolites. In this study we could detect concentrations for 73 serum metabolites in HCV
patients and HCC patients with underlying HCV. These targeted metabolites span a broad
range of compound classes, including: amino acids (36% of total measured); organic acids
(30%); nucleosides and nucleotides (12%); purines and their derivatives (7%); amino
ketones (4%); and others (11%), as shown in Table 3. Sixteen of these metabolites that
differed, significantly, indicate pathological differences between the two groups of patients.
Further, the high sensitivity and specificity exhibited by the multivariate statistical model
that distinguishes HCC and HCV is promising for better understanding the pathogenesis as
well as for earlier detection of HCC in HCV infected patients (Figure 2).

Considering that HCV is a major cause for primary liver cancer (HCC), as well as the fact
that symptoms for HCC do not appear typically until the last stage of the disease, it is of
significant interest to identify HCV patients with risk of developing HCC based on the
identification of altered metabolites and metabolic pathways. Along these lines we recently
demonstrated the potential benefit of identifying metabolite markers in serum using NMR
spectroscopy [27]. However, due to the limited sensitivity of NMR, a relatively small
number of distinguishing metabolites was identified from the study. The high sensitivity of
the LC-MS/MS approach used in the present study provided a much wider pool of
distinguishing metabolites that are complementary to those identified by NMR. To
understand the pathogenesis of the disease and indicate the relationship among candidate
biomarkers, a schematic pathway diagram highlighting potential biomarker candidates and
their pathway relationships is shown in Figure 3. In the figure, metabolites that showed
statistically significant alterations in intensity are shown in square boxes. The three up-
regulated metabolites are shown with an upward pointing arrow.

A number of altered metabolic pathways including the beta-alanine pathway (metabolite: N-
carbamoyl-β-alanine), glycolipid (glycerol), amino acid (phenylalanine, tyrosine, creatine,
cysteine, methionine, homocysteine), purine (xanthine and uric acid), and nucleoside
pathways (1-methyladenosine, 1-methylinosine, deoxyguanosine, 1-methylguanosine and
N,N-dimethylguanosine) were identified as being affected due to HCC, based on the 16
metabolites with altered levels. To the best of our knowledge, 4 of these 16 metabolites (N-
carbamoyl-β-alanine, 5- hydroxymethyl-2′-deoxyuridine, 2-deoxyguanosine, and aconitic
acid) have not been previously reported as being associated with the development of liver
cancer, while 12 of 16 have been reported as potential biomarkers for liver cancer and
hepatitis [3, 4, 10, 19-24].
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As shown in Table 2, the mean levels for all of the amino acid biomarker candidates with
low p-values, including tyrosine, phenylalanine, methionine, homocysteine, and N-
carbamoyl-β-alanine decrease in HCC compared with HCV. The results are in agreement
with the previous studies that reported a decrease of amino acids in malignant tumors is
related to an increase demand for amino acid in the presence of tumors [32, 33]. Creatine
was observed to increase in the HCC patients, in agreement with previous studies that
showed an increase in concentration of creatine reported in HCC and lung tissue that reflect
alterations in energy metabolism [4, 34, 35]. A decrease in methionine levels may be related
to the low level of serine in the serum of HCC patients that has also been reported
previously [3]. We also found that the mean level of xanthine decreased in HCC compared
to HCV. Xanthine is formed from hypoxanthine by xanthine oxidase [36]. The activity of
xanthine oxidase was observed to decrease in individual cancer [37]. Therefore, a decrease
in the mean level of xanthine in HCC compared to HCV may be related to a decrease in
xanthine oxidase activity.

Of the four metabolites with low p-values that were used for building the classification
model, three metabolites (methionine, N2,N2-dimethylguanosine, uric acid) were down-
regulated in HCC, while one (5-hydroxymethyl-2′-deoxyuridine) was elevated in HCC
compared to HCV. Association of these metabolites with the metabolic pathways is
highlighted in Figure 3. The up-regulated metabolite, 5- hydroxymethyl-2′-deoxyuridine, is
reported to be associated with DNA repair and is thought to be involved in the pathogenesis
of many diseases including cancer. A number of studies have reported that cancer patients
often have higher levels of oxidative DNA damage as indicated by increased levels of 5-
hydroxymethyl-2-deoxyuridine [38, 39].

The PLS-DA classification model developed using a panel of 4 highly significant
metabolites, based on lowest p-value, provided high performance in terms of sensitivity
(97%), specificity (95%) and area under the receiver operating characteristic curve (0.98%)
and the results were better than those obtained based on metabolite selected using highest
VIP scores (Figures 2 and S2). As a comparison, a similar PLS-DA model developed using
the 3 significant metabolites (creatinine, choline and valine) obtained using NMR
spectroscopy provided a sensitivity of 80%, specificity of 71% and an area under the
receiver operating curve of 0.83 [27]. These results indicate the potential of profiling a
larger number of metabolites to distinguish HCC and HCV. The three metabolites identified
by NMR were not considered for inclusion in the present PLS-DA model since, in the
present study, creatinine was not targeted in the LC-MS/MS analysis, and choline and valine
did not show significant differences in their levels. The NMR signal for choline also
contains a contribution from phosphocholine, that was not targeted in the LC-MS/MS
analysis; valine can overlap with guanadinoacetate [30] and therefore make its accurate
measurement challenging. Additional work on a larger set of samples is planned to validate
the current and prior findings.

Conclusions
This study reports the relative quantitative measurement of 73 targeted serum metabolites
associated with many important metabolic pathways to profile patients with HCC and HCV
by LC-MS/MS. Sixteen metabolites showed significantly altered levels between the two
patient classes, while the top four biomarker candidates could be combined using
multivariate statistical data analysis to provide an accurate model. In particular, the model
distinguished the two patient groups with a sensitivity of 97%, specificity of 95%, and an
AUROC of 0.98. These results are promising for identifying patients with underlying HCV
who have developed HCC, and provide further insights into the altered metabolic processes
that occur in the development of HCC in a high risk patient population.
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Abbreviations

LC-MS liquid chromatography–mass spectrometry

HPLC high-performance liquid chromatography

AUROC area under the receiver operating characteristic

PLS-DA partial least squares discriminant analysis

ROC receiver operating characteristic

NMR nuclear magnetic resonance

GC-MS gas chromatography–mass spectrometry

VIP Variable Importance in Projection
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Figure 1.
Box-and-whisker plots for the four biomarker candidates with lowest p-values between HCC
and HCV: A) methionine, B) 5-hydroxymethyl-2′-deoxyuridine, C) N2,N2-
dimethylguanosine and D) uric acid. The middle horizontal line in a box represents the
median, the bottom and top boundaries represent the 25th and 75th percentiles, respectively.
The lower and upper whiskers represent the 5th and 95th percentiles, respectively, and the
open circles represent outliers.
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Figure 2.
ROC curve generated from the PLS-DA model of the four metabolites shown in Figure 1.
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Figure 3.
Depiction of metabolic pathways highlighting the metabolites that are altered in HCC.
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Table 1

Demographic and clinical characteristics of the patients.

Patients Characteristics HCC HCV

Number of patients 30 22

Age (mean ± SD) 54.5±10.7 52.2±8.1

Gender (F/M) 0.3 0.46

Caucasian 21 20

African American 1 2

Hispanic 3 0

Unknown race/ethnicity 4 0

Middle Eastern 1 0
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Table 2

List of metabolites with significant mean changes between HCC and HCV patients.

Metabolite aFC p-value

Aconitic acid 0.7 0.029

Creatine 2.1 0.029

2-Deoxyguanosine 0.3 0.015

Glycerol 0.8 0.018

Homocysteine 0.8 0.036

5-Hydroxymethyl-2′-deoxyuridine 1.5 0.00088

Methionine 0.7 0.0032

1-Methyladenosine 1.4 0.011

1-Methylguanosine 0.6 0.0078

1-Methylinosine 0.5 0.0075

N2,N2-Dimethylguanosine 0.5 0.0018

N-Carbamoyl β-alanine 0.7 0.016

Phenylalanine 0.9 0.013

Tyrosine 0.8 0.016

Uric acid 0.7 0.0069

Xanthine 0.8 0.011

a
FC :Mean fold change (HCC / HCV).
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Table 3

Molecular class assignments for the 73 metabolites detected by LC-MS/MS.

Classa Number Percentage

Amino acids 26 36

Organic acids 22 30

Nucleosides and nucleotides 9 12

Purines and its derivatives 5 7

Amino ketones 3 4

Others 8 11

a
Reference: http://www.hmdb.ca
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