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The complex expression patterns observed for many genes are often regulated
by distal transcription enhancers. Changes in the nucleotide sequences of
enhancers may therefore lead to changes in gene expression, representing a
central mechanism by which organisms evolve. With the development of
the experimental technique of chromatin immunoprecipitation (ChIP), in
which discrete regions of the genome bound by specific proteins can be ident-
ified, it is now possible to identify transcription factor binding events (putative
cis-regulatory elements) in entire genomes. Comparing protein—-DNA binding
maps allows us, for the first time, to attempt to identify regulatory differences
and infer global patterns of change in gene expression across species. Here, we
review studies that used genome-wide ChIP to study the evolution of enhan-
cers. The trend is one of high divergence of cis-regulatory elements between
species, possibly compensated by extensive creation and loss of regulatory
elements and rewiring of their target genes. We speculate on the meaning of
the differences observed and discuss that although ChIP experiments identify
the biochemical event of protein-DNA interaction, it cannot determine
whether the event results in a biological function, and therefore more stu-
dies are required to establish the effect of divergence of binding events on
species-specific gene expression.

1. Introduction

Transcriptional enhancers regulate gene expression in metazoans and control a
variety of genetic programmes, particularly during embryonic development.
In many cases, enhancers are the key elements that individually regulate the
specific spatial and temporal expression of genes with pleiotropic functions.
For this reason, changes in enhancers can potentially lead to evolutionary
differences in genetic programmes that result in the diversity of form and
function in nature.

The multiplicity of enhancers scattered across the human genome, estimated
at hundreds of thousands [1], their small sizes (hundreds to a few thousands of
base pairs), and the fact that, unlike promoters, they are often located far from
their target genes, up to hundreds of kilobases away [2], reviewed by Kleinjan
et al. [3], makes their identification a formidable problem. Studies of individual
enhancers that carefully dissected the mechanisms of gene regulation of a
number of genes [4], for example through progressive deletion of select DNA
regions, have been critical to our understanding of development at the molecu-
lar level and to how mutations in these elements could be a mechanism of
evolution. However, only the comparison of large collections of enhancers
can be informative about genome-wide changes in gene expression across
different species and reveal global patterns of evolution of gene regulation.

In the past few years, techniques previously used in the study of single loci have
been adapted and used at the genome scale. Among these, DNAse hypersensiti-
vity and chromatin immunoprecipitation (ChIP) have become the standard way
of finding regions that are likely to be regulatory elements (e.g. [5-12]).

The ChIP method (reviewed by Kim & Ren [13]) is based on the fact that
the highly dynamic protein—-DNA interactions can be ‘frozen” and captured by
artificially inducing the establishment of covalent bonds between chromatin
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and protein using chemicals such as formaldehyde. Immuno-
precipitation of fragmented DNA bound to proteins of interest
allows the isolation of DNA where the protein of interest is
bound. While, initially, the identification of the DNA sequence
bound to proteins was performed in small scale by qPCR,
with the advent of microarrays and direct high-throughput
sequencing, identification of thousands of DNA fragments
spanning the entire genome became common practice. Here,
we review studies that used this technique to compare bind-
ing maps of orthologous transcription factors and histone
modifications in different species and the insights provided by
these analyses.

Overall, the trend emerging from multiple studies is that a
large fraction of binding events is not conserved across different
species, whether they are closely related yeast species [14,15] or
more distantly related mammals such as human and mouse
[16-22]. The divergence of binding events is also significant
between individuals of the same species [23,24] or yeast strains
[25]. An association between genetic variation among individ-
uals [23,25] and species-specific repetitive elements [18,21] has
been identified, suggesting that variation is largely caused
by direct changes to the DNA sequence, although epigenetic
differences were also proposed as a cause [26].

The interpretation of the impact of such extensive variation
on the regulation of genetic programmes has yet to be explored.
The works reviewed here are just the first ones of an exciting
era of large-scale studies that has generated an unpreceden-
ted amount of data. Analysis of these datasets will deepen
our comprehension of how enhancers and other regulatory
elements evolved and how and to what extent they changed
gene expression programmes and yielded the phenotypic
differences that we observe in nature.

2. The pre-ENCODE era: enhancers harbour
specific epigenetic signatures

Using ChIP, large collections of enhancers (hundreds to a few
thousands) can be identified by targeting transcription factors
known to activate transcription. One caveat of this approach is
the need for an antibody for each transcription factor, which
can be difficult to obtain, and the need for knowledge of
the transcription factor networks in a given tissue. Another
limitation is the fact that only a specific set of enhancers is
identified for each transcription factor. Although this approach
is useful for dissecting specific regulatory networks, it prevents
analyses of more general enhancer collections.

In addition to transcription factors, many other proteins
bind DNA. High levels of chromatin compaction in the nucleus
are achieved by wrapping DNA around nucleosomes, protein
octamers composed of histones. Histone tails can bear a
number of chemical modifications such as acetylation, methyl-
ation and phosphorylation [27]. Although the exact role of
these chemical modifications in enhancer function is not well
established—one possibility being that combinations of histone
modifications form a histone code that is recognized by the cell
[28]—it is clear that the presence of one modification over
another is not random. A large number of studies in the last
few years have shown that enhancers can be identified by the
presence/absence of specific modifications (reviewed in [29]).
Although trimethylation of lysine 4 of histone 3 (H3K4me3)
has been found to be present mainly in active promoters,
monomethylation (H3K4mel) has been found to be often

associated with enhancers [9,10] and has been used to identify n

hundreds of thousands of enhancers in various tissues and
cells [7,8,30].

Later, acetylation of lysine 27 of histone 3 (H3K27ac) was
shown to be a better indicator of active enhancers [5,6] and
H3K4mel is now believed to mark both inactive, or poised,
and active elements [5-8]. The existence of these molecular
signatures makes it possible to identify large collections of
enhancers and has been used in several works, including
evolutionary studies [21,22]).

3. The ENCODE project

With the development of ChIP at the genome scale, many
studies sought to map enhancers and other regulatory elements.
A large public consortium named Encyclopedia of DNA Elements
(ENCODE) was created to systematically map functional
elements of several cell lines in 1% of the human genome that
was selected for its importance to genome research [10]. A func-
tional element was defined as a DNA region that generates a
defined product or presents a reproducible biochemical signa-
ture and included protein coding genes, non-coding RNAs,
promoters and transcriptional regulatory elements. Once the
pilot project for the 1% of the human genome was completed
[10], the ENCODE project targeted the entire human genome
and expanded the number of cells lines being studied [1].

Similar projects were developed for the mouse [31],
Drosophila melanogaster [32] and Caenorhabditis elegans [33].
Future studies will compare enhancers and other DNA
elements identified by the four projects and attempt to probe
the extent of conservation of functional elements among organ-
isms and eventually shed some light on the evolution of
regulatory elements.

One interesting finding of the pilot ENCODE project was
that approximately 50% of the DNA elements identified were
not conserved across mammals [10], raising the possibility
that species-specific gene regulation is pervasive. While this
proposition has since been reinforced by other studies, it is
important to note that the ENCODE definition of biological
function is rather loose and may result in a large number of
false-positive ‘functional regions’ of the genome, as discussed
elsewhere [34-38]. The central point of critiques regarding
ChIP data is that observation of protein-DNA binding
events—a biochemical phenomenon that does not imply a
selected biological effect or function—does not necessarily cor-
respond to regulatory function. The function of a DNA element
might require many other factors invisible to a single ChIP
experiment, and therefore not all binding events might be func-
tional. For this reason, when we discuss ChIP data in this review,
we offer alternative interpretations to the differences observed
under the hypothesis that many of the binding events might
be spurious or have no selected regulatory effect. One of the
important conclusions we draw is that a better understanding
of how divergence of binding event is related in a causal way
to gene expression divergence is still required.

4. Using chromatin immunoprecipitation to

study genome-wide enhancer evolution

The possibility of identifying thousands of putative enhancers
in different organisms and tissues has led to studies that
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addressed the question of the prevalence of cis-regulatory
variation across species. Table 1 lists studies that used
genome-wide ChIP of select transcription factors and histone
modifications associated with enhancers and promoters to
compare the fraction of conserved events in orthologous geno-
mic regions of two or more species. Conserved events do not
necessarily imply conservation of the nucleotide sequence,
only the presence of a ChIP signal in genomic sequences of
two or more species that can be identified as orthologous.

The prevailing scenario is one of extensive variation of
binding events. The fractions of conserved events for different
transcription factors and histone modifications across species
compared vary considerably, as shown in table 1, which
could be due to the underlying biological specificities of
different transcription factors, although technical aspects
cannot be ruled out. If we consider that only regions present
in all organisms compared were accounted, then the land-
scape of binding events and histone modifications across
species is certainly more diverse.

Variation seems to be pervasive even in closely related
organisms. When comparing three species of Saccharomyces,
only approximately 20% of the binding events for transcrip-
tion factors Stel2 and Tecl were conserved among all three
species [14]. Individuals of the same species also display
considerable variation albeit at lower levels, as expected.
Comparison of 10 human individuals revealed a higher frac-
tion of shared events, but as low as 75% in the case of RNA
polymerase II (Pol II) [23]. Similarly, when comparing two
Saccharomyces cerevisiae strains, around 70% of the genes puta-
tively bound by Stel2 were found to be conserved [25].

Several technical considerations inherent to the ChIP
technology could generate spurious variance between exper-
iments of the magnitude reported by the above-mentioned
studies. Nevertheless, some of these studies have directly
addressed these technical caveats and their data still support
the notion of extensive variation. For example, some of the
studies shown in table 1 generated biological replicates of
each species or related cell lines and showed that biological
or experimental variation (sampling differences, different
experimental or physiological conditions) in these controls
was lower than between species or individuals (column 5
in table 1). Other studies performed ChIP with different
antibodies to address the issue of different affinity for ortholo-
gous proteins, obtaining similar results [26,47]. In other cases,
ChIP of a tagged protein where a known epitope is fused to
the protein of interest was performed, eliminating variability
between orthologous proteins [14,25]. Finally, other studies
controlled for environmental and physiological variation,
comparing species under the same condition [14] or using
sophisticated approaches in which ChIP of two species was
simultaneously performed in the same organism [16].

Two exceptions to the high divergence of binding events
reported are comparisons of binding profiles of transcription
factors in whole embryos of Drosophila flies [26,41]. Around
86—-100% concordance of binding event locations for six tran-
scription factors was found between D. melanogaster and
D. yakuba [26] (details in table 1). Analysis of twist showed
that more than 80% of binding events were shared between
D. melanogaster and D. simulans and D. yakuba whole embryos
undergoing mesoderm formation, with 34% shared among
six Drosophila species.

Possible explanations for the discrepancy of results from
other studies were discussed, including the use of whole

embryos instead of more homogeneous samples such as
Saccharomyces or cell cultures [39], different evolutionary dis-
tances and methodological differences in accounting for
presence/absence of binding events [48]. The use of embryonic
versus adult tissues raises the possibility that developmental
enhancers are highly conserved owing to the stricter and con-
served roles of their target genes. It will be interesting to see
comparisons of binding events between vertebrate tissues in
early developmental stages. Alternatively, because finding
similarity between two different samples is more unlikely to
occur by chance than finding differences, these works could
indicate that variation is not as high or widespread as believed
or that Drosophila is a notable exception.

Although binding event locations were highly similar, the
Drosophila binding maps presented differences in binding
intensity [26,41]. Bradley et al. [26] noted correlated differences
such as increased binding intensity of a repressor (giant)
associated with decreased binding intensity of an enhancer
(bicoid). Differences in binding affinity were also observed in
at least another study [14], in which differences of more than
1.5-fold were seen across 23% of identical binding events of
yeast showing that variation can occur in many forms.

(a) Causes of transcription factor binding variation
The differences observed in the studies cited above were
assumed to be due to differences in cis, although in principle
they could also be due to differences between the orthologous
transcription factors. One elegant experimental design that
provided strong evidence that the cause of divergence is lar-
gely due to variation in cis used a mouse model of Down
syndrome [16]. This mouse carries an entire human chromo-
some 21 in addition to its normal mouse genome. The
authors performed ChIP of transcription factors HNFIA,
HNF4A and HNF6 and H3K4me3 in liver, a tissue chosen
owing to its homogeneity and conserved function. The data
simultaneously provided binding maps of the selected tran-
scription factors in human chromosome 21 and in mouse
chromosome 16 (that contains three-quarters of the chromo-
some 21 syntenic regions), eliminating differences in trans
and in antibody affinity, environmental, developmental and
metabolic factors and species-specific conditions. The results
were striking, with only 14-18% of the binding events being
conserved in both organisms, showing that the DNA sequence
drives binding event locations per se.

To gain more insights on the molecular basis of the vari-
ation of the location of binding events, two studies listed in
table 1 assessed the role of genetic variation such as single
nucleotide polymorphisms and indels (figure 1 illustrates poss-
ible causes of binding event divergence). Comparing 10 human
individuals, 35% of the NFKB and 26% of Pol II diverging bind-
ing events were found to coincide with genetic variation [23].

Supposedly, such variation would lead to creation or del-
etion of binding sites for transcription factors. Zheng et al.
[25] observed that 35% of the motifs in non-conserved binding
events were affected by variation, whereas only 1% of the con-
served events were affected. Borneman ef al. [14] observed that
14% of Tecl and 10% of Ste12 binding regions in Saccharomyces
had a missing motif for the corresponding transcription factor
in the unbound orthologous region, offering a possible
explanation for the differences observed. Although intuitive,
observations such as these should be interpreted with care,
because many functional binding events identified using
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(a) binding event conservation
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Figure 1. (a) Cartoons of ChIP peak signals representing binding events near a target gene. (b) Variation in cis can potentially alter a DNA motif recognized by a
transcription factor and render it unrecognizable and lead to a loss of a binding event. Between species, the appearance of a repeat element or other lineage-specific
sequences can create new binding events. Changes of the transcription factor that regulates a given gene can occur during evolution. As ChIP targets specific
transcription factors, such changes might be undetected, leading to a false loss of binding event. (Online version in colour.)

ChIP do not contain a recognizable motif for the immunopre-
cipitated transcription factor [11,12], and therefore the lack of
a motif may not directly imply lack of function. In addition,
Schmidt et al. [47] observed motifs disrupted by changes in
the sequence, but 20-40% of the motifs located in binding
events lost in a given species were unchanged in a comparison
of five vertebrates. One possibility is that disruption of motifs
for cofactors might cause loss of function. Analysing twist bind-
ing events in six Drosophila species led the authors to propose
that instead of loss of twist motifs, loss of cofactor motifs (e.g.
bicoid, snail and Kruppel) could partially explain species-specific
binding events in D. melanogaster [41]. The prevalence of such
mechanism still needs to be further explored.

The comparison of 10 human individuals allowed the
authors to verify that 79% of the Pol II and 68% of the NKFB
binding events in the progeny followed Mendelian segregation,
and 5% of the cases were transgression events (parents do not
have the event) [23]. Analysis of two yeast strains and their pro-
geny led to an estimation of 78% of the variable Stel2 binding
events exhibiting Mendelian segregation with several cases of
transgression [25]. Although genetic variation co-occurs with
a fraction of the divergent binding events, an even larger
fraction remains largely unexplained.

In the case of species-specific variation, repeat elements
were proposed to have a role in the origin of novelty of
cis-regulatory elements. Kunarso et al. [18] found that binding
regions that overlapped repeats accounted for a considerable
fraction of the datasets (20.9% for OCT4, 14.6% for NANOG
and 11.1% for CTCF in human and 7.2%, 17.1% and 28.3%
in mouse) and that most OCT4 binding regions overlapping
a repeat (99.1%) were human-specific. The authors found
evidence that repeats are more frequent (22.5% versus 12.4%)
in human-specific genes that are putatively directly enhanced
by OCT4-NANOG than in targets responsive in both human
and mouse and showed in vivo enhancer activity for two
ERV1 binding regions. Similarly, another study reported that
34% of PPARG binding events in mouse 3T3-L1 adipocytes
that could not be mapped to the human genome occurred in
rodent-specific transposable element insertions, explaining
part of the species-specificity of the dataset [21].

Another putative mechanism controlling differential bind-
ing could be epigenetic. The Drosophila study that found little
variation in binding events for six transcription factors
suggested that epigenetic changes might be the mechanism
behind differences in binding intensity, a more parsimonious
explanation than coordinated changes in all six transcription
factor expression levels or binding affinities, but experimental
evidence is still lacking [26].

(b) Patterns of protein—DNA binding conservation

(i) Clustered binding events tend to be more conserved
Conservation of the location of binding events is not homo-
geneous across all events. Analysis of twist binding events
showed that in Drosophila whole embryos undergoing meso-
derm formation, conservation decreased with the distance
between events and that it was less frequent among isolated
events (34%) than those that occurred near the same gene
(54%) [41]. The existence of enhancers whose role is to pro-
vide robustness to a ‘primary enhancer’, known as ‘shadow
enhancers’, has been demonstrated in Drosophila develop-
mental genes [49,50]. It is possible that the observed higher
conservation of nearby enhancers reflects such architectural
organization of developmental enhancers, but more studies
are required.

(ii) Conservation of protein—DNA binding locations is higher
among events near the transcription start site and increases
with higher binding affinity

Another source of variability of the level of conservation of
binding events is their proximity to transcription start sites
(TSSs). Most studies observed that a higher fraction of bind-
ing events near the TSS are conserved across species than
those occurring in intergenic regions [16,19,22,23,46].

At least three scenarios can be envisioned explaining this
observation: (i) many binding events are distal enhancers that
fine tune gene expression and their variation is therefore central
for tissue, temporal and species-specificity; (ii) because enhan-
cers are believed to contact promoters, and ChIP data are static,
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it is possible that TSS events are a signal of transcription factor
binding to a distal enhancer that contacts the promoter—in this
scenario, TSS events are a sum of all enhancer contacts, hence
the excess conservation; and (iii) promoter—proximal binding
events are critical for gene expression, and therefore tend to
be maintained, whereas a higher fraction of distal binding
events is free to vary owing to lack of function.

The two latter explanations could be related to the fact that
the fraction of conserved binding events also increases with
binding intensity of the ChIP signal [23], although another
study did not observe this trend [47]. Because binding is a prob-
abilistic event, it is possible that a number of the weaker
binding events are a result of random and unproductive bind-
ing, as has been shown for 15 genomic regions selected
by intensity of binding of the Drosophila transcription factor
Kruppel (Kr) [51]. Although five of six highly bound regions
were validated as enhancers, only one of nine of the lowly
bound regions behaved as an enhancer at the tested stage.
The stronger binding events (more frequent or of higher affi-
nity) could be the ones that are actually involved in gene
regulation and tend to be conserved. Current ChIP data do
not allow us to establish whether a stronger signal is due to
higher affinity or to more accessible chromatin that leads to a
higher frequency of transcription factor binding. Alternatively,
if TSS events tend to be of higher intensity, then the correlation
between binding intensity and binding event conservation
might simply reflect the correlation between events in the
TSS and binding event conservation.

Another possibility is that weaker binding events are
functional, but because they are statistically more difficult to
identify they tend to be missed and considered non-conserved.

(iii) Protein—DNA binding conservation is higher when multiple
transcription factors are bound and when binding events

occur in multiple tissues
The fraction of conserved binding events and histone modifi-
cations also varies with their presence in multiple cell types
and with the number of co-occurring binding events for
other transcription factors. Woo et al. [22] observed that con-
servation of the histone modification H3K4mel, an enhancer
marker, between human and mouse increased from 20%
when present in two cell types to 50% when present in six
cell types.

The same study by Woo et al., using transcription factor bind-
ing data generated for HepG2 for the ENCODE project [1,10],
showed that the fraction of conserved H3K4mel, H3K4me3
and H3K27ac increased with the number of overlapping
HepG2 transcription factor binding events, from approximately
20-35% to approximately 50—80%. The same trend was observed
for transcription factors (CEBPA, HNF4A, HNF3B from mouse
and human liver; OCT4, NANOG from mouse and human
embryonic stem cells (ESCs); six transcription factors from
D. melanogaster and D. yakuba). Again, the fraction of conserved
CEBPA binding events increased from approximately 18-30%
when HNF3B and HNF4A were bound proximally, and similar
increases were observed for D. melanogaster transcription factors.

Given that the observation of overlapping binding events
and reproducibility in independent cell types is unexpected
by random chance, one interpretation of these patterns is that
conservation tends to occur among truly functional events
and non-conserved events may be enriched for unproductive
ones. In molecular terms, because transcription factors act

with cofactors, many of the singleton transcription factor bind-
ing events observed might not be biologically productive.
Therefore, it will be important to generate more comprehensive
maps to better understand how binding event variation is
related to species-specific gene expression changes.

Another reason why analysing multiple transcription factors
at once is important is the knowledge that genetic programmes
controlled by a transcription factor in one species might be regu-
lated by a different one in another species. Specific examples of
these switches include ribosomal subunit expression regulated
by Tbfl in Candida albicans and by Rapl in S. cerevisae [52] or in
the case of mating type in these fungi where a complex rewiring
took place [53] or galactose metabolism regulated by Cphlp in
C. albicans and by Galdp in S. cerevisiae [54]. In other words, it
is possible that a transcription factor takes the place of another
one and, therefore, analysing one single binding map might
give the erroneous impression of extensive genetic programme
rewiring (illustrated in figure 1).

In conclusion, the correlation between higher fractions of
conserved events and their proximity, binding intensity, and
enrichment near the TSS and across cell types/tissues might
be indicative of their nature; more studies will be required to
clarify these patterns.

(c) Binding event turnover and differences
in biochemical pathways

Many studies report conservation of putative gene targets
instead of location of binding events as shown in table 1
[14,15,17,19,25]. Surprisingly, the fraction of conserved
genes is also generally low. This means that considerable
differences in the biochemical pathways regulated by the
transcription factors analysed are to be expected. Indeed,
when analysing the Gene Ontology [55] categories that are
enriched in different gene sets, species-specific gene targets
correspond to novel functions regulated by the transcription
factor under study [14,15,20,23].

Tuch et al. [15] found that the transcription factor Mcml1
bound a conserved set of only 12 genes in S. cerevisiae,
Kluyveromyces lactis and C. albicans, and there was enrichment
for functional terms related to cell cycle and mating type.
Another set of 378 genes putatively bound by Mcm1 only
in K. lactis was found to be enriched for ribosomal genes,
a case of a transcription factor regulating an entirely new
functional category. Observations such as this provide a
mechanistic basis for how changes in cis-regulation are
an important means as to how species and tissues become
different from each other.

On the other hand, there are many cases in which gene tar-
gets are conserved, i.e. binding events in two different species
are located near the same orthologous genes, but the specific
locations of these events are not the same [17,18,21,47]
(figure 1). Mikkelsen ef al. [21] noted that orthologous genes
with similar expression patterns often had nearby H3K27ac
regions, but the particular locations of these modifications
were generally species-specific. In another study [18], only 11
of 137 human and mouse orthologous genes found to respond
to OCT4 knockdown shared binding events for OCT4-
NANOG, although 72 had at least one binding event for
these transcription factors. The other 61 were cases of binding
event turnover. Interestingly, Schmidt et al. [47] noted that half
of the species-specific losses had another binding event within
10 kb. In such cases, the biochemical pathways are maintained,
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but expression differences might still be driven by the different
enhancers, although one idea is that turnover of binding events
might be a compensatory mechanism that maintains the local
concentration of transcription factors constant near gene tar-
gets. Our understanding of how enhancers behave in such
cases and how they evolved while maintaining the expres-
sion pattern is still anecdotal, and more studies are required
to characterize the effect of turnover on gene expression
regulation genome-wide.

(d) Binding event divergence and species-specific
requlation of gene expression

The correlation between the reported variation of binding
event location and phenotypic variability across species is
an intuitive and tempting explanation as an evolutionary
mechanism of diversity. Linking binding event variation
and species-specific gene regulation is therefore critical to
support the notion of causality of binding event variation.

The difficulty of such task hinges on the fact that the corre-
lation of ChIP data and gene expression per se is complex.
Because binding intensity might indicate the frequency an
enhancer is active, some studies analysed the correlation
between ChIP and gene expression signals. In two studies,
the correlation was on the low side (less than 0.5) [23,25].
At least three factors might explain the low correlation: (i) tran-
scription factors act in conjunction with other factors or
other mechanisms (e.g. long non-coding RNAs) and each con-
tributes only a fraction of the gene expression pattern; (ii) a
considerable fraction of the protein-DNA binding events is
non-functional—in fact, a fraction of ChIP binding events
often lie near unexpressed genes or genes unresponsive to a
transcription factor knockout [11,56,57]; and (iii) many tran-
scription factors act as both activators and repressors, and
therefore the correlation of binding intensity with expression
levels is a mixture of both positive and negative effects [11,24,58].

One way of separating activating and repressive effects is
by analysing a large number of biological replicates or individ-
uals. Analysis of 43 yeast segregants still showed that the vast
majority of the negatively (repressor) and positively (enhancer)
correlated binding events had Pearson’s R < |0.5| [25].

Another way to separate activating and repressive effects is
to categorize binding events based on the response of their
assigned genes (putative targets) to the absence of the transcrip-
tion factor in in vivo gene knockout studies. Under-expressed
genes are assumed to be gene targets normally enhanced by
the transcription factor, and the opposite for over-expressing
genes. Kunarso ef al. [18] found that 55 of 137 downregulated
genes in OCT4 knockouts in human and mouse did not have
a nearby OCT4-NANOG binding event, hinting at indirect
regulation, i.e. the knocked out transcription factor binds
genes that bind the targets. Such cases raise the question of
the role of binding events that are not near responsive genes
and highlight the possibility that they are non-functional or
not related to gene expression.

Another example of the difficulty of correlating binding
events and gene expression comes from a comparison between
ChIP-seq data of E2F4 between human and mouse, in which
only 20% conservation was observed [20]. Using an E2F4 knock-
out mouse, the authors were unable to identify a link between
this transcription factor and its targets. Transcription factor
redundancy might explain the results, but the link between

low E2F4 binding event conservation and species-specific gene
expression cannot be established without further analyses.

Some of the data available, however, make a case for vari-
ation of binding events playing a role in species-specific gene
expression. In a comparison between human and chimpanzee,
the authors were able to estimate that between 3% and 7% of
variation of gene expression could be attributed to H3K4me3,
concluding the effect was modest, despite 27-30% differences
in H3K4me3 locations [46]. The identification of 378 putative
genes regulated by Mcm1 only in K. lactis that were highly
enriched for ribosomal genes provides an example of a
transcription factor acquiring a new regulatory function [15].

The other important aspect of the correlation between regu-
latory divergence and gene expression is that the latter has been
shown to be largely conserved across vertebrates [59-61].
Although it is possible that the small fraction of conserved
binding events is responsible for conserved expression pat-
terns, with the majority of non-conserved events providing
species-specific regulation, the observation of small numbers
of conserved targets [17,19] challenges this hypothesis. In any
case, even if extensive changes in regulatory circuits might
have occurred, the expression output has been largely main-
tained. Indeed, radically different circuits may lead to the
same genetic programme, as shown by Tsong et al. [53] and
reviewed by Weirauch & Hughes [62]. Therefore, the actual
impact of regulatory variation might not be as profound as
the small fraction of conserved events might suggest.

The comparison of human chromosome 21 and the ortholo-
gous mouse chromosome 16 in the same genetically engineered
mouse provided strong evidence that binding event variation
was not a product of experimental variation. However, using
genome-wide RNA-seq data from Brawand et al. [60] for
5321 orthologues, we calculated that the Spearman correlation
between human and mouse liver samples was approximately
0.8 and between replicates approximately 0.95. This result sup-
ports the idea that the liver is similar in structure and function
across mammals and that it is possible that the high variability
of transcription factor binding observed does not necessarily
result in profound differences in the transcriptome.

4. Concluding remarks

The advent of ChIP experiments at the genome scale has
caused a revolution in the way we identify and think of enhan-
cers. The studies reviewed here have made use of the technique
to compare thousands of binding events for specific transcrip-
tion factors, a proxy for putative enhancers and promoters, at
once. Some of the studies analysed multiple transcription fac-
tors and we can expect that the collection of binding maps
available will only increase with time and allow more compre-
hensive analyses. It is possible that our view of binding event
variation might change in the light of more data as we gain
access to more complete collections of enhancers in different
conditions and species.

Despite the richness of the data generated by ChIP exper-
iments, current studies have limited power to demonstrate a
causative role for binding event divergence and gene expression.
Collectively, these works highlight an important limitation of
ChIP, namely that it is able to identify the biochemical event of
protein—DNA interaction, but not able to directly infer whether
this event results in a biological function subjected to the scru-
tiny and constraint of evolution. The extent to which the
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differences in protein-DNA binding across species reflect
underlying biological differences between these species remains
an unresolved question, and more studies directly addressing
this problem will be required. Challenges involve better identifi-
cation of functional enhancers, and an understanding of how
enhancers in the same loci compensate for each other and how
the differences translate into quantitative gene expression.

The fact that different regulatory circuits can produce the
same gene expression output adds another layer of complexity
to the interpretation of genome-wide data, because multiple
regulatory networks are likely to be contained in the same data-
set. The challenge of dissecting these large collections of
enhancers will require innovative approaches of data analysis
but have the potential of revealing new aspects of gene regu-
lation unapproachable by the study of individual circuits.
Although small-scale studies will still be absolutely critical for
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