Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 1;93(20):10961–10965. doi: 10.1073/pnas.93.20.10961

A novel method for simultaneous high resolution identification of HLA-A, HLA-B, and HLA-Cw alleles.

R Arguello 1, H Avakian 1, J M Goldman 1, J A Madrigal 1
PMCID: PMC38266  PMID: 8855291

Abstract

We describe a novel high resolution DNA based typing approach for HLA class I alleles, which identifies the recombinational motifs present in exons 2 and 3 of the HLA class I genes. Unique identification patterns for 201 known HLA-A, HLA-B, and HLA-Cw alleles were generated by the use of only 40 probes, which were targeted at these common motifs. The unambiguous identification of the alleles was achieved by the development of a new and powerful allelic separation technique that allows isolation of single alleles after amplification. To validate the method, we have used locus-specific primers to amplify exons 2 and 3 of HLA-A, HLA-B, and HLA-Cw loci from 22 heterozygous and 41 homozygous cell lines. After amplification, the allelic fragments from each locus were separated, blotted, and hybridized with the 40 probes. In all cases, the allelic products could be separated and 81 different class I alleles, 33 HLA-A, 30 HLA-B, and 18 HLA-Cw, were identified according to the predicted probe hybridization patterns.

Full text

PDF
10961

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M., Liu L., Gyllensten U. A comprehensive polymerase chain reaction-oligonucleotide typing system for the HLA class I A locus. Hum Immunol. 1994 May;40(1):25–32. doi: 10.1016/0198-8859(94)90018-3. [DOI] [PubMed] [Google Scholar]
  2. Arnett K. L., Parham P. HLA class I nucleotide sequences, 1995. Tissue Antigens. 1995 Sep;46(3 ):217–257. doi: 10.1111/j.1399-0039.1995.tb03124.x. [DOI] [PubMed] [Google Scholar]
  3. Bacigalupo A., Gualandi F., Van Lint M. T., Sessarego M., Frassoni F., Occhini D., Lamparelli T., Oneto R., Vitale V., Corvo R. Multivariate analysis of risk factors for survival and relapse in chronic granulocytic leukemia following allogeneic marrow transplantation: impact of disease related variables (Sokal score). Bone Marrow Transplant. 1993 Nov;12(5):443–448. [PubMed] [Google Scholar]
  4. Bidwell J. L. Applications of the polymerase chain reaction to HLA class II typing. Vox Sang. 1992;63(2):81–89. doi: 10.1111/j.1423-0410.1992.tb02491.x. [DOI] [PubMed] [Google Scholar]
  5. Blasczyk R., Hahn U., Wehling J., Huhn D., Salama A. Complete subtyping of the HLA-A locus by sequence-specific amplification followed by direct sequencing or single-strand conformation polymorphism analysis. Tissue Antigens. 1995 Aug;46(2):86–95. doi: 10.1111/j.1399-0039.1995.tb02483.x. [DOI] [PubMed] [Google Scholar]
  6. Bunce M., O'Neill C. M., Barnardo M. C., Krausa P., Browning M. J., Morris P. J., Welsh K. I. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 & DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens. 1995 Nov;46(5):355–367. doi: 10.1111/j.1399-0039.1995.tb03127.x. [DOI] [PubMed] [Google Scholar]
  7. Cereb N., Maye P., Lee S., Kong Y., Yang S. Y. Locus-specific amplification of HLA class I genes from genomic DNA: locus-specific sequences in the first and third introns of HLA-A, -B, and -C alleles. Tissue Antigens. 1995 Jan;45(1):1–11. doi: 10.1111/j.1399-0039.1995.tb02408.x. [DOI] [PubMed] [Google Scholar]
  8. Clay T. M., Bidwell J. L., Howard M. R., Bradley B. A. PCR-fingerprinting for selection of HLA matched unrelated marrow donors. Collaborating Centres in the IMUST Study. Lancet. 1991 May 4;337(8749):1049–1052. doi: 10.1016/0140-6736(91)91704-x. [DOI] [PubMed] [Google Scholar]
  9. Clay T. M., Culpan D., Howell W. M., Sage D. A., Bradley B. A., Bidwell J. L. UHG crossmatching. A comparison with PCR-SSO typing in the selection of HLA-DPB1-compatible bone marrow donors. Transplantation. 1994 Jul 27;58(2):200–207. [PubMed] [Google Scholar]
  10. Gao X., Jakobsen I. B., Serjeantson S. W. Characterization of the HLA-A polymorphism by locus-specific polymerase chain reaction amplification and oligonucleotide hybridization. Hum Immunol. 1994 Dec;41(4):267–279. doi: 10.1016/0198-8859(94)90045-0. [DOI] [PubMed] [Google Scholar]
  11. Geraghty D. E., Koller B. H., Hansen J. A., Orr H. T. The HLA class I gene family includes at least six genes and twelve pseudogenes and gene fragments. J Immunol. 1992 Sep 15;149(6):1934–1946. [PubMed] [Google Scholar]
  12. Hildebrand W. H., Madrigal J. A., Little A. M., Parham P. HLA-Bw22: a family of molecules with identity to HLA-B7 in the alpha 1-helix. J Immunol. 1992 Feb 15;148(4):1155–1162. [PubMed] [Google Scholar]
  13. Hoshino S., Kimura A., Fukuda Y., Dohi K., Sasazuki T. Polymerase chain reaction--single-strand conformation polymorphism analysis of polymorphism in DPA1 and DPB1 genes: a simple, economical, and rapid method for histocompatibility testing. Hum Immunol. 1992 Feb;33(2):98–107. doi: 10.1016/0198-8859(92)90059-v. [DOI] [PubMed] [Google Scholar]
  14. Krausa P., Bodmer J. G., Browning M. J. Defining the common subtypes of HLA A9, A10, A28 and A19 by use of ARMS/PCR. Tissue Antigens. 1993 Aug;42(2):91–99. doi: 10.1111/j.1399-0039.1993.tb02243.x. [DOI] [PubMed] [Google Scholar]
  15. Krausa P., Brywka M., 3rd, Savage D., Hui K. M., Bunce M., Ngai J. L., Teo D. L., Ong Y. W., Barouch D., Allsop C. E. Genetic polymorphism within HLA-A*02: significant allelic variation revealed in different populations. Tissue Antigens. 1995 Apr;45(4):223–231. doi: 10.1111/j.1399-0039.1995.tb02444.x. [DOI] [PubMed] [Google Scholar]
  16. Ochs L. A., Miller W. J., Filipovich A. H., Haake R. J., McGlave P. B., Blazar B. R., Ramsay N. K., Kersey J. H., Weisdorf D. J. Predictive factors for chronic graft-versus-host disease after histocompatible sibling donor bone marrow transplantation. Bone Marrow Transplant. 1994 Apr;13(4):455–460. [PubMed] [Google Scholar]
  17. Parham P., Adams E. J., Arnett K. L. The origins of HLA-A,B,C polymorphism. Immunol Rev. 1995 Feb;143:141–180. doi: 10.1111/j.1600-065x.1995.tb00674.x. [DOI] [PubMed] [Google Scholar]
  18. Petersdorf E. W., Hansen J. A. A comprehensive approach for typing the alleles of the HLA-B locus by automated sequencing. Tissue Antigens. 1995 Aug;46(2):73–85. doi: 10.1111/j.1399-0039.1995.tb02482.x. [DOI] [PubMed] [Google Scholar]
  19. Smyth L. A., Witt C. S., Christiansen F. T., Herrmann R. P., Hollingsworth P. N., Townend D. C., Edward E., Dawkins R. L. The MHC influences acute graft versus host disease in MHC matched adults undergoing allogeneic bone marrow transplantation. Bone Marrow Transplant. 1993 Oct;12(4):351–355. [PubMed] [Google Scholar]
  20. Sorrentino R., Cascino I., Tosi R. Subgrouping of DR4 alleles by DNA heteroduplex analysis. Hum Immunol. 1992 Jan;33(1):18–23. doi: 10.1016/0198-8859(92)90047-q. [DOI] [PubMed] [Google Scholar]
  21. Tong J. Y., Hammad A., Rudert W. A., Trucco M., Hsia S. Heteroduplexes for HLA DQB1 identity of family members and kidney donor-recipient pairs. Transplantation. 1994 Mar 15;57(5):741–745. doi: 10.1097/00007890-199403150-00018. [DOI] [PubMed] [Google Scholar]
  22. Weisdorf D., Hakke R., Blazar B., Miller W., McGlave P., Ramsay N., Kersey J., Filipovich A. Risk factors for acute graft-versus-host disease in histocompatible donor bone marrow transplantation. Transplantation. 1991 Jun;51(6):1197–1203. doi: 10.1097/00007890-199106000-00010. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES