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Apical membrane antigen 1 mediates apicomplexan
parasite attachment but is dispensable for
host cell invasion
Daniel Y. Bargieri1,*, Nicole Andenmatten2,*, Vanessa Lagal3, Sabine Thiberge1, Jamie A. Whitelaw2,

Isabelle Tardieux3, Markus Meissner2 & Robert Ménard1

Apicomplexan parasites invade host cells by forming a ring-like junction with the cell surface

and actively sliding through the junction inside an intracellular vacuole. Apical membrane

antigen 1 is conserved in apicomplexans and a long-standing malaria vaccine candidate. It is

considered to have multiple important roles during host cell penetration, primarily in struc-

turing the junction by interacting with the rhoptry neck 2 protein and transducing the force

generated by the parasite motor during internalization. Here, we generate Plasmodium

sporozoites and merozoites and Toxoplasma tachyzoites lacking apical membrane antigen 1,

and find that the latter two are impaired in host cell attachment but the three display normal

host cell penetration through the junction. Therefore, apical membrane antigen 1, rather than

an essential invasin, is a dispensable adhesin of apicomplexan zoites. These genetic data have

implications on the use of apical membrane antigen 1 or the apical membrane antigen

1–rhoptry neck 2 interaction as targets of intervention strategies against malaria or other

diseases caused by apicomplexans.
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M
ost apicomplexans, including the agents of malaria
(Plasmodium) and toxoplasmosis (Toxoplasma), are
obligate intracellular parasites. Many invade host cells

by a conserved mechanism involving the formation of a zone of
tight attachment between the parasite apex and the host cell1,
called tight junction (TJ). The current view is that the TJ is
primarily a molecular bridge between the parasite sub-membrane
actin-myosin motor and a stable and stationary2 anchor
associated with the host cell surface/cortex, which allows
parasite traction into a parasitophorous vacuole (PV) within the
host cell3,4.

The transmembrane protein apical membrane antigen 1
(AMA1), arguably the most studied protein in the Apicomplexa
phylum and a long-standing malaria vaccine candidate, is thought
to shape the TJ on the parasite side5–11. The cytoplasmic tail of
AMA1 was reported to bind aldolase8 in vitro, considered a
signature of proteins that bind parasite actin and the motor12,13.
The ectodomain of AMA1 tightly binds in parasite extracts to the
rhoptry neck 2 (RON2) protein9,10, a protein secreted from the
parasite rhoptries that specifically localizes at the TJ, where it
inserts in the host cell membrane and is presumably linked to the
cell cortical cytoskeleton via other RON proteins, like RON4.
Moreover, antibodies or peptides that inhibit the AMA1–RON2
interaction drastically reduce host cell invasion by Plasmodium
merozoites14–16 and Toxoplasma tachyzoites9,10. T. gondii or P.
falciparum AMA1 bound to RON2 peptide were co-crystalized,
revealing a conserved RON2 loop inserting deep into an AMA1
hydrophobic groove17,18. This reinforced the model of this
interaction constituting the traction point used by the parasite to
power the active internalization inside the PV19–21, and led to the
proposal of developing broad-spectrum small-molecule inhibitors
of apicomplexan invasion targeting the AMA1–RON2 interac-
tion22–24. In addition, AMA1 has been reported to be involved in
rhoptry secretion15,25 as well as for providing a signal initiating
intracellular replication26.

Recently, P. berghei and T. gondii parasites in which AMA1 was
silenced (AMA1 knockdown, AMA1KD) were found to remain
competent for shaping a TJ and invading host cells27. However, as
AMA1KD parasites might still express residual levels of AMA1,
these data were not considered as challenging any of the proposed
roles of AMA1 in invasion18,23,28,29. In agreement with an
essential role of AMA1 at some stage of the parasite invasion
process, all attempts to inactivate AMA1 in both Plasmodium30,31

and Toxoplasma32 have failed so far.
Here, we report the inactivation of AMA1 in the tachyzoite of T.

gondii, which invades virtually any cell type in the host, and in the
merozoite and sporozoite stages of P. berghei, which invade
erythrocytes and hepatocytes, respectively. AMA1 was deleted from
the parasite genome by the diCre-loxP recombination approach in
T. gondii and by direct homologous recombination in P. berghei. All
three AMA1 knockout (AMA1KO) zoites are still capable of
penetrating the respective host cell like the wild type (WT).
Tachyzoites and merozoites, however, display a defect in host cell
binding. These genetic data indicate that AMA1 and the RON
proteins act separately during apicomplexan invasion, and that the
AMA1–RON2 interaction does not have an essential role at the TJ.

Results
Role of AMA1 in T. gondii tachyzoite infection of host cells. To
investigate the role of AMA1 in T. gondii tachyzoites, we gener-
ated AMA1KO parasites using the diCre-loxP site-specific
recombination system33. The loxPAMA1loxP-YFP-HXGPRT
construct (Fig. 1a) was inserted in the ku80::diCre strain, which
encodes two inactive fragments of Cre fused to rapamycin-
binding proteins. Upon rapamycin addition and Cre

reconstitution, recombinant parasites excise AMA1 (Fig. 1b) and
express YFP. An excised clone, called TgAMA1KO, which does
not produce AMA1 as shown by western blot (Fig. 1c) and
immunofluorescence (Fig. 2a) analysis, was selected and main-
tained using routine culture procedures. When measuring para-
site infectivity by plaque assay, the plaque size is B2 to 2.5 times
smaller with TgAMA1KO than control parasites (Fig. 2a,b), a
rather mild phenotype. Reintroduction of internally tagged
AMA1FLAG in TgAMA1KO parasites fully restores overall growth,
demonstrating the specificity of the observed phenotype (Fig. 2a).
Importantly, no significant difference can be noticed in the
replicative rates (Fig. 2c,d), egress efficiency (Fig. 2e) or motility
patterns (Fig. 2f) between TgAMA1KO and control tachyzoites.
Therefore, AMA1 is not involved in tachyzoite gliding, intrava-
cuolar replication or egress from host cells.

We then investigated AMA1KO tachyzoite invasion of host
cells in more detail. When measured by fluorescence
microscopy, TgAMA1KO tachyzoite invasion efficiency is
30–40% that of the parental ku80::diCre strain (Fig. 3a). To
investigate whether the pattern of TgAMA1KO tachyzoite
invasion of host cells is normal or altered, TgAMA1KO

tachyzoites invading human foreskin fibroblasts (HFFs) or
normal rat kidney (NRK) fibroblasts were captured by confocal
microscopy and analysed after three-dimensional reconstruction
(Fig. 3b). Entering mutant zoites (n¼ 53) constantly display a
typical RON4 circular staining around the parasite constriction
site after cell permeabilization, indicating normal rhoptry
secretion and TJ formation during invasion. In line with the
normal gliding capacity of TgAMA1KO tachyzoites, micronemal
protein 2 (MIC2)34, which is secreted like AMA1 from
the microneme organelles, is normally exposed on the surface
of invading TgAMA1KO tachyzoites (Fig. 3b). Moreover, video
microscopy of invading TgAMA1KO zoites shows that successful
invasion follows a one go and smooth process with similar
kinetics as controls (Fig. 3c,d and Supplementary Movies 1–3),
and in all cases (n¼ 20) a clear constriction site, suggestive of
normal TJ, is observed. We conclude that in the tachyzoite
AMA1 is not necessary for structuring a fully functional TJ, in
which the RON proteins act independently of AMA1.

Next, we assessed tachyzoite adhesion to host cells. After 15 or
60 min incubation with live HFF cell monolayers, approximately
two- to threefold fewer mutant versus control tachyzoites
associate with host cells (total: extracellular attached and
internalized combined), whereas three- to fourfold fewer mutants
are located inside host cells, suggesting a primary defect of
mutant zoites in host cell attachment (Fig. 3a). Importantly, about
a third of the TgAMA1KO tachyzoite population adopts a distinct
position relative to the host cell than controls, by binding only via
the apical end rather than throughout their length (Fig. 3e), like
previously observed for AMA1KD tachyzoites27. This confirms
that AMA1 has an important role in tachyzoite adhesion to/
positioning onto host cells before TJ formation, an event that
favours, but is not required for, host cell invasion.

Role of AMA1 in P. berghei merozoite infection of ery-
throcytes. To inactivate AMA1 in P. berghei, WT ANKA blood
stages were transfected with a construct designed to replace
endogenous AMA1 by pyrimethamine-resistance and green-
fluorescence cassettes (Fig. 4a). Dedicated in vivo selection
protocols with several days of drug pressure reproducibly gen-
erated mixtures of targeted green fluorescent protein (GFPþ )
AMA1� parasites, that is, AMA1KO, and non-targeted GFP�

AMA1þ parasites, presumably spontaneous pyrimethamine-
resistant mutants that typically emerge after long selection
times. Southern blot analysis indicates the presence in the
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selected population of both the WT AMA1 locus and the
expected allelic replacement (Fig. 4b). In agreement with this,
immunofluorescence assays reveal erythrocytes infected by
either GFPþ AMA1� or GFP� AMA1þ parasites (Fig. 4c).

The multiplication rate of AMA1KO parasites, assessed by
co-injection with control red fluorescent protein (RFPþ ) para-
sites35 in mice and monitoring parasite multiplication by
fluorescence-activated cell sorting (FACS), is B35% that of
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Figure 1 | Isolation of AMA1KO T. gondii tachyzoites using the diCre system. (a) Schematic illustration of the knockout strategy. Homology regions

for recombination are depicted in grey flanking the loxPAMA1loxP-YFP-HXGPRT construct (second line). The endogenous AMA1 in the ku80::diCre strain was

replaced by a floxed (red arrows) copy of the AMA1 open reading frame (ORF) followed by YFP-coding sequence to generate the TgAMA1loxP strain.

Cre-mediated recombination induced with rapamycin excised the AMA1 ORF and activated YFP expression (TgAMA1KO). (b) Diagnostic PCR shows

replacement of endogenous AMA1 in TgAMA1loxP and excision of AMA1 upon Cre-mediated recombination. Primers are as illustrated in a. (c) Immunoblot

analysis shows the absence of AMA1 (63 kDa) expression in TgAMA1KO parasites compared with RH Dhxgprt and TgAMA1loxP strains. Anti-aldolase

antibody was used for loading control. (d) Transcript levels of AMA1 and the AMA1 homologue TgME49_300130 in the clones TgAMA1FLAG or TgAMA1KO

propagated in continuous culture. Data are representative of four independent experiments from two RNA preparations and are shown as mean fold

change±s.d. relative to transcript levels measured in the ku80::diCre strain.
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RFPþ parasites (Fig. 4d). As internalized AMA1KO parasites
generate normal numbers of progeny merozoites after a normal
developmental cycle (Fig. 4e), that is, AMA1 is not important
for merozoite replication inside erythrocytes, the decreased

multiplication rate of AMA1KO parasites reflects a defect in
merozoite entry into erythrocytes.

We next characterized interactions between AMA1KO mer-
ozoites and erythrocytes using imaging flow cytometry (IFC),
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which combines microscopy and flow cytometry and provides
quantitative and functional information using imaging algo-
rithms. Briefly (see Methods), after mixing mouse erythrocytes
pre-stained with the lipid dye PKH26 with P. berghei GFPþ

merozoites36 collected from synchronized schizont cultures,
parasites interacting with a host cell are identified as GFP
signals in a gated PKH26þ population (Fig. 5a, left panel), and
internalized parasites are further recognized by co-localization of
GFP with an increased PKH26 signal relative to the rest of the cell
(Fig. 5b), a labelling suggestive of merozoites surrounded by a
tight-fitting vacuole membrane37 (Fig. 5a, right panel). Using
control GFPþ merozoites incubated for 10 min with PKH26-
stained erythrocytes before fixation, B43.8% score as ‘associated’
with erythrocytes (EryA; Fig. 5a, left panel), whereas B3.8% score
as ‘internalized’ inside erythrocytes (EryI; Fig. 5a, right panel).
Importantly, cytochalasin D, which prevents merozoite inter-
nalization but not attachment to erythrocytes38, does not
significantly affect the EryA but drastically reduces the EryI

population (Fig. 5a,c), which validates the EryI population

algorithm. Using merozoites of the AMA1KO-containing popula-
tion, B8.6% of the GFPþ AMA1KO merozoites score as EryA

and B0.48% as EryI (Fig. 5d). A similar reduction relative to
control merozoites is obtained when samples are fixed after 3 min
incubation (Fig. 5e), indicating a primary defect in adhesion of
AMA1KO merozoites. Like AMA1KO tachyzoites, AMA1KO

merozoites form a normal RON (RON2) ring during host cell
invasion (Fig. 4f).

As additional mutations, compensatory or adverse, might
accumulate in the AMA1KO parasites propagated for extended
times (up to 30 days) before IFC analysis, we next characterized
AMA1KD merozoites generated by Flippase (Flp)/Flp Recombi-
nation Target (FRT)-mediated recombination27 immediately
before IFC (Fig. 6a). In this approach, AMA1KD mosquito-stage
sporozoites normally invade hepatocytes and transform into
AMA1KD hepatic merozoites27. The latter cannot accumulate
compensatory mutations before IFC, as they are generated in the
absence of selection pressure and following a single invasion/
multiplication cycle. We first analysed control hepatic merozoites.
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IFC analysis shows that B44.3% and B4.1% of control GFPþ

hepatic merozoites score as EryA and EryI, respectively, indicating
that erythrocytic and hepatic merozoites bind and invade
erythrocytes with similar efficiency in this assay. We then used
AMA1KD hepatic merozoites, composed of B85% of excised

AMA1� parasites lacking any detectable AMA1 and B15% of
non-excised AMA1þ individuals used as internal controls
(Fig. 6b). IFC analysis after AMA1 immunostaining (Fig. 7a)
shows that B48.8% and B5.3% of AMA1þ controls score as
EryA and EryI, respectively, indicating that they behave like the
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WT (Fig. 7b). In contrast, only B3.3% of AMA1� merozoites
score as EryA (Fig. 7b), that is, B15-fold less than internal
controls, demonstrating a major role of AMA1 in merozoite
attachment. As expected, AMA1� merozoites also generate EryI

events after 10 min (Figs. 6c and 7b) or 3 min incubation (Fig. 7c).
Remarkably, EryI events are approximately fivefold less frequent
in AMA1� than AMA1þ merozoites when normalized to input
merozoites, but approximately threefold more frequent in
AMA1� merozoites when normalized to attached parasites
(Fig. 7b, Po0.01, two-tailed t-test). Therefore, as with the
Toxoplasma tachyzoite, AMA1 favours Plasmodium merozoite
attachment to, but not internalization into, the host cell.

AMA1 has no role in P. berghei sporozoite infection of hepa-
tocytes. Recent work using P. berghei AMA1KD and RON4KD

sporozoites revealed strikingly distinct phenotypes, with essential
and dispensable roles for RON4 and AMA1, respectively, during
sporozoite invasion of hepatocytes27. To test AMA1KO sporozoite
capacity to invade hepatocytes, populations of GFPþ AMA1KO/
GFP� AMA1þ parasites were transferred to mosquitoes. The
same ratio of GFPþ versus GFP� sporozoites is found in the
blood fed to mosquitoes and in the mosquito salivary glands,
indicating that AMA1 has no detectable effect on parasite
development in the mosquitoes (Fig. 8a). The capacity of these
salivary gland sporozoites to invade cultured hepatocytes was
then tested. After sporozoite incubation with HepG2 cells in vitro,
a similar proportion of AMA1KO versus GFP� AMA1þ para-
sites is found in the input sporozoites and in hepatic schizonts
developing inside HepG2 cells 60 h post infection (Fig. 8b).
Likewise, in co-infection experiments of HepG2 cells with RFPþ

AMA1þ as control, AMA1KO sporozoites display similar inva-
sive capacity as the control (Fig. 8c).

Finally, the infectivity of AMA1KO sporozoites was tested
in vivo. We found that intravenous injection into mice of as few
as 500 AMA1KO/AMA1þ sporozoites (Fig. 8d) or HepG2 cell-

released hepatic merozoites (not shown) is sufficient to generate
blood-stage parasite populations containing AMA1KO parasites,
demonstrating that parasites can complete a life cycle without
producing AMA1. Moreover, injection into mice of only 50
AMA1KO/AMA1þ infected erythrocytes is also sufficient to
produce AMA1KO-containing blood-stage populations (not
shown). However, attempts of cloning AMA1KO parasites were
unsuccessful. This is likely due to the slower increase in
parasitemia of AMA1KO parasites, delaying the emergence of
an AMA1KO population that is eventually cleared by the mouse
immune system before being detectable. Nonetheless, we cannot
rule out the formal hypothesis that AMA1KO parasites cannot be
cloned because they require soluble AMA1 secreted from the
AMA1þ counterparts. However, this hypothesis of AMA1 as an
essential diffusible factor appears unlikely, as AMA1KO growth is
observed after co-injection of less than 50 blood stages and 500
sporozoites in the whole animal.

Discussion
We have inactivated AMA1 both in Toxoplasma and Plasmodium
using diCre-loxP-mediated recombination and direct gene
targeting, respectively, and found that AMA1-deficient T. gondii
tachyzoites and P. berghei merozoites and sporozoites were still
invasive and displayed a normal host cell penetration step. The
most striking phenotype is that of AMA1KO sporozoites, which
showed no defect in hepatocyte invasion, confirming prior data
obtained with AMA1KD sporozoites that invaded hepatocytes
even better than the WT27. This now demonstrates that AMA1 is
dispensable for hepatocyte invasion and that, given the essential
role of RON4 in the process27, the RON complex acts in an
AMA1-independent manner. The lack of an invasion phenotype
of AMA1KO sporozoites strongly suggests that AMA1 is not
involved in TJ function.

In contrast to sporozoites, AMA1-deficient merozoites and
tachyzoites displayed an approximately three- to fivefold decrease
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in overall invasion efficiency. However, like sporozoites, they
penetrated host cells like the WT. They formed a normal
constriction and a normal RON ring at the TJ, and tachyzoites
were internalized at the normal average speed of B20 s.
Moreover, quantitative IFC analysis indicated that AMA1KD

merozoites invaded erythrocytes better than controls when
normalized to adherent merozoites, reminiscent of the increased
infectivity of AMA1KD sporozoites.

The decrease in invasion efficiency of AMA1-deficient
tachyzoites and merozoites, which showed no defect in host cell
penetration, was associated with altered zoite adhesion to host
cells. Fewer AMA1-deficient merozoites bound to erythrocytes in
IFC experiments, including in 30 adhesion assays. Lack of
AMA1 only modestly reduced the numbers of bound tachyzoites
but affected their positioning onto cells, with AMA1-deficient
tachyzoites more frequently adopting an upward position
when compared with controls. AMA1 might thus be important
in a pre-invasive zoite orientation step, as earlier proposed

for merozoites39. A gradient of AMA1 on the zoite surface
might create a gradient of interaction forces in a Velcro-like
mechanism that might either apically reorient a zoite-expressing
AMA1 mostly at its front end (merozoite) or flatten a zoite-
expressing AMA1 all over its surface (tachyzoite). Why
AMA1 has zoite-dependent contributions is unclear but might
be related to zoite shape. A zoite-specific optimal positioning
step, possibly involved in inducing rhoptry secretion, might be
useful for the pear-shaped tachyzoites and merozoites and
dispensable or even inhibitory for the naturally flattened
sporozoites.

Therefore, genetic data indicate a model where AMA1 and the
RON proteins have separate roles during apicomplexan invasion.
AMA1 acts in a host cell-binding step that impacts the frequency
but not quality of RON-dependent TJ formation, and the AMA1–
RON2 interaction is not involved in the transduction of the force
generated by the zoite motor during invasion. It can be argued
that our data are still compatible with an essential function of
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AMA1 at the TJ, if the residual invasion capacity of AMA1
mutants is ensured by an AMA1-like, functionally redundant
protein. This hypothesis is highly unlikely for several reasons.
First, the invasive AMA1 mutants displayed a normal entry
phenotype including a fully functional TJ. This implies that any
compensatory mechanism would need to be of optimal efficiency
but expressed in only a subset of mutants (those that invade), a
situation different from classical compensation by a suboptimal
homolog that affects phenotype quality in all mutant parasites.
Second, P. berghei AMA1KD sporozoites generated by Flp/FRT-
mediated 30-untranslated region (UTR) excision and T. gondii
AMA1KD tachyzoites generated by Tet-mediated transcriptional
repression were silenced immediately before phenotype analysis,
thus precluding any selection of compensatory mechanism(s).
Interestingly, AMA1KO T. gondii tachyzoites grown in contin-
uous culture, which adapted by overexpressing the AMA1
homologue TgME49_300130 by B15-fold (Fig. 1d), displayed a
significantly milder adhesion phenotype, suggesting that the
AMA1 homologue indeed compensated the adhesion defect of
AMA1 mutants. The hypothesis of compensation at the TJ is also
highly improbable in Plasmodium, which contains a single AMA1
gene. The parasite product most closely related to AMA1 is the
transmembrane protein MAEBL40, which in P. berghei is only
detected in oocyst sporozoites where it confers binding to the
mosquito salivary glands but not invasion of hepatocytes41.
Therefore, rather than AMA1-complementing TJ components,

AMA1-related proteins in both Toxoplasma and Plasmodium
appear to function in zoite adhesion, like AMA1.

One question raised by the model in which AMA1 and the
RON proteins have dissociated functions is the role of the
AMA1–RON2 interaction. The interaction is not essential but is
important, being evolutionarily conserved. It might be required
for processing/cleavage of surface AMA1 passing the TJ, perhaps
allowing the disengagement of interaction of AMA1 with its host
cell receptor and facilitating zoite sliding free into the PV.
Interestingly, AMA1 undergoes a conformational change upon
RON2 binding17, which could lead to loss of adhesive function or
exposure of cleavage sites. This would reconcile the genetic data
and the fact that antibodies or small molecules that inhibit the
interaction can reduce zoite invasion9,10,14–16,18,24,42. The
increased frequencies of Plasmodium merozoite (relative to
adhesive parasites) and sporozoite invasion might also point to
a modulatory/inhibitory role, possibly in preventing other
interactions important for TJ formation. More work is needed
to understand the exact contribution of the AMA1–RON2
interaction, which appears to impact AMA1 but not the TJ per se.

The demonstration of the dispensability of AMA1 in any step
of host cell invasion by apicomplexan zoites does not question the
potential efficacy of AMA1 as target of malaria prevention
measures. A large body of work shows the efficacy of antibodies
to AMA1 in blocking erythrocyte infection43–45, which might also
reduce sporozoite invasion of hepatocytes46. Likewise, although
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the AMA1–RON2 interaction might not have any positive role in
invasion, its inhibition by small molecules might still efficiently
perturb invasion. Nonetheless, our finding that AMA1-less
variants would be only partially impaired in adhesion while
retaining normal if not increased invasive capacity, raises the
possibility of rapid parasite adaptation to intervention strategies
targeting only AMA1 or the AMA1–RON2 interaction.

Methods
Parasites. P. berghei WT ANKA strain GFP fluorescent (GFP@HSP70)36, RFP
fluorescent (L733)35, AMA1/Cond27 or AMA1KO were maintained in 3-week-old
female Wistar rats or 3-week-old female Swiss mice. Mice or rats were infected with
P. berghei parasites by intraperitoneal or intravenous injections. Parasitemia was
followed daily by blood smears and FACS analysis. Anopheles stephensi (Sda500
strain) mosquitoes were reared at the Centre for Production and Infection of
Anopheles (CEPIA) at the Pasteur Institute as described47. HepG2 cell for
sporozoite infection were cultured in Dulbecco’s modified Eagle’s medium
(DMEM) or McCoy’s 5A medium supplemented with 10% fetal calf serum and
neomycin (50mg ml� 1, Sigma).

T. gondii tachyzoites were cultured in human HFF cells maintained in DMEM
supplemented with 10% fetal calf serum, 2 mM glutamine and 25 mg ml� 1

gentamicin.
All experiments using rodents were performed in accordance with the

guidelines and regulations of the Pasteur Institute and are approved by the Ethical
Committee for Animal Experimentation.

Cloning of DNA constructs. To generate the plasmid pGFP-hDHFR-PbAMA1KO,
the 30UTR of Pbama1 was amplified from P.berghei genomic DNA (gDNA) with
primers 30UTR PbAMA1 fw/rv and cloned in sites PstI and XhoI in a modified
pUC18 plasmid containing a new multiple cloning site and a human dihydrofolate
reductase (hDHFR) cassette48 (plasmid BGP-F). The 50UTR of Pbama1 was
amplified with primers 50UTR PbAMA1 fw/rv and cloned in sites SacI and EcoRI
in a pUC18 plasmid containing GFP@HSP70 cassette36 in sites SalI and SacI.
Finally, 30UTR-hDHFR was removed from the previous plasmid and cloned in the
latter in sites PstI and SalI.

To generate p5RT70-loxPAMA1loxP-YFP-HXGPRT, the TgAMA1 open reading
frame (ORF) was amplified from T. gondii gDNA using primers TgAMA1 ORF fw/
rv. In addition, 50UTR and 30UTR of ama1 was amplified from T. gondii gDNA
using 50UTR TgAMA1 fw/rv or 30UTR TgAMA1 fw/rv, respectively. First, the
50UTR of TgAMA1 was inserted upstream of p5RT70 in p5RT70-loxPKillerRedloxP-
YFP-HXGPRT plasmid33 in ApaI restriction sites. Then, the killerRed ORF was
exchanged by TgAMA1 ORF using EcoRI and PacI. Finally, the 30UTR of TgAMA1
was cloned in after HXGPRT selection cassette using SacI restriction sites.

Transfections and selection. P. berghei genetic manipulation was performed as
described49. P. berghei AMA1KO were generated by double homologous

recombination to replace the endogenous ama1-coding sequence by a hDHFR
cassette48 and a GFP fluorescence cassette36. The targeting sequence with the two
homologous regions flanking the selection cassettes was PCR amplified from
plasmid pGFP-hDHFR-PbAMA1KO using primers 50UTR PbAMA1 fw and 30UTR
PbAMA1 rv, and gel purified using the NucleoSpin Gel and PCR Clean-up kit
(Macherey-Nagel) following kit instructions. After transfection of an enriched
preparation of P. berghei ANKA schizonts and re-injection into mice, mutants were
selected with constant treatment with pyrimethamine in drinking water until green
fluorescent parasitemia was detected. Drugs were used as described49. The presence
of AMA1KO was confirmed by PCR analysis with primers Pa/Pb, specific for the
WT ama1 locus, and Pb/Pc, specific for integration at the ama1 locus, and by
Southern blotting of total gDNA after digestion with the restriction enzymes MfeI
or NdeI, with a probe hybridizing at the 50UTR of ama1, amplified with primers
50Pbama1-probe fw/rv, to recognize the WT or the mutant loci with different sizes.

For T. gondii genetic manipulation, ca 1� 107 of freshly lysed parasites were
transfected with 60mg linearized DNA by electroporation. Selection was performed
with mycophenolic acid (12.5 mg ml� 1 in MeOH) and xanthine (20 mg ml� 1 in
1 M KOH)50, or phleomycin (50 mg ml� 1)51.

The TgAMA1IoxP strain was generated by replacement of the endogenous ama1
by floxed ama1 via homologous recombination. The targeting sequence p5RT70-
loxPAMA1loxP-YFP-HXGPRT was removed from plasmid by digestion with NsiI
and XmaI restriction enzymes and transfected into ku80::diCre recipient strain33.
Parasites with stable integration were selected by the treatment with xanthine and
mycophenolic acid. Integration by homologous recombination was confirmed by
50TgAMA1out fw (P1) and p5RT70 rv (P10) primers. In addition, a PCR with
TgAMA1int fw (P2) and TgAMA1 ORF rv (P20) primers was conducted to
discriminate the presence of genomic or coding sequence of ama1 ORF.

To generate TgAMA1KO, ama1 ORF was excised from the genome by activation
of diCre with 50 nM rapamycin for 16 h. Subsequent limited dilution of induced
TgAMA1loxP pool led to a clonal TgAMA1KO population, which was confirmed by
genomic PCR using primers upstream and downstream of the loxP sites, 50UTR
TgAMA1 fw (P3) and YFP rv (P30). The loss of ama1 ORF was further verified by a
PCR in the ORF with primers TgAMA1int fw (P2) and TgAMA1 ORF rv (P20).

For complementation studies, TgAMA1FLAG 52 was used.

Southern and western blotting. gDNA from P. berghei and T. gondii to use as a
PCR template and for Southern blotting was extracted using Qiagen dneasy blood
and tissue kit according to manufacturer’s protocol.

For Southern blotting of P. berghei gDNA, samples were digested with MfeI or
NdeI restriction enzymes overnight, precipitated with ethanol, washed and
separated in agarose gel. The gel was transferred to a Hybond-XL membrane (GE-
Healthcare) and blotting was performed using the DIG easy Hyb kit and DIG wash
and block buffer kit from Roche according to manufacturer’s protocol. The probe
was amplified with primers 50Pbama1-probe fw/rv using the DIG Probe Synthesis
kit from Roche.

Tachyzoite western blot samples were obtained by spinning down extracellular
parasites and incubating with RIPA buffer (50 mM Tris-HCl pH 8; 150 mM NaCl;
1% Triton X-100; 0.5% sodium deoxycholate; 0.1% SDS; 1 mM EDTA) for 20 min
on ice. Unless indicated otherwise 106 parasites were loaded onto a SDS acrylamide

Table 1 | Primers used in this study.

Primer 50-30 Sequence
30UTR PbAMA1 fw GGGCTCGAGAAAAATAGCCATTGATTAA
30UTR PbAMA1 rv GGGCTGCAGTACCGATTAAGAGAAATGCT
50UTR PbAMA1 fw GGGGAATTCCTATAAATACGCTATATGCA
50UTR PbAMA1 rv GGGGAGCTCTTTTATATCGTTTTATTTTA
50Pbama1-probe fw CTTATTTCACAGCTAGCCAT
50Pbama1-probe rv CAATTACCATACAATACTTATAT
Pa (PbAMA1 cds fw) GAATAATGATGTTGAAATAAAAG
Pb (PbAMA1 30UTR rv) TTTAATTTAATGCCATCTATAATG
Pc (hDHFR fw) GGTGAGCATTTAAAGCACAA
P3 (50UTR TgAMA1 fw) GAGGGCCCATGCATGGATCGTATCGTACGAGACTAACG
50UTR TgAMA1 rv GAGGGCCCGAGACCCAATCAGATGTTAGCAAGC
30UTR TgAMA1 fw GAGAGCTCAGTCAGAAGAAACTGGGTACAGTTTTCCC
30UTR TgAMA1 rv GAGAGCTCCCCGGGGGCTTGACTAAACATTCCTCTCCCTATCAC
TgAMA1 ORF fw GAGAATTCTAAAATGATCTGTTCAATCATGGGAGGCTTGC
P20 (TgAMA1 ORF rv) GATTAATTAACTAGTAATCCCCCTCGACCATAACATGTG
P1 (50UTR TgAMA1out fw) GGACTCAAGCTTTACGGGATTTGCC
P10 (P5RT70 rv) CCGAATCTATAACTTCGTATAATGTATGCTATACGAAGTTATAGAAAAAATGCC

AACGAGTAGTTTTCCGCAAGAACTT
P2 (TgAMA1int fw) GCGGCAATTGCTGGACTCGCCGTAGGAG
P30 (YFP rv) TGCATTTACTTGTACAGCTCG

Fw, forward; ORF, open reading frame; rv, reverse; UTR, untranslated region.
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gel and immunoblot was performed as previously described53. Briefly, proteins
were transferred onto a nitrocellulose membrane, after blocking the membranes
were incubated with primary antibody for 1 h (mouse anti-AMA1 1:1,000; rabbit
anti-aldolase 1:10,000) followed by incubation with horseradish peroxidase-labelled
secondary antibodies (1:50,000; Jackson ImmunoResearch) for 2 h.

Quantitative PCR. RNA from freshly egressed parasites was purified using Trizol
followed by chloroform extraction. For cDNA synthesis, 2.5 mg of total RNA were
retrotranscribed using the SuperScript VILO (Invitrogen, Life Technology).
Quantitative real-time PCR was performed on a LightCycler 480 (Roche) using the
LightCycler 480 SYBR Green I Master Mix (Roche). PCR primers were designed to
amplify a 100-bp target gene fragment: AMA1 Fw: 50-TGGAGAGAACCCA-
GATGCGTTCCT-30 ; AMA1 Rv: 50-CAGTGTAGTCGAGGCAACGGCC-30;
TgME49_300130 Fw: 50-CCAGGACACGATGCCGCTCG-30; TgME49_300130 Rv:
50-AACCCCTCCGCCTCGTCCTT-30. cDNA levels were normalized to a-tubulin
levels measured with primers: Fw: 50-GCATGATCAGCAACAGCACT-30 ; Rv: 50-
ACATACCAGTGGACGAAGGC-30 . Experiments were performed four times with
two different RNA preparations.

Immunofluorescence. For P. berghei merozoites, sporozoites and infected HepG2
cells immunofluorescence, samples were fixed with 4% paraformaldehyde, 0.0075%
glutaraldehyde in PBS for 1 h54, permeabilized with 0.1% Triton X-100 in PBS,
blocked with BSA 3% in PBS, and stained with primary rabbit polyclonal
antibodies to the P. berghei AMA1 peptide CRASHTTPVLMQKPYY (Eurogentec,
1:500 dilution), or primary polyclonal antibodies to the P. berghei RON2 peptide
KKLGKLREKIVNGLFKKRGK (Thermo Scientific, 1:500 dilution), followed by
secondary Alexa-Fluor-conjugated antibodies (Molecular Probes, 1:500 dilution).
Images were acquired using an Axiovert II fluorescence microscope (Zeiss) or the
ImageStreamX from AMNIS.

For T. gondii immunofluorescence analysis, infected HFF monolayers grown on
coverslips were fixed in 4% paraformaldehyde for 20 min at room temperature,
followed by permeabilization (0.2% Triton X-100 in PBS) and blocking (2% BSA
and 0.2% Triton X-100 in PBS). The staining was performed using primary
antibody (mouse anti-AMA1, 1:1,000; mouse anti-SAG1, 1:1,000; rabbit anti-
MIC2, 1:500; rabbit anti-IMC1, 1:1,500; rabbit anti-GAP45 1:1,000) followed by
secondary Alexa-Fluor-conjugated antibodies (Molecular Probes, 1:3,000). Images
were acquired with CCD camera under Deltavision Core or confocal Nikon Ti
eclipse microscopes (z–stacks of 0.2–0.3mm, � 100 immersion objective),
deconvolved using SoftWoRx Suite 2.0 (Applied Precision, GE) when needed and
further processed using ImageJ 1.34r and Photoshop (Adobe Systems) software.

Production of merozoites and ImageStream analysis. Erythrocytic merozoites
were obtained by culturing infected rat or mouse blood for 16 h, at 37 �C, 5% CO2

and 10% O2, under shaking (90 r.p.m.), in RPMI 1,640 medium (Gibco) supple-
mented with 20% fetal calf serum and 50 mg ml� 1 neomycin. Mature schizonts
were separated in a Nycodenz gradient and merozoites were isolated by filtration of
schizonts through a 5-mm filter, followed by another filtration through a 1.2-mm
filter.

The GFP fluorescent AMA1KD strain conditionally knocks down AMA1
expression in mosquito stages, producing sporozoite populations in mosquito
salivary glands in which up to 95% of the parasites express undetectable levels of
AMA1 (ref. 27). AMA1KD sporozoites were used to infect HepG2 cell in vitro and
62 h post infection the emerging merosomes were collected, and hepatic merozoites
were obtained by filtration through a 5-mm filter.

The purified merozoites were cultured in vitro with PKH26-stained rat red
blood cells for 3 or 10 min under agitation (400 r.p.m.), and cultures were fixed
with 4% paraformaldehyde, 0.0075% glutaraldehyde in PBS for further permea-
bilization and staining with anti-AMA1 (Eurogentec, peptide
CRASHTTPVLMQKPYY) and secondary Alexa-Fluor 647. Cells were acquired in
an ImageStreamX using a � 60 objective, excitation lasers 488, 561 and 642 nm,
and analysed using the software IDEAS, from AMNIS.

Merozoites attached to red blood cells were assessed by double fluorescence
(PKH26 and GFP), and invaded cells were assessed with a sequence of algorithms
that identify PKH26 duplication because of PV formation (R3 Bright Similarity
Channels 2 and 4, Intensity Weighted).

T. gondii invasion/attachment assay. To investigate the attachment and invasion
rates of the TgAMA1KO parasites, a red/green invasion assay was performed as
described earlier55. HFFs were grown on coverslips of a 24-well plate and infected
with 5� 106 freshly collected parasites. Plates were centrifuged for 2 min at 200 g
and incubated at 37 �C, 5% CO2 for 15 min. Subsequently, cells were fixed in 4%
paraformaldehyde (PFA) for 15 min followed by immunostaining with a-SAG-1
primary and Alexa-Fluor secondary antibodies before Triton X-100
permeabilization (0.2% in PBS) and immunostaining with a-IMC1 primary and
Alexa-Fluor secondary antibodies. Extracellular and intracellular parasites were
counted in ten fields of view (� 100 objectives) and calculated as a percentage
value of RH Dhxgprt parasites normalized to 100%.

To measure T. gondii tachyzoite position relative to the host cell, we adapted the
assay previously described27. HeLa cells were plated on poly-lysine-coated glass

coverslips in a 6-well plate, transfected with 1 mg of plasmid-encoding mCherry in
the pDisplay Vector (Invitrogen) and used 20 h later for a 5-min invasion assay.
Cells were fixed in PBS-4% PFA (20 min, room temperature) and stained with anti-
SAG-1 antibodies followed by Alexa-Fluor anti-mouse antibodies to label
extracellular parasites. Samples were scanned on the confocal Nikon Ti Eclipse
microscope and images were captured and analysed with Metamorph software
(using the 4D viewer application). For each zoite, an ellipsoid was fit to measure the
longitudinal axis, whereas the cell surface contacting the tachyzoite centres of mass
was affected to all the isosurfaces. The plane of the cell was reconstructed and angle
values between the longer axis of the parasite and the host cell plane were generated
by Metamorph.

T. gondii replication assay. 1� 105 ku80::diCre or TgAMA1FLAG or 5� 105

TgAMA1KO were inoculated onto a confluent monolayer of HFFs grown on
coverslips (24-well plate) and incubated in normal growth conditions. One hour
post inoculation, coverslips were washed in PBS to remove extracellular parasites
and thus synchronize the cell cycle. Cells were further grown in normal growth
conditions until as indicated, fixed and immunostained. The number of parasites
per vacuole was determined for 100 vacuoles.

T. gondii plaque assay. 200 RH Dhxgprt or TgAMA1FLAG parasites or 1,000
TgAMA1KO parasites were added onto a confluent monolayer of HFF cells of a six-
well plate. After incubating for 6 days, the HFF monolayer was washed in PBS and
fixed in ice-cold methanol for 20 min. Afterwards, the HFF cells were stained with
Giemsa. The area of ten plaques was assessed using Image J 1.34r software.

T. gondii egress assay. 4� 105 parasites were grown in HFF monolayers on
coverslips for 36 h. Media were exchanged for pre-warmed, serum-free DMEM
supplemented with calcium ionophore 2 mM (A23187 in DMSO)56. After
incubation for 5 min at normal growth conditions (37 �C; 5% CO2), cells were fixed
and stained with anti-GAP45 primary antibody and Alexa-Fluor secondary
antibody. Two hundred vacuoles were scored in each experiment.

T. gondii motility assay. Freshly egressed tachyzoites were allowed to glide for
30 min on glass coverslips coated with 50 mg ml� 1 heparin in PBS. Parasites and
trails were then stained with anti-P30 antibodies and visualized with an inverted
laser scanning microscope (Eclipse Ti, Nikon). Images were analysed using
Metamorph and ImageJ software. Numbers of helical and circular trails associated
with parasites were scored in 30 fields.

T. gondii video microscopy. Time-lapse video microscopy was conducted with the
DeltaVisions Core microscope using a � 40 immersion lens. Freshly lysed RH
Dhxgprt, ku80::diCre or TgAMA1KO were added onto HFF, HeLa or U373
monolayer grown in glass dishes (ibidi; m-Dish35 mm, high). Forty hours post
inoculation, invasion of freshly egressed parasites was observed. Normal growth
conditions were maintained throughout the experiment (37 �C; 5% CO2). Images
were recorded at one frame per second. Further image processing was performed
using ImageJ 1.34r software and with Photoshop (Adobe Systems).
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