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Abstract

Alzheimer’s disease is the most common cause of dementia worldwide, affecting the elderly population. It is characterized
by the hallmark pathology of amyloid-b deposition, neurofibrillary tangle formation, and extensive neuronal degeneration
in the brain. Wealth of data related to Alzheimer’s disease has been generated to date, nevertheless, the molecular
mechanism underlying the etiology and pathophysiology of the disease is still unknown. Here we described a method for
the combined analysis of multiple types of genome-wide data aimed at revealing convergent evidence interest that would
not be captured by a standard molecular approach. Lists of Alzheimer-related genes (seed genes) were obtained from
different sets of data on gene expression, SNPs, and molecular targets of drugs. Network analysis was applied for identifying
the regions of the human protein-protein interaction network showing a significant enrichment in seed genes, and
ultimately, in genes associated to Alzheimer’s disease, due to the cumulative effect of different combinations of the starting
data sets. The functional properties of these enriched modules were characterized, effectively considering the role of both
Alzheimer-related seed genes and genes that closely interact with them. This approach allowed us to present evidence in
favor of one of the competing theories about AD underlying processes, specifically evidence supporting a predominant role
of metabolism-associated biological process terms, including autophagy, insulin and fatty acid metabolic processes in
Alzheimer, with a focus on AMP-activated protein kinase. This central regulator of cellular energy homeostasis regulates a
series of brain functions altered in Alzheimer’s disease and could link genetic perturbation with neuronal transmission and
energy regulation, representing a potential candidate to be targeted by therapy.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized neuropathologically by the extracellular accumula-

tion of amyloid-beta plaques and the intracellular accumulation of

hyperphosphorylated tau protein, the neurofibrillary tangles [1].

AD is the most prevalent neurodegenerative disorder worldwide

and it is a complex disease associated with multiple genes [2].

Although a large body of literature focuses on the importance of a

few key proteins for AD onset and progression, our understanding

of the etiopathology of the disease is still very limited. Current

medical treatments for AD are purely symptomatic and hardly

effective [3], thus, the understanding of the molecular mechanisms

underlying AD is essential for the development of novel therapies.

Over the last decade, many studies have been devoted to

dissecting the molecular pathways involved in AD using a variety

of experimental designs and technological approaches, including

genomic-wide linkage scans [4], genetic association studies [5],

and microarray gene expression investigations [6–11]. In the

present study, a systems biology approach was applied to extract

overlapping evidence from different sources of AD-related data.

Our convergent analysis of different data types enabled us to

overcome the limitation of analyzing each single data type in

isolation and to provide a multi-source, unbiased view of the

evidence embedded in the genomic, transcriptomic, and drug

molecular targets. As a final step, Alzheimer’s disease associated

genes and genetic phenotypes collected in the Online Mendelian

Inheritance in Man (OMIM) database representing the consoli-

dated knowledge on AD were integrated in the analysis to validate

the method. Previous computational studies have tried to integrate

different text mining approaches, genetic, functional or -omics

data to provide hypotheses for the biological mechanisms

underlying the pathology [12–15]. This is the first attempt to

integrate the genomic aspect of AD with the gene expression and

drug candidate targets. We have used AD-related data obtained

from multiple sources: (1) transcriptomic data of six different post

mortem brain regions of AD affected subjects [11], analyzed using

a newly developed analytical method [16], (2) single nucleotide

polymorphism (SNP) data integrated from multiple studies [17],

(3) molecular targets of Alzheimer’s drugs in the different phases of

the drug discovery process, and, for the validation step, (4) genes

associated to Alzheimer’s disease extracted from the Online

Mendelian Inheritance in Man (OMIM) database [18]. These sets

of data were used to derive lists of seed genes and represented the

basis to perform network analysis. We then used a protein-protein

interaction (PPI) network as a scaffold on which to embed the lists
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of seed genes, with the lists considered both separately and in

different combinations.

A number of methods have been proposed for integrating

experimental data and prior knowledge in the form of PPI

interactions. Some of the existing tools implement network

building methods whose starting point is a list of genes, which

are then used as a backbone for the iterative assembling of

connected networks [19]. Others, such as in Komurov et al. [20],

start considering the whole network structure and then proceed to

assign weighs to nodes to reflect the levels of gene expression from

microarray data. In the present paper, we have developed an

intermediate approach. We have used the whole interaction

network from HPRD [21], partitioned it into modules and tested

their enrichment in terms of seed genes. We have, then, character-

ized the biological properties of the significantly enriched reference

modules by studying the over-represented GO biological process

(GOBP) terms (Figure 1). Our method combines the merits of the

holistic perspective considering the whole network structure,

allowing the concurrent comparison of different data types.

This biomolecular network has provided a richer setting to

characterize genes found to be involved in AD and to identify

AMP-activated protein kinase (AMPK) signaling, a metabolic

sensoring pathway and energy regulators including neuropeptides,

as a major player in the pathophysiology of AD, which could

explain various aspects of AD pathogenesis.

Materials and Methods

Seed Genes Lists
The lists of seed genes (1) extracted from gene expression data, (2)

identified with significant SNPs, (3) obtained after data search for

drug targets, and (4) retrieved from OMIM database were

obtained as described in the following, and are reported in Tables

S1.

Gene expression seed genes. Microarray data were down-

loaded from Gene Expression Omnibus (GEO; http://www.ncbi.

nlm.nih.gov/geo/). Dataset GSE5281 [11] refers to a series of

brain regions differentially affected by Alzheimer’s disease and was

selected based on the good quality of the experimental design. Full

description of the dataset is reported in [11]; briefly, histologically

non-affected neurons were collected by laser-capture microdissec-

tion from six different brain regions: entorhinal cortex (EC),

hippocampus (HIP), medial temporal gyrus (MTG), posterior

cingulate cortex (PC), visual cortex (VCX), and superior frontal

gyrus (SFG). The study population consisted of 11–13 elderly

controls and 10–23 AD affected subjects for each region. The pre-

processed version of dataset GSE5281 was downloaded and used

without modifications. In order to derive lists of relevant genes, we

first obtained AD differential expression profiles by dividing each

AD profile by the average of the controls for the respective region

(i.e., the HIP profiles in AD patients by the average of HIP profiles

in controls). We then ranked each profile separately, from the most

expressed to the least expressed probeset; at the end of this step,

each probeset had a separate rank assigned to it for each of the

expression profiles. In order to obtain a brain region-specific

ranked probeset list, we summed the ranks for each region

separately, and then we re-ranked the probesets according to the

rank sums. Finally, the top 125 and the bottom 125 probesets were

collected for each region, to form a brain region-specific list. The

value of the length of these lists (125+125) was selected as the one

that gave the best partitioning of the map of samples in well-

defined groups, thus corresponding to a maximally informative

and minimally redundant expression signature. We have shown

that the signature length is not critical, in the sense that usually the

Figure 1. Schematic representation of the network analysis workflow. Significant gene expression signatures associated to AD were
extracted from the GSE5281 dataset, while lists of SNPs, drug targets, and OMIM Alzheimer’s genes were obtained from public databases. These seed
genes (in yellow and orange) inform about transcriptomic and genetic properties of AD, also providing details on drug targets in the different phases
of the drug discovery process and AD associated genes in the OMIM database. Following module structure detection in the protein-protein
interaction (PPI) network derived from HPRD data (see groups of nodes in the same white-background circles), we investigated the presence of
reference modules where seed genes (obtained through the three simple lists and their union) were over-represented. We characterized the
functionality of these enriched modules by testing over-represented Gene Ontology biological process terms, both considering seed genes (in yellow
and orange) and non-seed genes (in light blue) that closely interact with them.
doi:10.1371/journal.pone.0078919.g001
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range of values resulting in a satisfactory clustering of the map is

quite wide [16,22].

The map was obtained by measuring the reciprocal distance

between the lists extracted from each profile, and then represent-

ing such distances in the form of a graph (Figure S1), as detailed

elsewhere [16].

SNPs seed genes. SNPs data were obtained from the

AlzGene database (www.alzgene.org). Only highly significant

meta-analysis results (p-values ,0.00001) were used to select a

subset of SNPs – AD-associated genes confirmed by numerous

studies [17]. We tested separately the complete dataset (533 SNPs)

as well for the additional statistical analysis.

Drug targets seed genes. Drug molecular targets were

obtained by collecting information from different pharmaceutical

company websites and from a clinical trial database (www.

clinicaltrials.gov). Drugs in all phases of the drug discovery

process, from preclinical to marketed drugs, were included. This

allowed obtaining the broadest coverage of the genes of interest for

pharmaceutical drug development to identify the overall key

molecular targets of interest for the treatment of AD. Only

primary targets were considered as seed genes for network analysis.

OMIM seed genes. Alzheimer’s disease genes and genetic

phenotypes were extracted from the OMIM database, using

Alzheimer’s disease as reference keyword [18].

Network Construction and Analysis
For protein interaction data, we used the 2009 version of the

Human Protein Reference Database (HPRD; http://www.hprd.

org/). This is a literature-curated human PPI interaction network

comprising 37039 interactions among 9617 genes [21]. Nodes of

the network are the genes (named with gene symbols), while edges

stand for protein-protein interactions (e.g., enzymatic, regulatory,

transcriptional). We removed loops (edges for which the two

endpoints are the same gene) and duplicate edges (interactions

with the same two nodes that are listed more than once), and

identified the maximal connected component of the network (giant

component). The final network was composed of 9219 genes and

36900 interactions. To find network modules, we analyzed the

final network with the ‘‘spinglass.community’’ function [23]

included in the R package igraph [24]. Network modules represent

cohesive subgroups composed of genes that are more intimately

interconnected among each other than with the rest of the

network. Using the ‘‘spinglass.community’’ function, these mod-

ules are identified only considering the arrangements of network

interactions. Since the module detection function maximizes the

modularity by adopting a heuristic approach, module structure

(i.e., number, size and node composition) might slightly change in

different runs [23,25]. To deal with this, we ran the ‘‘spinglass.-

community’’ partitioning algorithm 100 times. At each run, we

performed hypergeometric tests (p-values threshold 0.05) using the

‘‘multiHyperGeoTest’’ function from the R package HTSanaly-

zeR [26] to identify the network modules that were significantly

enriched with seed genes considered for that run (differentially

expressed genes, SNPs, drug targets, OMIM genes or lists

obtained from their union). When more enriched modules were

found, we compared their size and composition to identify the

substantially overlapping modules across multiple runs (Figure S2).

First, we grouped enriched modules based on their size, applying

the function ‘‘hist’’ of the R package graphics (and using the

option: breaks = "Sturges"; see [27]). The composition of signifi-

cant modules of similar size was compared and eventually merged

into a new reference module summarizing the results of multiple

runs (i.e., in case this did not alter significant statistics on gene

enrichment). Each reference module was obtained by selecting the

largest number of genes and interactions found with different runs.

To avoid excluding genes and interactions of possible interest, we

considered the largest amount of genes and interactions as

representative of each reference module, when this did not

compromise the statistics for over-represented seed genes. If the

significant enrichment with seed genes vanished after the union of

more modules, they were considered as representative of different

communities and analyzed as separate sub-networks. The highest

variability was observed for the changes in the number of

interactions while module composition was more stable during

different runs. We also required all reference modules to be

constituted by sets of connected nodes. Once the composition of

these reference modules was identified, we used the whole lists of

‘‘reference module genes’’ to extract the most representative GO

biological process terms (i.e., the ones that are over-represented,

but that do not refer to most general biological processes). For

identifying and visualizing enriched GO terms, we used GOrilla

and REVIGO tools; hypergeometric distribution was applied to

test GO term enrichment, and a p-value threshold of 0.001 was

selected [28,29].

Statistical Analyses on the Relatedness of AMPK to AD
In order to characterize the relevance of AMPK system in AD a

series of three types of statistical analysis was performed. AMPK is

represented in the final network by 9 nodes: 2 protein kinase,

AMP-activated, catalytic subunits (i.e., PRKAA1, PRKAA2); 5

protein kinase, AMP-activated, non-catalytic subunits (i.e,

PRKAB1, PRKAB2, PRKAG1, PRKAG2, PRKAG3), the

acetyl-CoA carboxylase alpha (ACACA) and beta (ACACB).

They result in a sub-network of 9 nodes collectively called ‘‘AMPK

nodes’’. These nodes are surrounded, in the final network, by 25

direct neighbors. Altogether, they result in a sub-network of 34

‘‘AMPK nodes+neighbors’’.

First, we measured the frequency of the 9 AMPK nodes and 34

‘‘AMPK nodes+neighbors’’ in the enriched modules. We applied

the Shapiro-Wilk test (function ‘‘shapiro.test’’ from the R package

nortest) to assess the normality of the count distributions for

AMPK and non-AMPK nodes. We used the Wilcoxon rank sum

test (function ‘‘wilcox.exact’’ from the R package exactRankTests)

to investigate whether, in reference modules, AMPK nodes were

characterized by significantly higher frequencies than non-AMPK

nodes.

Second, we checked whether the sub-network of 34 ‘‘AMPK

nodes+neighbors’’ was significantly enriched with seed genes of

different origin, considering first the lists of seed genes separately

and, then, their union. Enrichment was evaluated with the

hypergeometric test and p-values were adjusted with the

Benjamini and Hochberg correction [30].

Third, we measured average and global patterns of shortest

distances linking the 34 ‘‘AMPK nodes and neighbors’’ to seed

genes, and compared their distributions to 1000 subsets obtained by

randomly sampling 34 non-seed and non-AMPK nodes from the

final network using the Wilcoxon signed rank test, following

evaluation of normality of the distributions with the Shapiro-Wilk

test. Comparisons were carried out using both 34 average shortest

paths (‘‘avg’’ scenario) and considering the whole distribution of

shortest paths to seed genes (‘‘all’’ scenario). For each comparison,

we combined the 1000 p-values into a unique p-value by

considering that p-values should be uniformly distributed when

the null hypothesis is true (i.e., when there are no differences

between the distributions of shortest paths obtained with AMPK

and non-AMPK nodes) [31].

In presence of n random uniform variables, the cumulative

distribution function is as follows:

Network Analysis in Alzheimer’s Disease
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The left-hand side stands for the probability that the random

variable X takes on a value less than or equal to x; given the k-th

element, the expression (x – k) indicates the positive part of (x – k):

it equals (x – k) if (x – k) is positive and equals 0 otherwise. Due to

the central limit theorem [32], as the number of random uniforms

increases, the sum will converge to a normal distribution with

mean n/2 and variance n/12. This convergence can be used to

estimate a combined p-value for each set of 1000 p-values. If the p-

values are lower than expected from the null, the sum would show

up in the lower tail of the distribution.

Results

We carried out functional enrichment analyses of GO biological

process terms for the reference modules representing unique

network communities characterized by over-represented seed genes.

These modules were determined for each seed genes list separately

(i.e., gene expression, SNPs, drug targets, and OMIM genes) and

then by considering (1) the union of gene expression and SNPs, (2)

the union of gene expression, SNPs, and drug targets, and (3) the

union of gene expression, SNPs, drug targets, and OMIM genes

(Figure 2). After analyzing gene expression data, several reference

modules were found for all brain regions and their number ranged

across the regions, with SFG having the highest number of

reference modules and VCX the lowest. An enriched reference

module was also found associated to drug targets, numerous

modules to OMIM genes associated to Alzheimer’s disease, while

none linked to SNPs (Tables S1). The number of genes per

reference module ranged from 13 to 1885.

Integrating the most significant SNPs with expression data,

enriched reference modules were identified only for four brain

regions: HIP, PC, SFG, and MTG. Adding drug targets to the

analysis, we found enriched communities only in three brain

regions: PC, MTG and SFG, while including in the analysis

OMIM genes five brain regions (PC, MTG, HIP, VCX, and SFG)

were associated to enriched modules (Figure 2).

Complete lists of genes in the enriched modules are summarized

in Tables S1.

Figure 2. Summary of statistically significant Gene Ontology biological processes functional annotation corresponding to genes in
enriched reference modules. Data refers to reference modules obtained using gene expression only (expression), by integrating this information
with SNPs (expression+SNPs), and by merging the mRNA expression data, SNPs and drug targets (expression+SNPs+drug targets), and by combining
the mRNA expression data, SNPs, drug targets, and OMIM genes (expression +SNPs+drug targets+ OMIM). In light blue are GO terms associated to
synaptic transmission and neuronal signaling, in dark green are metabolism-associated GO terms, in gray remaining relevant terms. Highlighted are
the results which have been discussed in detail in the discussion section. Specific GO terms are described in Table S2.
doi:10.1371/journal.pone.0078919.g002
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Table 1 and Figures 2–3 describe the functional annotation

analysis results. Overall, reference modules related to expression

data only in HIP and PC cortical area were mainly related to

metabolism, while in neocortical regions such as MTG and SFG,

both metabolic and higher brain biological process terms related

to neuronal transmission (e.g., neuropeptide, NOTCH, and

synaptic transmission) were represented. Integrating the SNPs

and drug targets data to the expression analysis, PC maintained

the ‘‘metabolic’’-related profile, while in SFG, beside the fact that

the neuronal transmission biological function annotation was

retained, additional GO terms associated with metabolism were

included (Figures 2–3). Including OMIM data in the analysis, a

role for circadian rhythm was evident in the five brain regions (PC,

HIP, SFG, MTG, and VCX). A metabolic profile was still

associated to PC and HIP, SFG and MTG were related to both

metabolic and higher brain functions activities, while VCX was

associated to synaptic transmission. The complete list of specific

GO terms can be found in Table S2.

Comparing the gene lists associated to the groups of similar GO

terms among different brain regions and using different subsets of

data, in most cases there was a good overlap (e.g., Fatty acid and

TOR), while in a few other cases they resulted very different

(Table 1).

Through GO enrichment analysis, we found that AMP-kinase

signaling pathway plays a central role in AD. To further

corroborate this outcome, we tested the statistical relevance of

AMPK-related nodes to AD. We observed that the frequency of

both 9 AMPK nodes and 34 AMPK-related nodes was

significantly higher than the frequency of non-AMPK nodes, in

case of enriched reference modules obtained from the union of

gene expression, SNPs and drug targets. The sub-network of 9

AMPK nodes and their 25 direct neighbors was significantly

enriched with different types of seed genes, especially when

considering the extended list of 533 SNPs. In general, SNPs were

significantly over-represented in the surrounding of AMPK. The

34 AMPK-related nodes showed shorter distances to whole SNPs,

drug targets and OMIM genes in HPRD, if compared to other

non-AMPK and non-seed genes. Results on the AMPK relatedness

to AD are summarized in the Table S3.

We have then investigated whether the reference modules

identified with lists of seed genes, obtained using gene expression

profiles, SNPs, and drug targets, were significantly enriched with

OMIM genes (p-values were estimated with hypergeometric tests -

see the Benjamini & Hochberg correction; adjusted p-value

threshold = 0.1). Results confirmed the outstanding importance

of SFG (altogether, 11 OMIM genes out of the 13 found in HPRD

were included):

– 3 SFG modules (expression data only) were enriched with

OMIM genes (i.e., these 9 genes: PSEN2, BLMH, PSEN1,

PLAU, APOE, APP, HFE, MPO, A2M).

– 2 SFG modules (expression data & SNPs) were enriched with

OMIM genes (i.e., these 8 genes: PSEN2, PSEN1, PLAU,

APOE, APP, HFE, MPO, A2M).

– 2 SFG modules (expression, SNPs & drug targets) were

enriched with OMIM genes (i.e., these 5 genes: PSEN2,

BLMH, PSEN1, NOS3, ACE).

Discussion

The novelty of our investigation is in the approach we used in

integrating multiple data types in order to elucidate the

etiopathology of AD. Our approach can be described as follows.

We sought to combine three different types of data specifically

selected for their potential to shed light on the molecular details of

AD: transcriptomic data in the form of expression profiles in brain,

genetic data in the form of SNPs, and affected pathways in the

form of drug targets.

The starting point of our analysis was a PPI network (data

extracted from the HPRD dataset), which we used as a scaffold to

merge the information derived from the three sets of data. We

applied network analysis for extracting the hints on AD-specific

mechanisms contributed by these three datasets and for revealing

possible overlaps in the biological process terms they refer to. A

preliminary module analysis of the PPI network was performed, a

module being a group of nodes (proteins) characterized by a higher

degree of connectivity to other members of the group than to non-

group nodes, assuming that genes with a highest number of

Table 1. Gene lists associated to main classes of Gene Ontology biological process terms.

Fatty acid Mitochondria TOR Autophagy Insulin Circadian

SFG Exp.
SNPs Drug

PC Exp.
SNPs Drug

SFG Exp.
SNPs Drug

PC Exp.
SNPs Drug

SFG Exp.
SNPs Drug

PC Exp.
SNPs Drug

SFG Exp.
SNPs Drug

PC Exp.
SNPs Drug

SFG Exp.
SNPs Drug

PC Exp.
SNPs Drug

SFG Exp.
SNPs Drug

PC Exp.
SNPs Drug

ACACA ACACA PRKAG2 PRKAG3 PRKAA1 PRKAA1 ATG4A PRKAA1 PFG PRKAG1 CRH PRKAA1

ACACB ACACB PRKAB2 PRKAB3 PRKAA2 PRKAA2 ATG10 PRKAA2 PDX1 PRKAG2 ADA PRKAA2

PRKAA1 PRKAA1 ACAB ACAB ATG7 FFAR1 PRKAB1 ADORA1

PRKAA2 PRKAA2 PRKAA2 PRKAA3 MAP1LC3B ANXA1 PRKAB2 GHRL

PRKAB1 PRKAB1 ATG5 NEUROD1 PRKAA1 DRD2

PRKAB2 PRKAB2 GABARAP MC4R PRKAG3

PRKAG1 PRKAG1 NBR1 CAMK2G PRKAA2

PRKAG2 PRKAG2 ATG4B FKBP1B

PRKAG3 PRKAG3 GABARAPL2 MAFA

CACNA1C

Comparative gene lists associated to main classes of Gene Ontology biological process terms derived by integrating gene expression, SNPs and drug targets data in SFG
and PC. In few cases (Fatty acid and TOR signaling) the gene list are perfectly matching, while in Insulin, Autophagy and Circadian Rhythm, they differed considerably.
Seed genes are in bold.
PRKAA1-2, PRKAB1-2 and PRKAG1-3 are AMPK subunits, while ACACA and ACACB are ACC.
doi:10.1371/journal.pone.0078919.t001
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structural connections are also better candidates for more intense

patterns of functional interactions. The aim was finding AD-

pertinent enriched modules (i.e., modules showing a significant

over-enrichment of AD-related genes) in the human PPI

interaction network, for characterizing the most relevant biological

processes associated to these reference modules. We introduced a

novel approach for estimating reference module composition

applying a heuristic algorithm for the concurrent analysis of

heterogeneous experimental data [23]. We avoided overweighting

the importance of a specific data type and, given this choice, we

were unable to utilize an exact method which requires the

integration of network structure with additional properties

concerning nodes and edges, an otherwise excellent solution in

case of mono-dimensional experimental data [20,33]. Other

studies consider the complete network structure for identifying

disease genes [34] or performing functional analyses of genomic

data [20]. However, the most prevalent software tools (e.g.,

GeneGO and Ingenuity Pathway Analysis) adopt list-based

network building methods (i.e., they construct ad-hoc networks

through an iterative process, by including neighbors of seed genes up

to a given distance), or score pre-defined pathways and functional

terms that are over-represented by lists of seed genes [35,36]. Since

our approach combines holistic view (i.e., it uses the whole

network structure) and module detection of an unweighted

network (i.e., it estimates module composition with a heuristic

algorithm, by ranking at the same level all of the experimental data

types) we argue that it is especially suitable for integrating multiple

data types.

The additive role of the data types can be best appreciated by

looking at the significance analysis of AMPK for one, two, three or

four datasets. Table S3.2 (in Table S3) shows that none of the four

data sets is by itself sufficient to identify AMPK, and instead the

use of all three supporting sets (transcriptional, SNP, drug targets)

is necessary for its identification. The addition of OMIM, which

represents the consolidated knowledge on AD and does not

include AMPK (Table S3.1, in Table S3), has the effect of diluting

the supporting evidence for new genes in favor of established ones,

and brings the significance of AMPK below threshold.

The functional properties of the areas of the network enriched

in terms of the three sets of AD-genes (expression, SNPs, and drug

targets) were characterized and revealed that, in posterior

cingulate cortex, the metabolism-related terms display greatest

importance, with particular relevance of insulin, fatty acids and

mitochondrial functions (Figures 2–3). Posterior cingulate cortex is

metabolically affected in the early phases of AD [37] and genes

influencing mitochondrial energy metabolism were found to be

down-regulated in AD patients [10]. However, the subset of genes

identified by Liang and colleagues refers to a great proportion of

the nuclear genes encoding mitochondrial ETC (electron transport

chain) subunits in PC, including TIMMs and TOMMs, which are

required for the transmembrane mitochrondrial transportation of

ETC components, thus differing from the genes highlighted by our

study (Table 1). The genes associated to metabolism-related GO

terms (fatty acid, insulin, mitochondria, mTOR signaling) in PC

have as common and central molecules different subunits of AMP-

activated protein kinase (AMPK; PRKAA1-3, PRKAB1-3;

PRKAG1-3) and AMPK enzyme complex ACC (ACACA,

ACACB). AMPK is a cellular complex involved in intracellular

energy metabolism, a regulator of energy homeostasis. Interest-

ingly, analyzing the enriched modules of drug targets and gene

expression data separately, the same genes were found, with a

convergence to AMPK signaling using data of very different origin

(Tables S1). This energy-sensing enzyme is linked to different

molecular functions that are altered in AD such as defects in

glucose uptake [38], mitochondrial dysfunctions [39] and alter-

ation of autophagy pathways [40]. Recent studies suggest a role for

AMPK in modulation of tau protein phosphorylation and

amyloidogenesis, the major hallmarks of AD. Latest research

indicated an upstream role for AMPK pathway as a critical

mediator of the synaptotoxic effects of amyloid beta [41]. Thus, it

is possible that the altered functionality of AMPK system in AD

patients contributes to a neuronal imbalance in handling energy

Figure 3. Schematic graphs of over-represented Gene Ontology biological process terms in enriched SFG and PC reference
modules. Seed genes were obtained from the union of differentially expressed genes with most significant SNPs and primary drug targets. GO terms
are represented as nodes, and the strongest GO term pairwise similarities are designated as edges in the graph. GO terms are grouped to illustrate
the main metabolic signature in PC, while both metabolic and synaptic transmission functions characterize SFG.
doi:10.1371/journal.pone.0078919.g003
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requirements, leading to higher Ab and phospho-tau. AMPK is

also involved in transmitting energy-dependent signals to the

mammalian clock, thus regulating circadian rhythm; circadian

rhythm disturbances have been well documented in AD as being

part of the disease process, or a reflection of it [42]. The

involvement of AMPK is further corroborated by previous

transcriptome studies in AD post mortem brains where AMPK-

related genes were found to be altered in prefrontal cortex of

affected individuals, with a subunit-specific effect [7]. Also tacrine,

an acethylcholinesterase inhibitor widely used for the treatment of

AD, was shown to induce up-regulation of AMPK subunits in an

in vitro model (E-MTAB-798 in expression ATLAS http://www.

ebi.ac.uk/gxa/) [43]. Further evidence of the central role of

AMPK in AD originates from preclinical and clinical studies. In an

animal model of AD, the triple transgenic mouse model,

pioglitazone treatment, an AMPK activator, results in the

reduction of amyloid plaque, reduced inflammation and reversal

of disease-related behavioral impairment [44]. In a recent clinical

trial, rosiglitazone, an anti-diabetic drug acting on AMPK, was

associated with improved cognition and memory in patients with

mild to moderate AD [45].

In order to associate AMPK functions to genetic alteration in

AD, we investigated the molecular interactions between SNPs and

AMPK-related genes found in the AD enriched modules. We

found that three out of ten SNPs-associated genes in the lists of the

most significant SNPs have a direct relation to AMPK: a genetic

interaction for (1) CLU with ACC (ACACA) and (2) PICALM

with AMPK (PRKAA1/PRKAG2) [46], and co-expression for (3)

CD2AP with AMPK (PRKAB1) [47] (Figure 4). Also CD33,

another gene characterized by a polymorphism that is significantly

associated to AD, is related to AMPK, although indirectly,

through leptin (Figure 4), another key player in energy regulation

whose effects in inhibiting amyloid b production and tau

phosphorylation are dependent on activation of AMPK [48].

Statistical analysis demonstrates also the closeness of AMPK-

related genes to SNPs in comparison to other nodes in the

network. This finding could provide evidence on the functional

role of these loci in the mis-modulation of energy homeostasis, a

scenario that assigns to energy impairment important roles in

predisposing the brain to the etiology and pathogenesis of this

condition.

The advocated role of AMPK and direct neighbor genes in AD

was also supported by statistical analyses. Different lists of seed genes

that are relevant for AD were overrepresented in the sub-network

composed of AMPK genes and their direct neighbors. In addition,

AMPK-related nodes showed significantly shorter distances to

Figure 4. Simplified schematic graph of AMPK interactions with. (1) genes included in the enriched reference modules (purple), (2)
differentially expressed genes (pink), (3) drug targets (light blue), and (4) SNPs (orange). Ellipses show the biological process terms associated to the
genes (color as in Figure 2) and altered in AD; rhomboid shapes stand for histological markers of AD.
doi:10.1371/journal.pone.0078919.g004
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SNPs, drug targets and OMIM genes in comparison to randomly

chosen nodes from the network.

Recently, a specific Alzheimer’s network was proposed by

Mizuno and colleagues [49], a catalogue mapping of AD signaling

pathway based on literature mining. Thus, we tried to merge this

AD network with the enriched reference module (obtained from

the integration of the three datasets). Among the few overlapping

genes (ULK1, INPP5K, CIB1, PRKG1, SR1, ADRBK1, GNAQ,

UBE2M, PCSK1, PRKAA2) an AMPK subunit, PRKAA2, was

found, further emphasizing the relevant role of AMPK in AD.

In superior frontal gyrus, the functional categories that are over-

represented in significantly enriched reference modules converge

not only to metabolic functions as in posterior cingulate cortex, but

also to synaptic transmission. They comprise numerous neuro-

transmitter signaling pathways, including dopaminergic, GABAer-

gic, glutamatergic, serotonergic, and neuropeptidergic systems

(Figure 3). Altered cognition, learning and memory are clinical

major features of AD and well known is the role of all major

neurotransmitters in this higher brain function in physiological

conditions and in AD [50]. Our findings give also support for a

role of neuropeptidergic transmission in AD, in particular

orexigenic neuropeptides (neuropeptide Y, orexin, agouti-related

peptide, proopriomelnocortin, dynorphin, neuropeptide FF) that

are involved in food intake and energy regulation. This advocates

for a potential association to alteration of energy homeostasis in

AD and AMPK, as this latter has been shown to mediate the

orexigenic or anorexigenic effects of various neuropeptide signals

[51]. AMPK appears also to couple energy metabolism to

neuronal plasticity, as suggested by [52], thus linking energetic

deficiency to alteration in synaptic transmission and memory

impairment. This may possibly explain how memory could be

controlled by energy metabolism, organization of the cytoskeleton

and other biological processes relevant for neuronal survival.

The validity of the result were also tested using OMIM AD-

related genes by adopting two strategies: OMIM genes were used

(1) as a control, by checking their presence in reference modules

found using the three original lists of seed genes, or (2) as a fourth list

of seed genes and treated as an additional layer of evidence. In the

first strategy, the significant enrichment of OMIM Alzheimer’s

disease associated genes found in previously identified reference

modules strengthens the conclusions of the three-level analysis. In

the context of the second strategy, when used as an additional

layer of evidence, the results did not perturb the findings for PC

and SFG (Figure 2), thus confirming the robustness of our

methodological approach to the addition of a new set of

independent data.

Additionally, the presence of AMPK-related genes in this new

set of reference modules passed two out of three of our significance

tests. The additional enriched modules contributed by the OMIM

seed genes list were biased in favor of well-known AD genes, and as a

result AMPK-related genes did not reach significance threshold

when tested for frequency in reference modules. Thus the negative

outcome of the test simply reflects the fact that the addition of a list

of known AD genes to the analysis has the effect of diluting the

significance of newly discovered genes such as AMPK.

Conclusions

In the present study, a novel multifactorial network analysis

approach provided evidence, together with a number of recently

published findings [53–55], suggesting that the deregulation of

various metabolic factors and energy homeostasis, possibly

determined by aging process, play a key role in AD. These

processes possibly involve orexigenic neuropeptides and, particu-

larly, AMPK. These alterations, in an adverse genetic environ-

ment, could explain the major hallmark of AD, tangle and

plaques, all the modifications in metabolic signaling and cognitive

functions, and the inflammatory and apoptotic events seen in AD.

We hypothesize that these processes could be activated by the

conflict between the low level of energy metabolism and the high

level of regulatory and repair load, as suggested by Sun and

colleagues [10]. Future studies will focus on the specific

investigation of these metabolic alterations also on a systemic

level, with the inclusion in the analysis of studies in blood samples

from affected individual.

Supporting Information

Figure S1 Map of the gene expression signature of the
samples from the GSE5281 dataset. Each node represents a

sample, and an edge between two nodes represents the distance

between the respective transcriptional signatures. The spontaneous

clustering of the samples in groups reflects the existence of classes

of highly similar expression profiles corresponding almost perfectly

to the tissue of origin (color legend: EC = orange, MTG = red,

SFG = cyan, HIP = purple, VCX = yellow, PC = blue). The map

was obtained with a signature size of 125+125 genes (up-

regulated+down-regulated); only the top 20% of all pairwise

distances were included in the map as edges.

(TIF)

Figure S2 Schematic representation illustrating the
procedure for identifying reference modules. We use the

giant component of HPRD to detect modules that are significantly

enriched with respect to different lists of seed genes. Consider a

hypothetical case with seed genes overrepresented in 10 modules,

after running 100 times the ‘‘spinglass.community’’ algorithm. To

understand possible redundancies (i.e., the fact that the same

module is found during different runs), we have to compare size

and composition of significantly enriched modules. First, enriched

modules are classified on the basis of their size (e.g., in this

hypothetical example, the 10 enriched modules are classified in

four size categories: (a) 9, 9; (b) 80, 76 and 82; (c) 200, 480, 520

and 512; (d) 1023). If we focus on the first group, two enriched

modules of size 9 are included. After classifying these two modules

in the same size group, we have to determine whether they can be

merged (i.e., they have to share some nodes and interactions so

that seed gene enrichment found with constitutive modules is still

significant after their union). At this step, there can be three

possible scenarios: (1) the modules can be successfully merged,

without altering the significance of the statistics (i.e., there are 4

seed genes out of 10 in the new reference module); (2) the modules

share some nodes and connections, but after their merging the

significant enrichment in seed genes vanishes (i.e., there are 3 seed

genes out of 16, and the two initial modules should be considered as

separate reference modules); (3) the two initial modules do not

share any node (and connection), and have to be considered as

representative of two different reference modules (where seed genes

are significantly enriched with the following ratios: 3/9 and 4/9).

(EPS)

Table S1 This file includes seed genes extracted from
expression data of AD patients, SNPs that are signifi-
cantly associated to AD, AD primary drug targets, and
AD OMIM genes. The remaining spreadsheets show the lists of

genes composing enriched reference modules in AD-related data.

They refer to reference modules detected using the differentially

expressed genes, drug targets and OMIM genes alone (no enriched

modules were found with SNPs), but also describe the composition
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of reference modules where genes from (1) the union of

transcriptomic and genetic signatures, (2) the union of genes

identified with transcriptomic, genetic and drug target, and (3) the

union of transcriptomic, genetic, drug targets and OMIM genes

data are over-represented.

(XLSX)

Table S2 Summary of the specific GO terms corre-
sponding to the main classes listed in Figures 2–3.
(XLSX)

Tables S3 Statistical analysis of the relatedness of
AMPK signaling to AD. (1) Frequency of AMPK nodes in

the enriched reference modules, (2) Enrichment analysis specific to

AMPK nodes and their direct neighbors, (3) Shortest distances

linking AMPK nodes to seed genes.

(DOCX)
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