
©
20

13
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

 Mini-Review

www.landesbioscience.com Mobile Genetic elements e26693-1

Mobile Genetic elements 3:5, e26693; September/October 2013; © 2013 Landes Bioscience

Mini-Review

Introduction

Nearly half of the human genome is evolutionarily derived 
from transposable elements (TEs),1 which are DNA sequences 
capable of mobilization within the genome of a host organism. 
These elements are often highly repetitive and can be grouped 
into two general classes based on their mechanism of transposi-
tion.2 Class I TEs, also referred to as retrotransposons, utilize 
a reverse transcriptase enzyme to generate an RNA intermedi-
ate sequence which is used as template to regenerate a copy of 
the original DNA sequence for integration at a distinct genomic 
location. This mechanism results in duplication of the trans-
poson. Class I TEs include retrotransposons with long-termi-
nal repeats (LTRs) resembling those of retroviruses, as well as 
long and short interspersed elements (LINEs and SINEs). Class 
II TEs, also called DNA transposons, include the TC-1/mari-
ner, hAT, and piggyBac transposon families. They are typically 
mobilized via a “cut and paste” mechanism wherein the trans-
poson is excised from a donor site by a transposase enzyme and 
reinserted elsewhere in the genome without duplication. Some 
members are capable of replicative mobilization through mecha-
nisms not involving RNA.3-5

Following their incorporation into the genome, the vast 
majority of TEs have been inactivated as a result of accumulat-
ing mutations over an evolutionary time scale, preventing them 
from mobilizing autonomously. Barring some kind of negative 
selective pressure, inserted TEs can become fixed in the genome 
of a species and serve as a source for novel genetic loci. In some 
cases, accumulated mutations have caused neofunctionalization 
of inserted TEs. This process is termed exaptation (or alterna-
tively molecular domestication or co-option). Positive selective 
pressure for maintenance of co-opted TEs may be provided 
by some beneficial cellular function performed by the novel 
gene product. The process of TE exaptation has contributed 
significantly to the human genome. Over 10,000 TE-derived 
genomic regions have been subject to strong purifying selec-
tion6 and ~50 protein-coding genes have arisen via this mech-
anism.1,7 The majority of domesticated genes are functionally 
uncharacterized; those that have been studied have been found 
to be involved in a variety of cellular processes, including tran-
scriptional regulation, proliferation, cell cycle progression, and 
apoptosis.

Aside from functions of their domesticated gene products, 
there is a growing body of literature describing the involvement 
of transposable elements in promoting human cancer, a topic 
which has been the subject of several recent reviews.8-11 The 
best characterized roles for TEs in tumorigenesis involve active 
mobilization or genomic rearrangement through recombina-
tion events. Although most TE sequences within the human 
genome have sustained mutations rendering them inactive, an 
estimated 80–100 elements retain the ability to transpose.12 
The activity of these elements is normally repressed in somatic 
tissues; however, epigenetic modifications, such as those associ-
ated with cellular transformation, can lead to their reactivation. 
Hypomethylation of L1 retrotransposons has been observed in 
a variety of human cancers, including those of the prostate,13 
liver,14 and colon.15 Analyses of somatic TE mobilization have 
revealed substantial activity in solid tumors with apparent selec-
tion for recurrent disruption of genes known to be involved in 
cancer, suggesting a contributing role for TE-mediated inser-
tional mutagenesis in promoting tumor formation.16,17 Aside 
from direct disruption via insertion within genes, mobilized 
TEs can exert position effects on loci near the site of integration 
by disrupting normal mechanisms of regulated expression.18 
In some cases, TE-initiated transcription can proceed through 
neighboring loci, leading to the generation of chimeric tran-
scripts that may actively promote neoplastic transformation.19 
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The adaptation of transposable elements inserted within 
the genome to serve novel functions in a host cell, a process 
known as molecular domestication, is a widespread phenom-
enon in nature. Around fifty protein-coding genes in humans 
have arisen through this mechanism. Functional characteriza-
tion of these domesticated genes has revealed involvement in 
a multitude of diverse cellular processes. Some of these func-
tions are related to cellular activities and pathways known to be 
involved in cancer development. in this mini-review we discuss 
such roles of domesticated genes that may be aberrantly regu-
lated in human cancer, as well as studies that have identified dis-
rupted expression in tumors. we also describe studies that have 
provided definitive experimental evidence for transposable 
element-derived gene products in promoting tumorigenesis.
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Another mechanism by which TEs have been implicated in 
human cancer is through the disruption of genomic architec-
ture. This mechanism is independent of transposition, and it 
involves non-allelic homologous recombination between repeti-
tive regions of TE-derived sequences. Such events can result in 
deletion, duplication, or translocation of chromosomal regions, 
promoting genomic instability.20

In addition to the mechanisms already discussed, it has been 
speculated that gene products expressed from domesticated TEs 
may play a direct role in human cancer. There is an increas-
ing amount of correlative evidence linking aberrant expression 
of domesticated gene products to tumor development and/or 
progression. Validation of putative TE-derived cancer genes 
in a meaningful in vivo context, however, has been minimal. 
Recently, we described the identification of Retrotransposon-like 
1 (Rtl1) as a gene involved in hepatocellular carcinoma (HCC) 
development through the use of a Sleeping Beauty transposon 
forward genetic mutagenesis screen in mice.21 Subsequent in 
vivo validation of tumor-promoting activity and correlation to 
expression data from human liver tumors led us to conclude 
that activation of RTL1 may be a significant driving event in 
human HCC. In this mini-review, we discuss the functions of 
various domesticated TE gene products in cellular processes 
related to cancer, as well as summarize the results of studies 
correlating expression of this gene class with tumor status. 
Additionally, we briefly discuss the efforts of our group and 
another in providing some of the first direct experimental evi-
dence of a functional role for a domesticated TE gene product 
in promoting cancer.

Gene Products of Co-Opted Transposable 
Elements have Diverse Roles in Cellular 

Processes Related to Cancer

Although the majority of domesticated TE genes have  
not been functionally characterized, those that have are  
involved in a variety of cellular processes relevant to cancer  
biology. One explanation for the diversity of cellular func-
tions performed by co-opted genes derived from TEs has to do  
with the fact that they encode protein domains that are  
widely utilized by cells, such as those involved in DNA  
binding, chromatin organization, and transcriptional regula-
tion.22 Genes of this class have been shown to regulate growth 
factor signaling, cell cycle progression, proliferation, and 
survival.

One of the clearest examples of the involvement of a domes-
ticated TE in a process related to cancer is that of telomerase 
reverse transcriptase (TERT). Proposed to have evolved from an 
ancient L1 retrotransposon insertion,23 TERT is a key compo-
nent of a system that maintains telomere length in replicating 
cells. Activation of TERT expression has been observed in the 
majority of human cancers, where it is associated with replica-
tive immortality, a critical step in neoplastic transformation.24 
In addition to its canonical function, roles have been proposed 
for TERT in Wnt pathway signaling, cellular proliferation, and 
resistance to apoptosis.

Acquisition of the ability to avoid cell death is a central tenet 
of the process of cellular transformation and tumorigenesis.24 
Involvement of multiple co-opted TE gene products in cell sur-
vival has been described. Evolutionarily derived from an LTR 
retrotransposon of the Ty3/Gypsy family,25 modulator of apopto-
sis (MOAP1) has been proposed to regulate caspase-dependent 
apoptosis through interaction with BAX.26 Paternally expressed 
gene 10 (PEG10) is another Ty3/Gypsy-derived human protein25 
with a function related to apoptosis. Through direct physical 
interaction with the pro-apoptotic E3 ubiquitin ligase seven in 
absentia homolog 1 (SIAH1), PEG10 was shown to increase 
cell survival by preventing the induction of apoptosis.27 Also 
derived from a member of the Ty3/Gypsy family of retrotranspo-
sons, leucine zipper, downregulated in cancer 1 (LDOC1) was 
found to increase cell sensitivity to apoptosis induced by TNF-
α.28 This effect is mediated through negative regulation of the 
anti-apoptotic NF-κB transcriptional network. Taken together, 
these findings suggest a potential link between Ty3/Gypsy-
derived domesticated gene products and regulation of apoptosis 
in human cells.

The zinc finger, BED-type containing (ZBED) gene family 
originated through exaptation of DNA transposons of the hAT 
family.29 This family, which consists of ten members in humans, 
exemplifies the diverse cellular roles for which TEs have been 
domesticated. Members have been shown to be involved in tran-
scriptional regulation, growth factor signaling, and proliferation. 
As an example of potential involvement in cancer, it has been 
reported that ZBED6 acts as a repressor of insulin-like growth 
factor 2 (IGF2) through directly binding its DNA sequence and 
inhibiting transcription.30 A role for IGF2 in promoting human 
cancer has been well established.31

Progression through the cell cycle is another process that is 
subject to regulation by domesticated TEs. THAP domain con-
taining, apoptosis associated protein 1 (THAP1), which arose 
from exaptation of a P element DNA transposon,7 was found to 
be important for G1/S progression through a mechanism involv-
ing the pRB/E2F pathway.32 Centromere protein B (CENPB), 
derived from a Pogo family DNA transposon,7 is involved in 
chromatin compaction and centromere assembly during mito-
sis.33 Both THAP1 and CENPB are derivatives of transposase 
enzymatic domains from Class II transposons, suggesting a pos-
sible broader connection between this type of functional domain 
and cell cycle progression.

Aberrant Expression of Domesticated 
Transposable Element Gene Products Observed 

in Various Types of Human Cancer

Several connections between aberrant expression of co-opted 
TE gene products and cancer have been described. As discussed 
above, inappropriate activation of TERT is associated with the 
majority of human cancers. Additional examples of correlative 
associations between expression of co-opted gene products and 
tumor status are discussed below.

Significantly decreased expression of LDOC1 in tumors rela-
tive to normal tissue has been observed in pancreatic,34 gastric,34 
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prostate,35 and oral squamous cell36 cancer samples, suggest-
ing that it functions as a tumor suppressor. Consistent with 
this hypothesis, we report here for the first time an observed 
downregulation of LDOC1 and family member LDOC1-like 
(LDOC1L) in a significant subset of human hepatocellular car-
cinoma (HCC). As shown in Figure 1, LDOC1 expression is 
decreased by greater than 50% in 29 of 48 (60%) HCC samples 
relative to adjacent tumor-free liver. Similarly, LDOC1L expres-
sion is decreased by more than half in 17 of 48 (35%) matched 
samples. Of the 17 HCC samples with > 50% LDOC1L down-
regulation, 15 additionally display > 50% decreased LDOC1 lev-
els. These data are based on RNA expression levels in HCC and 
matched normal liver samples profiled by The Cancer Genome 
Atlas (TCGA) consortium.

PEG10, SETMAR, and GIN1 are additional examples of 
domesticated genes that are aberrantly expressed in human can-
cer. Overexpression of PEG10 has been observed in HCC,27 
B-cell chronic lymphocytic leukemia,37 gallbladder adenocar-
cinoma,38 and Wilms’ tumor.39 SETMAR, a gene derived from 
a Tc1/Mariner family DNA transposon, has been found to be 
highly expressed in acute myeloid and acute lymphoblastic leu-
kemias (AML and ALL), as well as breast cancer cells.40 Ty3/
Gypsy-derived GIN1 expression has also been detected in a vari-
ety of tumor samples.41

Aside from the well-characterized example of TERT, the 
observed connections between domesticated TE gene products 
and cancer are almost entirely correlative in nature. Though 
suggestive of a putative driving role in carcinogenesis, further 
functional validation of these molecular aberrations in a mean-
ingful in vivo context that accurately recapitulates human tumor 

formation is necessary before this conclusion can be made 
definitively.

Direct Evidence of Co-Opted Transposable 
Element Gene Product Involvement in Cancer

Some studies have been conducted to characterize the roles 
of TE-derived gene products identified as disrupted in cancer; 
however, the majority have been performed in cultured cancer 
cell lines. While this approach can lead to informative results 
and novel hypotheses, it should be complemented with in vivo 
functional validation experiments to maximize the utility of 
any discoveries. Without functional demonstration of a role in 
tumorigenesis, there is little justification for the pursuit of diag-
nostics or therapeutics based on a candidate gene. To date, few 
proposed links between co-opted TE gene products and tumori-
genesis have been adequately validated.

Besides TERT, another example of the definitive involve-
ment of domesticated gene products in promoting human cancer 
involves errors in normal recombination events within lymphoid 
cells. Recombination activating genes 1 and 2 (RAG1 and RAG2) 
are evolutionarily derived from ancient insertions of Transib 
DNA transposons.7 These genes mediate Variable, Diverse, and 
Joining (V(D)J) recombination in developing lymphocytes, a 
site-specific recombination process that generates a vast and 
diverse repertoire of T cell surface receptor and immunoglobulin 
molecules necessary for a functional immune system. As expected 
based on the derivation of RAG proteins from Class II TEs, this 
process involves the generation of double-strand DNA breaks in 
a way that is mechanistically similar to the “cut” component of 
“cut and paste” transposition. Normally, genomic modification 
induced by V(D)J recombination is limited to a defined window 
within the locus encoding the variable region of B- and T-cell 
receptors. With very low frequency, however, excised fragments 
can be reinserted within other regions of the genome, and this 
RAG-mediated transposition has been associated with lymphoid 
cancer development.42 An additional mechanism by which RAG 
proteins may contribute to human tumorigenesis is through the 
induction of chromosomal translocation events resulting from 
the utilization of cryptic recombination signal sequences outside 
of the V(D)J region.43,44

Recently, we described a study characterizing the involvement 
of Retrotransposon-like 1 (Rtl1), a Ty3/Gypsy family-derived gene, 
in HCC development.21 We initially identified the Rtl1 locus as 
a candidate HCC gene based on recurrent detection of its muta-
tion in tumors generated by a Sleeping Beauty (SB) transposon-
based forward genetic mutagenesis screen. While not expressed 
at detectable levels in normal adult mouse liver, we found Rtl1 
to be highly overexpressed in SB-induced liver tumors. We also 
found low to undetectable expression of RTL1 in tumor-free 
human liver samples, with activated expression detected in ~30% 
of matched HCCs. Importantly, in vivo overexpression of Rtl1 in 
the livers of adult mice induced highly penetrant (86%) tumor 
formation, validating it as a driver of hepatocarcinogenesis. An 
independent insertional mutagenesis screen using lentiviral vec-
tors also identified recurrent mutations causing overexpression 

Figure 1. Decreased expression of LDOC1 and LDOC1L in human hepato-
cellular carcinoma. RnA expression levels of LDOC1 and LDOC1L in human 
hepatocellular carcinoma (HCC) as reported by TCGA. Plotted values rep-
resent the ratio of expression in tumor tissue to that in matched normal 
liver samples (i.e., a value of one indicates no difference in expression 
between tumor and normal). The average ratio across all 48 sample pairs 
is indicated with a solid horizontal line and numerical value. A dashed 
line is included at 0.5 to distinguish samples with a decrease of more 
than 50% in tumor relative to normal liver.
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of Rtl1 in mouse HCCs.45 This group also validated in vivo that 
forced expression of Rtl1 promotes liver tumorigenesis.

Concluding Remarks

It has been proposed that transposable element exaptation 
during the evolution of species has been driven largely by the 
utility of inherent TE functional elements in a variety of cel-
lular processes.22,46 Indeed, those domesticated genes that have 
been functionally characterized are involved in diverse processes 
including growth factor signaling, cell cycle progression, prolif-
eration, and survival. Given these associations, it is possible that 

the set of ~50 TE-derived human genes may have a higher pro-
pensity for involvement in cancer than other loci. Of the numer-
ous domesticated TE gene products for which a link to human 
cancer has been identified, very few have been experimentally 
validated in vivo. Definitive roles for TERT, RAG1/RAG2, and 
Rtl1 in promoting tumorigenesis have been reported. It is likely 
that additional co-opted gene products are directly involved in 
driving cancer development; however, further experimentation is 
required to substantiate this hypothesis.
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